1
|
Liu CH, Rethi L, Weng PW, Trung Nguyen H, Chuang AEY. Cutting-edge advances in nano/biomedicine: A review on transforming thrombolytic therapy. Biochem Pharmacol 2024; 229:116523. [PMID: 39251141 DOI: 10.1016/j.bcp.2024.116523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Thrombotic blockages within blood vessels give rise to critical cardiovascular disorders, including ischemic stroke, venous thromboembolism, and myocardial infarction. The current approach to the therapy of thrombolysis involves administering Plasminogen Activators (PA), but it is hindered by fast drug elimination, narrow treatment window, and the potential for bleeding complications. Leveraging nanomedicine to encapsulate and deliver PA offers a solution by improving the efficacy of therapy, safeguarding the medicine from proteinase biodegradation, and reducing unwanted effects in in vivo trials. In this review, we delve into the underlying venous as well as arterial thrombus pathophysiology and provide an overview of clinically approved PA used to address acute thrombotic conditions. We explore the existing challenges and potential directions within recent pivotal research on a variety of targeted nanocarriers, such as lipid, polymeric, inorganic, and biological carriers, designed for precise delivery of PA to specific sites. We also discuss the promising role of microbubbles and ultrasound-assisted Sono thrombolysis, which have exhibited enhanced thrombolysis in clinical studies. Furthermore, our review delves into approaches for the strategic development of nano-based carriers tailored for targeting thrombolytic action and efficient encapsulation of PA, considering the intricate interaction in biology systems as well as nanomaterials. In conclusion, the field of nanomedicine offers a valuable method for the exact and effective therapy of severe thrombus conditions, presenting a pathway toward improved patient outcomes and reduced complications.
Collapse
Affiliation(s)
- Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan; Department of Urology, Shuang Ho Hospital, Taipei Medical University, 291 Zhongzheng Road, Zhonghe District, New Taipei City 23561, Taiwan
| | - Lekshmi Rethi
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Pei-Wei Weng
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Viet Nam
| | - Andrew E-Y Chuang
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan.
| |
Collapse
|
2
|
Chen S, Fang S, Zhou Y, Huang Z, Yu S, Chen D, Wang Z, Xu Y, Liu P, Li Y, Lin W, Jiang L, Yuan C, Huang M. A low bleeding risk thrombolytic agent: citPA5. Cardiovasc Res 2024; 120:1191-1201. [PMID: 38546342 DOI: 10.1093/cvr/cvae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 12/26/2023] [Accepted: 01/11/2024] [Indexed: 06/07/2024] Open
Abstract
AIMS Alteplase is a cornerstone thrombolytic agent in clinical practice but presents a potential bleeding risk. Stroke patients need pre-screening to exclude haemorrhagic stroke before using alteplase. In this study, we develop a new thrombolytic agent citPA5, characterized by an enhanced safety profile and minimal bleeding tendency. METHODS AND RESULTS A clot lysis agent, named citPA5, is developed based on rtPA with point mutations to completely suppress its proteolytic activity in the absence of fibrin. In the presence of fibrin, citPA5 exhibited significantly higher fibrinolytic activity (a 15.8-fold increase of kcat/Km). Furthermore, citPA5 showed resistance to endogenous fibrinolysis inhibitor, PAI-1, resulting in enhanced potency. In a series of safety evaluation experiments, including thrombelastography assay, mice tail bleeding assay, and a murine intracerebral haemorrhage (ICH) model, citPA5 did not cause systemic bleeding or worsen ICH compared with alteplase. This highlights the low risk of bleeding associated with citPA5. Finally, we found that citPA5 effectively improved cerebral blood flow and reduced infarct volume in a carotid embolism-induced stroke model. CONCLUSION This clot lysis agent, citPA5, not only exhibits a low risk of bleeding but also demonstrates highly effective thrombolysis capabilities. As a result, citPA5 shows great potential for administration prior to the classification of stroke types, making it possible for use in ambulances at the onset of stroke when symptoms are identified. The findings presented in this study also suggest that this strategy could be applied to develop a new generation of fibrinolytic drugs that offer greater safety and specificity in targeting fibrin.
Collapse
Affiliation(s)
- Shanli Chen
- College of Chemistry, Fuzhou University, No.2 Wulongjiang North Avenue, Fuzhou 350108, China
| | - Sudan Fang
- College of Chemistry, Fuzhou University, No.2 Wulongjiang North Avenue, Fuzhou 350108, China
| | - Yang Zhou
- College of Chemistry, Fuzhou University, No.2 Wulongjiang North Avenue, Fuzhou 350108, China
| | - Zhiwei Huang
- College of Chemistry, Fuzhou University, No.2 Wulongjiang North Avenue, Fuzhou 350108, China
| | - Shujuan Yu
- College of Chemistry, Fuzhou University, No.2 Wulongjiang North Avenue, Fuzhou 350108, China
| | - Dan Chen
- College of Chemistry, Fuzhou University, No.2 Wulongjiang North Avenue, Fuzhou 350108, China
| | - Zhiyou Wang
- College of Chemistry, Fuzhou University, No.2 Wulongjiang North Avenue, Fuzhou 350108, China
| | - Yanyan Xu
- College of Chemical Engineering, Fuzhou University, Fuzhou, China
| | - Peiwen Liu
- College of Chemistry, Fuzhou University, No.2 Wulongjiang North Avenue, Fuzhou 350108, China
| | - Yongkun Li
- Department of Neurology, Provincial Hospital Affiliated to Fujian Medical University, Fuzhou, China
| | - Wei Lin
- Fujian Institute of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, No.2 Wulongjiang North Avenue, Fuzhou 350108, China
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, No.2 Xueyuan Road, New District, Fuzhou 350108, China
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, No.2 Wulongjiang North Avenue, Fuzhou 350108, China
| |
Collapse
|
3
|
Nour Eldine M, Alhousseini M, Nour-Eldine W, Noureldine H, Vakharia KV, Krafft PR, Noureldine MHA. The Role of Oxidative Stress in the Progression of Secondary Brain Injury Following Germinal Matrix Hemorrhage. Transl Stroke Res 2024; 15:647-658. [PMID: 36930383 DOI: 10.1007/s12975-023-01147-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/18/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
Germinal matrix hemorrhage (GMH) can be a fatal condition responsible for the death of 1.7% of all neonates in the USA. The majority of GMH survivors develop long-term sequalae with debilitating comorbidities. Higher grade GMH is associated with higher mortality rates and higher prevalence of comorbidities. The pathophysiology of GMH can be broken down into two main titles: faulty hemodynamic autoregulation and structural weakness at the level of tissues and cells. Prematurity is the most significant risk factor for GMH, and it predisposes to both major pathophysiological mechanisms of the condition. Secondary brain injury is an important determinant of survival and comorbidities following GMH. Mechanisms of brain injury secondary to GMH include apoptosis, necrosis, neuroinflammation, and oxidative stress. This review will have a special focus on the mechanisms of oxidative stress following GMH, including but not limited to inflammation, mitochondrial reactive oxygen species, glutamate toxicity, and hemoglobin metabolic products. In addition, this review will explore treatment options of GMH, especially targeted therapy.
Collapse
Affiliation(s)
- Mariam Nour Eldine
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | | | - Wared Nour-Eldine
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Hussein Noureldine
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Kunal V Vakharia
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Paul R Krafft
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Mohammad Hassan A Noureldine
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA.
| |
Collapse
|
4
|
Naqvi SJH, Voppuru SR, Wigle D. Use of fibrinolytics for percutaneous drainage of intrabdominal hematoma: a case report. AME Case Rep 2024; 8:50. [PMID: 38711892 PMCID: PMC11071008 DOI: 10.21037/acr-23-178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/08/2024] [Indexed: 05/08/2024]
Abstract
Background Intrabdominal hematoma can be managed with angioembolization, surgical drainage, or percutaneous drainage depending on the patient factors, underlying pathology, and size and stability of hematoma. During the past decades, advancements have been made in the percutaneous management of intrapleural fluid collections using fibrinolytics. However, intrabdominal hematoma resolution with the help of fibrinolytic-assisted percutaneous drainage has not been as widely studied as intrapleural fibrinolytics. Our case presents a scenario where effective percutaneous drainage of abdominal fluid collection using fibrinolytics avoided an operative intervention in a patient with a history of multiple abdominal surgeries. This case report in essence can help navigate future studies into exploring non-operative management options in patients with a history of multiple abdominal surgeries. Case Description In this report, we present a 51-year-old female status post hiatal hernia repair with jejunostomy tube (J-tube) exchange complicated by walled off intraabdominal hematoma who presented with persistent abdominal pain and leakage around her J-tube. Due to her past history of multiple abdominal surgeries including multiple hiatal hernia repairs, distal esophagectomy with Roux-en-Y, and revision of the said Roux-en-Y complicated by wound dehiscence, surgical drainage was deferred in favor of trialing fibrinolytic administration via catheters. For this purpose, we employed the protocol for fibrinolytic administration used by the Second Multicenter Intrapleural Sepsis Trial (MIST2). Conclusions Use of tissue plasminogen activator (t-PA) and deoxyribonuclease (DNase) as per MIST2 protocol was safely replicated for intrabdominal walled off hematoma and resulted in a near complete resolution of the hematoma in 1 week. The patient was eventually discharged with no complications. This case highlights safe and efficacious use of fibrinolytics for non-operative management of intrabdominal hematomas.
Collapse
Affiliation(s)
| | | | - Dennis Wigle
- Department of Thoracic Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
5
|
Thiebaut AM, Louet ER, Ianszen M, Guichard MJ, Hanley DF, Gaudin C, Parcq J. O2L-001, an innovative thrombolytic to evacuate intracerebral haematoma. Brain 2023; 146:4690-4701. [PMID: 37450572 PMCID: PMC10629768 DOI: 10.1093/brain/awad237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/31/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
Intracerebral haemorrhage is an unmet medical need affecting more than 3 million people worldwide every year and leading to the formation of an intracerebral haematoma. Updated guidelines (2022) for the management of intracerebral haemorrhage patients recognize that minimally invasive approaches for the evacuation of supratentorial intracerebral haemorrhage have demonstrated reductions in mortality compared with medical management alone. However, improvement of functional outcome with a procedure involving thrombolytic therapy was neutral in the last large phase 3 clinical trial and requires a more effective and safer thrombolytic agent than those currently available. Here, we demonstrate that O2L-001 allows for the extended release of W253R/R275S recombinant tissue-type plasminogen activator (rtPA). A new rtPA variant, called optimized tPA (OptPA), offers improved efficacy for haematoma evacuation as well as improved safety. OptPA was produced in a Chinese hamster ovary cell line before purification, nanoprecipitation using the NANOp2Lysis® technological platform followed by suspension in a solution of 17% poloxamer 407 to obtain O2L-001. Plasmin generation assays were performed to demonstrate O2L-001 safety. Ex vivo haematoma models using human blood were used to demonstrate O2L-001 thrombolysis properties and efficacy. For the best translational significance, a clinical sized haematoma was used to ensure catheter placement and to allow administration of the thrombolytic agent into the core of the haematoma via a minimally invasive procedure. The capacity of OptPA to convert plasminogen into plasmin is strongly decreased compared to rtPA, thereby reducing potential bleeding events. However, a clot lysis assay showed that OptPA had the same fibrinolytic activity as rtPA. We demonstrated that long-term exposure to a thrombolytic agent was essential to achieve high thrombolysis efficacy. Indeed, 24 h continuous exposure to 0.1 µg/ml rtPA had similar efficacy than repeated short exposure to 30 µg/ml rtPA. This finding led to the development of O2L-001, allowing the extended release of OptPA in the first 6 h following injection. An ex vivo model using human blood was used to demonstrate O2L-001 efficacy. Interestingly, unlike rtPA, O2L-001 was able to induce the complete lysis of the 5 ml haematoma. In clinical sized haematomas (obtained from 30 ml of human blood), a single injection of O2L-001 at 1 mg/ml into the core of the haematoma led to a 44% increase in thrombolysis compared to rtPA. Taken together, these results demonstrate that O2L-001 provides new hope for haematoma evacuation and the treatment of patients with intracerebral haemorrhage.
Collapse
Affiliation(s)
| | - Estelle R Louet
- Op2Lysis SAS, GIP Cyceron, 14000 Caen, France
- Normandie Univ, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000 Caen, France
| | | | | | - Daniel F Hanley
- The Johns Hopkins Medical Institutions, BIOS, Baltimore, MD 21202, USA
| | | | | |
Collapse
|
6
|
Xu F, Lian L, Liang Q, Deng G, Zhang J, Wang S, Wang F, Tang Z, Zhu S. Comparative study on acute management of intracerebral haematoma using local thrombolysis in moyamoya and non-moyamoya patients: a single institution experience. Br J Neurosurg 2023; 37:1082-1087. [PMID: 35475398 DOI: 10.1080/02688697.2022.2034743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/23/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE Spontaneous intracerebral haemorrhage (ICH) is the main presentation in adults with moyamoya disease (MMD), an unusual clinical entity with a poor prognosis. However, optimal management in the acute stage of ICH in patients with MMD remains a challenge. Since minimally invasive surgery (MIS) plus local thrombolysis has emerged as a promising strategy for ICH, we aimed to describe our experience of performing this procedure in this special population in the acute phase, while focusing on its efficacy and safety. MATERIALS AND METHODS The medical data of patients with ICH treated with MIS and local thrombolysis between November 2013 and December 2017 were retrospectively reviewed at our institution. MMD was identified based on the angiographic images. The primary outcome was postoperative intracranial rebleeding. The secondary outcomes were 30-day mortality and 6-month outcome graded using the modified Rankin scale (mRS). Logistic regression was applied to explore independent risk factors for the above outcomes. RESULTS A cohort of consecutive 337 ICH patients was analysed, of whom 14 (4.15%) were diagnosed with MMD. In total, 36 (11.46%) patients experienced postoperative intracranial rehaemorrhage, of which one patient had MMD. No significant difference was found between the patients with and without MMD regarding postoperative rebleeding (9.09% vs. 11.55%, p = 1.000). Additionally, the 30-day mortality of patients with MMD was 21.42% (3/14), which was not significantly different from that of non-MMD patients (10.83%; p = 0.201). Moreover, 53.8% of patients had poor outcomes at the 6-month follow-up among MMD patients, similar to 43.9% of patients without MMD (p = 0.573). The coexistence of MMD failed to show a significant association with postoperative intracranial rebleeding (p = 0.348), 30-day mortality (p = 0.211), or poor outcome at the 6-month follow-up (p = 0.450). CONCLUSION Our findings suggest that coexistent MMD is not associated with an increased risk of postoperative rebleeding or poor outcome after local thrombolysis for ICH.
Collapse
Affiliation(s)
- Feng Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lifei Lian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiming Liang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Deng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Furong Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suiqiang Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Haji-Allahverdipoor K, Jalali Javaran M, Rashidi Monfared S, Khadem-Erfan MB, Nikkhoo B, Bahrami Rad Z, Eslami H, Nasseri S. Insights Into The Effects of Amino Acid Substitutions on The Stability of Reteplase Structure: A Molecular Dynamics Simulation Study. IRANIAN JOURNAL OF BIOTECHNOLOGY 2023; 21:e3175. [PMID: 36811105 PMCID: PMC9938932 DOI: 10.30498/ijb.2022.308798.3175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 07/06/2022] [Indexed: 02/24/2023]
Abstract
Background Reteplase (recombinant plasminogen activator, r-PA) is a recombinant protein designed to imitate the endogenous tissue plasminogen activator and catalyze the plasmin production. It is known that the application of reteplase is limited by the complex production processes and protein's stability challenges. Computational redesign of proteins has gained momentum in recent years, particularly as a powerful tool for improving protein stability and consequently its production efficiency. Hence, in the current study, we implemented computational approaches to improve r-PA conformational stability, which fairly correlates with protein's resistance to proteolysis. Objectives The current study was developed in order to evaluate the effect of amino acid substitutions on the stability of reteplase structure using molecular dynamic simulations and computational predictions. Materials and Methods Several web servers designed for mutation analysis were utilized to select appropriate mutations. Additionally, the experimentally reported mutation, R103S, converting wild type r-PA into non-cleavable form, was also employed. Firstly, mutant collection, consisting of 15 structures, was constructed based on the combinations of four designated mutations. Then, 3D structures were generated using MODELLER. Finally, 17 independent 20-ns molecular dynamics (MD) simulations were conducted and different analysis were performed like root-mean-square deviation (RMSD), root-mean-square fluctuations (RMSF), secondary structure analysis, number of hydrogen bonds, principal components analysis (PCA), eigenvector projection, and density analysis. Results Predicted mutations successfully compensated the more flexible conformation caused by R103S substitution, so, improved conformational stability was analyzed from MD simulations. In particular, R103S/A286I/G322I indicated the best results and remarkably enhanced the protein stability. Conclusion The conformational stability conferred by these mutations will probably lead to more protection of r-PA in protease-rich environments in various recombinant systems and potentially enhance its production and expression level.
Collapse
Affiliation(s)
- Kaveh Haji-Allahverdipoor
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mokhtar Jalali Javaran
- Department of Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Sajad Rashidi Monfared
- Department of Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mohamad Bagher Khadem-Erfan
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Bahram Nikkhoo
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Zhila Bahrami Rad
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Habib Eslami
- Department of Pharmacology and Toxicology, School of Pharmacy, Hormozgan University of Medicinal sciences, Bandar Abbas, Iran
| | - Sherko Nasseri
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
8
|
Paiva WS, Zippo E, Miranda C, Brasil S, Godoy DA, De Andrade AF, Neville I, Patriota GC, Domingues R, Teixeira MJ. Animal models for the study of intracranial hematomas (Review). Exp Ther Med 2022; 25:20. [PMID: 36561628 PMCID: PMC9748783 DOI: 10.3892/etm.2022.11719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
Abstract
Intracranial hematomas (ICH) are a frequent condition in neurosurgical and neurological practices, with several mechanisms of primary and secondary injury. Experimental research has been fundamental for the understanding of the pathophysiology implicated with ICH and the development of therapeutic interventions. To date, a variety of different animal approaches have been described that consider, for example, the ICH evolutive phase, molecular implications and hemodynamic changes. Therefore, choosing a test protocol should consider the scope of each particular study. The present review summarized investigational protocols in experimental research on the subject of ICH. With this subject, injection of autologous blood or bacterial collagenase, inflation of intracranial balloon and avulsion of cerebral vessels were the models identified. Rodents (mice) and swine were the most frequent species used. These different models allowed improvements on the understanding of intracranial hypertension establishment, neuroinflammation, immunology, brain hemodynamics and served to the development of therapeutic strategies.
Collapse
Affiliation(s)
- Wellingson Silva Paiva
- Department of Neurology, Division of Neurosurgery, School of Medicine, University of São Paulo, 05403000 São Paulo, Brazil,Medical Research Laboratory 62, Department of Neurology, School of Medicine, University of São Paulo, 05403000 São Paulo, Brazil
| | - Emanuele Zippo
- Department of Neurology, Division of Neurosurgery, School of Medicine, University of São Paulo, 05403000 São Paulo, Brazil
| | - Carolina Miranda
- Neurology Center, Samaritan Hospital, 01232010 São Paulo, Brazil
| | - Sérgio Brasil
- Department of Neurology, Division of Neurosurgery, School of Medicine, University of São Paulo, 05403000 São Paulo, Brazil,Medical Research Laboratory 62, Department of Neurology, School of Medicine, University of São Paulo, 05403000 São Paulo, Brazil,Correspondence to: Dr Sérgio Brasil, Department of Neurology, Division of Neurosurgery, School of Medicine, University of São Paulo, 255 Enéas Aguiar Street, 05403 São Paulo, Brazil
| | - Daniel Augustin Godoy
- Department of Intensive Care, Neurointensive Care Unit, Pasteur Hospital, 4700 Catamarca, Argentina
| | - Almir Ferreira De Andrade
- Department of Neurology, Division of Neurosurgery, School of Medicine, University of São Paulo, 05403000 São Paulo, Brazil,Medical Research Laboratory 62, Department of Neurology, School of Medicine, University of São Paulo, 05403000 São Paulo, Brazil
| | - Iuri Neville
- Department of Neurology, Division of Neurosurgery, School of Medicine, University of São Paulo, 05403000 São Paulo, Brazil
| | | | - Renan Domingues
- Neurology Center, Samaritan Hospital, 01232010 São Paulo, Brazil
| | - Manoel Jacobsen Teixeira
- Department of Neurology, Division of Neurosurgery, School of Medicine, University of São Paulo, 05403000 São Paulo, Brazil,Medical Research Laboratory 62, Department of Neurology, School of Medicine, University of São Paulo, 05403000 São Paulo, Brazil
| |
Collapse
|
9
|
Zhang Y, Khan S, Liu Y, Wu G, Yong VW, Xue M. Oxidative Stress Following Intracerebral Hemorrhage: From Molecular Mechanisms to Therapeutic Targets. Front Immunol 2022; 13:847246. [PMID: 35355999 PMCID: PMC8959663 DOI: 10.3389/fimmu.2022.847246] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/18/2022] [Indexed: 12/18/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a highly fatal disease with mortality rate of approximately 50%. Oxidative stress (OS) is a prominent cause of brain injury in ICH. Important sources of reactive oxygen species after hemorrhage are mitochondria dysfunction, degradated products of erythrocytes, excitotoxic glutamate, activated microglia and infiltrated neutrophils. OS harms the central nervous system after ICH mainly through impacting inflammation, killing brain cells and exacerbating damage of the blood brain barrier. This review discusses the sources and the possible molecular mechanisms of OS in producing brain injury in ICH, and anti-OS strategies to ameliorate the devastation of ICH.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Suliman Khan
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Yang Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Guofeng Wu
- Department of Emergency, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Gauberti M, Martinez de Lizarrondo S, Vivien D. Thrombolytic strategies for ischemic stroke in the thrombectomy era. J Thromb Haemost 2021; 19:1618-1628. [PMID: 33834615 DOI: 10.1111/jth.15336] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 02/03/2023]
Abstract
Twenty-five years ago, intravenous thrombolysis has revolutionized the care of patients with acute ischemic stroke. Since 2015, randomized clinical trials have demonstrated that mechanical thrombectomy improves functional outcome in stroke patients over intravenous thrombolysis alone. More recently, three randomized clinical trials have suggested that mechanical thrombectomy alone is noninferior to a combined strategy with both intravenous thrombolysis and mechanical thrombectomy. In the present review, we will present the last clinical and preclinical studies on the use of thrombolysis in stroke patients in the modern thrombectomy era. At the cost of a potential increased risk of hemorrhagic transformation, thrombolysis may promote arterial recanalization before thrombectomy, improve the rate of successful recanalization after thrombectomy, and restore microcirculation patency downstream of the main thrombus. Besides, new thrombolytic strategies targeting tissue-type plasminogen activator resistant thrombi are being developed, which could strengthen the beneficial effects of thrombolysis without carrying additional pro-hemorrhagic effects. For instance, tenecteplase has shown improved rate of recanalization compared with tissue-type plasminogen activator (alteplase). Beyond fibrinolysis, DNA- and von Willebrand factor-targeted thrombolytic strategies have shown promising results in experimental models of ischemic stroke. New combined strategies, improved thrombolytics, and dedicated clinical trials in selected patients are eagerly awaited to further improve functional outcome in stroke.
Collapse
Affiliation(s)
- Maxime Gauberti
- Normandie Univ, UNICAEN, INSERM, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
- CHU Caen, Department of Neuroradiology, CHU de Caen Côte de Nacre, Caen, France
| | - Sara Martinez de Lizarrondo
- Normandie Univ, UNICAEN, INSERM, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - Denis Vivien
- Normandie Univ, UNICAEN, INSERM, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
- CHU Caen, Clinical Research Department, CHU de Caen Côte de Nacre, Caen, France
| |
Collapse
|
11
|
Nikitin D, Choi S, Mican J, Toul M, Ryu WS, Damborsky J, Mikulik R, Kim DE. Development and Testing of Thrombolytics in Stroke. J Stroke 2021; 23:12-36. [PMID: 33600700 PMCID: PMC7900387 DOI: 10.5853/jos.2020.03349] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
Despite recent advances in recanalization therapy, mechanical thrombectomy will never be a treatment for every ischemic stroke because access to mechanical thrombectomy is still limited in many countries. Moreover, many ischemic strokes are caused by occlusion of cerebral arteries that cannot be reached by intra-arterial catheters. Reperfusion using thrombolytic agents will therefore remain an important therapy for hyperacute ischemic stroke. However, thrombolytic drugs have shown limited efficacy and notable hemorrhagic complication rates, leaving room for improvement. A comprehensive understanding of basic and clinical research pipelines as well as the current status of thrombolytic therapy will help facilitate the development of new thrombolytics. Compared with alteplase, an ideal thrombolytic agent is expected to provide faster reperfusion in more patients; prevent re-occlusions; have higher fibrin specificity for selective activation of clot-bound plasminogen to decrease bleeding complications; be retained in the blood for a longer time to minimize dosage and allow administration as a single bolus; be more resistant to inhibitors; and be less antigenic for repetitive usage. Here, we review the currently available thrombolytics, strategies for the development of new clot-dissolving substances, and the assessment of thrombolytic efficacies in vitro and in vivo.
Collapse
Affiliation(s)
- Dmitri Nikitin
- International Centre for Clinical Research, St. Anne's Hospital, Brno, Czech Republic.,Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Seungbum Choi
- Molecular Imaging and Neurovascular Research Laboratory, Department of Neurology, Dongguk University College of Medicine, Goyang, Korea
| | - Jan Mican
- International Centre for Clinical Research, St. Anne's Hospital, Brno, Czech Republic.,Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic.,Department of Neurology, St. Anne's Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martin Toul
- International Centre for Clinical Research, St. Anne's Hospital, Brno, Czech Republic.,Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Wi-Sun Ryu
- Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Jiri Damborsky
- International Centre for Clinical Research, St. Anne's Hospital, Brno, Czech Republic.,Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Robert Mikulik
- International Centre for Clinical Research, St. Anne's Hospital, Brno, Czech Republic.,Department of Neurology, St. Anne's Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Dong-Eog Kim
- Molecular Imaging and Neurovascular Research Laboratory, Department of Neurology, Dongguk University College of Medicine, Goyang, Korea.,Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Korea
| |
Collapse
|
12
|
Zenych A, Fournier L, Chauvierre C. Nanomedicine progress in thrombolytic therapy. Biomaterials 2020; 258:120297. [DOI: 10.1016/j.biomaterials.2020.120297] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/10/2020] [Accepted: 08/01/2020] [Indexed: 12/11/2022]
|
13
|
Ren H, Han R, Chen X, Liu X, Wan J, Wang L, Yang X, Wang J. Potential therapeutic targets for intracerebral hemorrhage-associated inflammation: An update. J Cereb Blood Flow Metab 2020; 40:1752-1768. [PMID: 32423330 PMCID: PMC7446569 DOI: 10.1177/0271678x20923551] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Intracerebral hemorrhage (ICH) is a subtype of stroke with high mortality and disability but no specific or effective treatment. In the last two decades, much has been learned about the pathologic mechanisms of ICH. It is now known that after ICH onset, immune and inflammatory responses contribute to blood-brain barrier disruption, edema development, and cell death processes, jointly resulting in secondary brain injury. However, the translation of potential therapies from preclinical to clinical success has been disappointing. With the development of new laboratory technology, recent progress has been made in the understanding of ICH pathomechanisms, and promising therapeutic targets have been identified. This review provides an update of recent progress on ICH and describes the prospects for further preclinical studies in this field. Our goal is to discuss new therapeutic targets and directions for the treatment of ICH and promote the effective transformation from preclinical to clinical trials.
Collapse
Affiliation(s)
- Honglei Ren
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ranran Han
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xuemei Chen
- Department of Human Anatomy, Basic Medical College of Zhengzhou University, Zhengzhou, China
| | - Xi Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jieru Wan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Limin Wang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiuli Yang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jian Wang
- Department of Human Anatomy, Basic Medical College of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Safety and effectiveness of lumbar cerebrospinal fluid drainage to prevent delayed cerebral ischemia after Fisher grade 3 subarachnoid hemorrhage with minimal intraventricular hemorrhage. Neurochirurgie 2020; 66:225-231. [DOI: 10.1016/j.neuchi.2020.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/22/2020] [Accepted: 03/07/2020] [Indexed: 01/29/2023]
|
15
|
Mican J, Toul M, Bednar D, Damborsky J. Structural Biology and Protein Engineering of Thrombolytics. Comput Struct Biotechnol J 2019; 17:917-938. [PMID: 31360331 PMCID: PMC6637190 DOI: 10.1016/j.csbj.2019.06.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 12/22/2022] Open
Abstract
Myocardial infarction and ischemic stroke are the most frequent causes of death or disability worldwide. Due to their ability to dissolve blood clots, the thrombolytics are frequently used for their treatment. Improving the effectiveness of thrombolytics for clinical uses is of great interest. The knowledge of the multiple roles of the endogenous thrombolytics and the fibrinolytic system grows continuously. The effects of thrombolytics on the alteration of the nervous system and the regulation of the cell migration offer promising novel uses for treating neurodegenerative disorders or targeting cancer metastasis. However, secondary activities of thrombolytics may lead to life-threatening side-effects such as intracranial bleeding and neurotoxicity. Here we provide a structural biology perspective on various thrombolytic enzymes and their key properties: (i) effectiveness of clot lysis, (ii) affinity and specificity towards fibrin, (iii) biological half-life, (iv) mechanisms of activation/inhibition, and (v) risks of side effects. This information needs to be carefully considered while establishing protein engineering strategies aiming at the development of novel thrombolytics. Current trends and perspectives are discussed, including the screening for novel enzymes and small molecules, the enhancement of fibrin specificity by protein engineering, the suppression of interactions with native receptors, liposomal encapsulation and targeted release, the application of adjuvants, and the development of improved production systems.
Collapse
Key Words
- EGF, Epidermal growth factor domain
- F, Fibrin binding finger domain
- Fibrinolysis
- K, Kringle domain
- LRP1, Low-density lipoprotein receptor-related protein 1
- MR, Mannose receptor
- NMDAR, N-methyl-D-aspartate receptor
- P, Proteolytic domain
- PAI-1, Inhibitor of tissue plasminogen activator
- Plg, Plasminogen
- Plm, Plasmin
- RAP, Receptor antagonist protein
- SAK, Staphylokinase
- SK, Streptokinase
- Staphylokinase
- Streptokinase
- Thrombolysis
- Tissue plasminogen activator
- Urokinase
- t-PA, Tissue plasminogen activator
Collapse
Affiliation(s)
- Jan Mican
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Martin Toul
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| |
Collapse
|
16
|
Zhu J, Wan Y, Xu H, Wu Y, Hu B, Jin H. The role of endogenous tissue-type plasminogen activator in neuronal survival after ischemic stroke: friend or foe? Cell Mol Life Sci 2019; 76:1489-1506. [PMID: 30656378 PMCID: PMC11105644 DOI: 10.1007/s00018-019-03005-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/19/2018] [Accepted: 01/03/2019] [Indexed: 12/29/2022]
Abstract
Endogenous protease tissue-type plasminogen activator (tPA) has highly efficient fibrinolytic activity and its recombinant variants alteplase and tenecteplase are established as highly effective thrombolytic drugs for ischemic stroke. Endogenous tPA is constituted of five functional domains through which it interacts with a variety of substrates, binding proteins and receptors, thus having enzymatic and cytokine-like effects to act on all cell types of the brain. In the past 2 decades, numerous studies have explored the clinical relevance of endogenous tPA in neurological diseases, especially in ischemic stroke. tPA is released from many cells within the brain parenchyma exposed to ischemia conditions in vitro and in vivo, which is believed to control neuronal fate. Some studies proved that tPA could induce blood-brain barrier disruption, neural excitotoxicity and inflammation, while others indicated that tPA also has anti-excitotoxic, neurotrophic and anti-apoptotic effects on neurons. Therefore, more work is needed to elucidate how tPA mediates such opposing functions that may amplify tPA from a therapeutic means into a key therapeutic target in endogenous neuroprotection after stroke. In this review, we summarize the biological characteristics and pleiotropic functions of tPA in the brain. Then we focus on possible hypotheses about why and how endogenous tPA mediates ischemic neuronal death and survival. Finally, we analyze how endogenous tPA affects neuron fate in ischemic stroke in a comprehensive view.
Collapse
Affiliation(s)
- Jiayi Zhu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Yan Wan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Hexiang Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Yulang Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| | - Huijuan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| |
Collapse
|
17
|
Xu F, Lian L, Liang Q, Pan C, Pan C, Hu Q, Chen R, Wang F, Zhang M, Tang Z, Zhu S. Is it dangerous to treat spontaneous intracerebral hemorrhage by minimally invasive surgery plus local thrombolysis in patients with coexisting unruptured intracranial aneurysms? Clin Neurol Neurosurg 2019; 180:62-67. [PMID: 30947028 DOI: 10.1016/j.clineuro.2019.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 10/27/2022]
Abstract
OBJECTIVES Limited evidence supports the presumed increased frequency of hemorrhage caused by the unruptured intracranial aneurysms which coexist in patients with spontaneous intracerebral hemorrhage treated with minimally invasive surgery plus local thrombolysis. Subsequently, we sought to determine the safety of local thrombolysis for this particular subset of patients. PATIENTS AND METHODS We reviewed the medical records of patients treated with minimally invasive surgery plus local thrombolysis for intracerebral hemorrhage between November 2013 to December 2015 in an intensive care unit of a tertiary care hospital. Depending upon the vascular images, unruptured intracranial aneurysms were identified. The primary outcome was any of postoperative intracranial rebleeding. The second outcome included the 30-day death and 6-month follow up graded by Modified Rank Scale. Blind abstractors reviewed the medical data and binary logistic regression was performed to investigate the risk factors of poor prognosis. RESULTS We identified a cohort of consecutive 188 patients, of whom 23 (12.2%) harbored unruptured intracranial aneurysms. There were 28 aneurysms documented in this study, among which 3 were in the posterior circulation. And in total, 20 (11.3%) cases suffered from postoperative hematoma growth, of which 4 were with aneurysms. Additionally,the 30-day mortality after stroke in patients with aneurysms was 8.69% (2/23), comparable to 13.33% in without (22/165,p = 0.744). The proportion of the favorable outcome at 6-month follow-up in patients with aneurysms was comparable to that in without (47.8% versus 48.5%,p = 1.000) Insignificant associations were demonstrated between the unruptured intracranial aneurysms and postoperative intracranial rehemorrhage (p = 0.092), 30-day death(p = 0.588) and poor long-term prognosis (p = 0.332), respectively. CONCLUSION Our findings suggest that unruptured intracranial aneurysms seem to represent no increased risks of poor outcome after local thrombolysis for intracerbral hematomas.
Collapse
Affiliation(s)
- Feng Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lifei Lian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qiming Liang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chao Pan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chu Pan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Hu
- Department of Geriatrics (H.Q.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rudong Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Furong Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Min Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Suiqiang Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
18
|
Thiebaut AM, Gauberti M, Ali C, Martinez De Lizarrondo S, Vivien D, Yepes M, Roussel BD. The role of plasminogen activators in stroke treatment: fibrinolysis and beyond. Lancet Neurol 2018; 17:1121-1132. [PMID: 30507392 DOI: 10.1016/s1474-4422(18)30323-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/25/2018] [Accepted: 08/28/2018] [Indexed: 12/20/2022]
Abstract
Although recent technical advances in thrombectomy have revolutionised acute stroke treatment, prevalence of disability and death related to stroke remain high. Therefore, plasminogen activators-eukaryotic, bacterial, or engineered forms that can promote fibrinolysis by converting plasminogen into active plasmin and facilitate clot breakdown-are still commonly used in the acute treatment of ischaemic stroke. Hence, plasminogen activators have become a crucial area for clinical investigation for their ability to recanalise occluded arteries in ischaemic stroke and to accelerate haematoma clearance in haemorrhagic stroke. However, inconsistent results, insufficient evidence of efficacy, or reports of side-effects in trial settings might reduce the use of plasminogen activators in clinical practice. Additionally, the mechanism of action for plasminogen activators could extend beyond the vessel lumen and involve plasminogen-independent processes, which would suggest that plasminogen activators have also non-fibrinolytic roles. Understanding the complex mechanisms of action of plasminogen activators can guide future directions for therapeutic interventions in patients with stroke.
Collapse
Affiliation(s)
- Audrey M Thiebaut
- Normandie Université, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Cyceron, Caen, France
| | - Maxime Gauberti
- Normandie Université, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Cyceron, Caen, France
| | - Carine Ali
- Normandie Université, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Cyceron, Caen, France
| | - Sara Martinez De Lizarrondo
- Normandie Université, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Cyceron, Caen, France
| | - Denis Vivien
- Normandie Université, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Cyceron, Caen, France; Clinical Research Department, University Hospital Caen-Normandy, Caen, France
| | - Manuel Yepes
- Department of Neurology and Center for Neurodegenerative Disease, Emory University School of Medicine, Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, and Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA, USA
| | - Benoit D Roussel
- Normandie Université, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Cyceron, Caen, France.
| |
Collapse
|
19
|
Wilkinson DA, Keep RF, Hua Y, Xi G. Hematoma clearance as a therapeutic target in intracerebral hemorrhage: From macro to micro. J Cereb Blood Flow Metab 2018; 38:741-745. [PMID: 29350086 PMCID: PMC5888862 DOI: 10.1177/0271678x17753590] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite the absence of an intervention shown to improve outcomes in intracerebral hemorrhage, preclinical work has led to a greater understanding of the pathologic pathways of brain injury. Methods targeting hematoma clearance through both macroscopic (surgical) and microscopic (endogenous phagocytosis) means are currently under investigation, with multiple clinical trials ongoing. Macroscopic methods for removal involve both catheter- and endoscope-based therapies to remove the hematoma through minimally invasive surgery. Microscopic methods targeting hematoma clearance involve augmenting endogenous clearance pathways for red blood cells and altering the balance between phagocytosis and red blood cell lysis with the release of potentially harmful constituents (e.g. hemoglobin and iron) into the extracellular space.
Collapse
Affiliation(s)
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|