1
|
Ghosh S, Bishnoi B, Das S. Artery regeneration: Molecules, mechanisms and impact on organ function. Semin Cell Dev Biol 2025; 171:103611. [PMID: 40318557 DOI: 10.1016/j.semcdb.2025.103611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/24/2025] [Accepted: 03/25/2025] [Indexed: 05/07/2025]
Abstract
Replenishment of artery cells to repair or create new arteries is a promising strategy to re-vascularize ischemic tissue. However, limited understanding of cellular and molecular programs associated with artery (re-)growth impedes our efforts towards designing optimal therapeutic approaches. In this review, we summarize different cellular mechanisms that drive injury-induced artery regeneration in distinct organs and organisms. Artery formation during embryogenesis includes migration, self-amplification, and changes in cell fates. These processes are coordinated by multiple signaling pathways, like Vegf, Wnt, Notch, Cxcr4; many of which, also involved in injury-induced vascular responses. We also highlight how physiological and environmental factors determine the extent of arterial re-vascularization. Finally, we discuss different in vitro cellular reprogramming and tissue engineering approaches to promote artery regeneration, in vivo. This review provides the current understanding of endothelial cell fate reprogramming and explores avenues for regenerating arteries to restore organ function through efficient revascularization.
Collapse
Affiliation(s)
- Swarnadip Ghosh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, KA 560065, India
| | - Bhavnesh Bishnoi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, KA 560065, India
| | - Soumyashree Das
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, KA 560065, India.
| |
Collapse
|
2
|
Rottschäfer V, Kuppers WGN, Chen J, van Bavel E. Arterial arcades and collaterals regress under hemodynamics-based diameter adaptation: A computational and mathematical analysis. J Theor Biol 2025:112111. [PMID: 40199439 DOI: 10.1016/j.jtbi.2025.112111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/17/2025] [Accepted: 03/31/2025] [Indexed: 04/10/2025]
Abstract
Arterial networks exhibit a wide range of segment radii, largely thought to result from adaptation to wall shear stress (WSS). Segments remodel outward or inward if WSS is higher or lower than a reference value. While this mechanism seems straightforward for arterial trees, real networks contain arcades, collaterals, and loops. We investigated the stability of these looping structures under WSS control using simulation models of small networks and published coronary and cerebral artery data. Adaptation was modeled as changes in segment radius proportional to deviations from reference WSS. A generalized model included other hemodynamic stimuli like flow and velocity. Simulations consistently predicted loop regression due to the loss of one or more segments, both for the WSS model and the generalized model, regardless of initial conditions or model parameters. This loop loss was also observed in networks with heterogeneous adaptation rates or under dynamic conditions. A mathematical analysis confirmed that loop instability is a direct consequence of Kirchhoff's circuit law, leading to unstable equilibria. Thus, loss of loops is an inherent outcome of arterial networks adapting to local hemodynamics. Additional mechanisms, such as communication between connected segments, may be needed to explain the presence of loops in real networks.
Collapse
Affiliation(s)
- Vivi Rottschäfer
- Mathematical Institute, Leiden University, the Netherlands; Korteweg de Vries Institute for Mathematics, University of Amsterdam, the Netherlands
| | - Willem G N Kuppers
- Dept of Biomedical Engineering and Physics, Amsterdam University Medical Center, PO Box 22660, 1100 DD Amsterdam, the Netherlands
| | - Jiao Chen
- Dept of Biomedical Engineering and Physics, Amsterdam University Medical Center, PO Box 22660, 1100 DD Amsterdam, the Netherlands
| | - Ed van Bavel
- Dept of Biomedical Engineering and Physics, Amsterdam University Medical Center, PO Box 22660, 1100 DD Amsterdam, the Netherlands.
| |
Collapse
|
3
|
Faber JE. Collateral blood vessels in stroke and ischemic disease: Formation, physiology, rarefaction, remodeling. J Cereb Blood Flow Metab 2025:271678X251322378. [PMID: 40072222 PMCID: PMC11904929 DOI: 10.1177/0271678x251322378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Collateral blood vessels are unique, naturally occurring endogenous bypass vessels that provide alternative pathways for oxygen delivery in obstructive arterial conditions and diseases. Surprisingly however, the capacity of the collateral circulation to provide protection varies greatly among individuals, resulting in a significant fraction having poor collateral circulation in their tissues. We recently reviewed evidence that the presence of naturally-occurring polymorphisms in genes that determine the number and diameter of collaterals that form during development (ie, genetic background), is a major contributor to this variation. The purpose of this review is to summarize current understanding of the other determinants of collateral blood flow, drawing on both animal and human studies. These include the level of smooth muscle tone in collaterals, hemodynamic forces, how collaterals form during development (collaterogenesis), de novo formation of additional new collaterals during adulthood, loss of collaterals with aging and cardiovascular risk factor presence (rarefaction), and collateral remodeling (structural lumen enlargement). We also review emerging evidence that collaterals not only provide protection in ischemic conditions but may also serve a physiological function in healthy individuals. Primary focus is on studies conducted in brain, however relevant findings in other tissues are also reviewed, as are questions for future investigation.
Collapse
Affiliation(s)
- James E Faber
- Department of Cell Biology and Physiology, Curriculum in Neuroscience, McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
4
|
Faber JE. Genetic determinants of insufficiency of the collateral circulation. J Cereb Blood Flow Metab 2025:271678X251317880. [PMID: 39901795 DOI: 10.1177/0271678x251317880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
It has been estimated that approximately two million neurons, sixteen billion synapses and twelve kilometers of axons are lost each minute following anterior large-vessel stroke. The level of collateral blood flow has become recognized as a primary determinant of the pace of this loss and an important factor in clinical decision-making. Many of the topics in this review cover recent developments that have not been reviewed elsewhere. These include that: the number and diameter of collaterals and collateral blood flow vary greatly in the brain and other tissues of healthy individuals; a large percentage of individuals are deficient in collaterals; the underlying mechanism arises primarily from naturally occurring polymorphisms in genes/genetic loci within the pathway that drives collateral formation during development; evidence indicates collateral abundance does not exhibit sexual dimorphism; and that collaterals-besides their function as endogenous bypass vessels-may have a physiological role in optimizing oxygen delivery. Animal and human studies in brain and other tissues, where available, are reviewed. Details of many of the studies are provided so that the strength of the findings and conclusions can be assessed without consulting the original literature. Key questions that remain unanswered and strategies to address them are also discussed.
Collapse
Affiliation(s)
- James E Faber
- Department of Cell Biology and Physiology, Curriculum in Neuroscience, McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
5
|
Binder NF, El Amki M, Glück C, Middleham W, Reuss AM, Bertolo A, Thurner P, Deffieux T, Lambride C, Epp R, Handelsmann HL, Baumgartner P, Orset C, Bethge P, Kulcsar Z, Aguzzi A, Tanter M, Schmid F, Vivien D, Wyss MT, Luft A, Weller M, Weber B, Wegener S. Leptomeningeal collaterals regulate reperfusion in ischemic stroke and rescue the brain from futile recanalization. Neuron 2024; 112:1456-1472.e6. [PMID: 38412858 DOI: 10.1016/j.neuron.2024.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 11/18/2023] [Accepted: 01/30/2024] [Indexed: 02/29/2024]
Abstract
Recanalization is the mainstay of ischemic stroke treatment. However, even with timely clot removal, many stroke patients recover poorly. Leptomeningeal collaterals (LMCs) are pial anastomotic vessels with yet-unknown functions. We applied laser speckle imaging, ultrafast ultrasound, and two-photon microscopy in a thrombin-based mouse model of stroke and fibrinolytic treatment to show that LMCs maintain cerebral autoregulation and allow for gradual reperfusion, resulting in small infarcts. In mice with poor LMCs, distal arterial segments collapse, and deleterious hyperemia causes hemorrhage and mortality after recanalization. In silico analyses confirm the relevance of LMCs for preserving perfusion in the ischemic region. Accordingly, in stroke patients with poor collaterals undergoing thrombectomy, rapid reperfusion resulted in hemorrhagic transformation and unfavorable recovery. Thus, we identify LMCs as key components regulating reperfusion and preventing futile recanalization after stroke. Future therapeutic interventions should aim to enhance collateral function, allowing for beneficial reperfusion after stroke.
Collapse
Affiliation(s)
- Nadine Felizitas Binder
- Department of Neurology, University Hospital and University of Zurich, Zürich, Switzerland; Neuroscience Center Zurich, University of Zurich, ETH Zurich, Zurich, Switzerland
| | - Mohamad El Amki
- Department of Neurology, University Hospital and University of Zurich, Zürich, Switzerland; Neuroscience Center Zurich, University of Zurich, ETH Zurich, Zurich, Switzerland
| | - Chaim Glück
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland; Neuroscience Center Zurich, University of Zurich, ETH Zurich, Zurich, Switzerland
| | - William Middleham
- Department of Neurology, University Hospital and University of Zurich, Zürich, Switzerland; Neuroscience Center Zurich, University of Zurich, ETH Zurich, Zurich, Switzerland
| | - Anna Maria Reuss
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich, ETH Zurich, Zurich, Switzerland
| | - Adrien Bertolo
- Iconeus, 6 rue Jean Calvin, Paris, France; Physics for Medicine, INSERM U1273, ESPCI Paris, CNRS UMR 8063, PSL Research University, 17 rue Moreau, Paris, France
| | - Patrick Thurner
- Department of Neuroradiology, University Hospital and University of Zurich, Zürich, France
| | - Thomas Deffieux
- Physics for Medicine, INSERM U1273, ESPCI Paris, CNRS UMR 8063, PSL Research University, 17 rue Moreau, Paris, France
| | - Chryso Lambride
- Department of Neurology, University Hospital and University of Zurich, Zürich, Switzerland; ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland; Neuroscience Center Zurich, University of Zurich, ETH Zurich, Zurich, Switzerland
| | - Robert Epp
- Institute of Fluid Dynamics, ETH Zurich, Zurich, Switzerland
| | - Hannah-Lea Handelsmann
- Department of Neurology, University Hospital and University of Zurich, Zürich, Switzerland
| | - Philipp Baumgartner
- Department of Neurology, University Hospital and University of Zurich, Zürich, Switzerland
| | - Cyrille Orset
- Normandie University, UNICAEN, INSERM, Unité Mixte de Recherche-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Institute Blood and Brain @ Caen Normandie, GIP Cyceron, Caen, France
| | - Philipp Bethge
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich, ETH Zurich, Zurich, Switzerland
| | - Zsolt Kulcsar
- Department of Neuroradiology, University Hospital and University of Zurich, Zürich, France
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich, ETH Zurich, Zurich, Switzerland
| | - Mickael Tanter
- Physics for Medicine, INSERM U1273, ESPCI Paris, CNRS UMR 8063, PSL Research University, 17 rue Moreau, Paris, France
| | - Franca Schmid
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Denis Vivien
- Normandie University, UNICAEN, INSERM, Unité Mixte de Recherche-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Institute Blood and Brain @ Caen Normandie, GIP Cyceron, Caen, France; Department of Clinical Research, Caen Normandie University Hospital, Caen, France
| | - Matthias Tasso Wyss
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland; Neuroscience Center Zurich, University of Zurich, ETH Zurich, Zurich, Switzerland
| | - Andreas Luft
- Department of Neurology, University Hospital and University of Zurich, Zürich, Switzerland; Neuroscience Center Zurich, University of Zurich, ETH Zurich, Zurich, Switzerland
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zürich, Switzerland; Neuroscience Center Zurich, University of Zurich, ETH Zurich, Zurich, Switzerland
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland; Neuroscience Center Zurich, University of Zurich, ETH Zurich, Zurich, Switzerland
| | - Susanne Wegener
- Department of Neurology, University Hospital and University of Zurich, Zürich, Switzerland; Neuroscience Center Zurich, University of Zurich, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Gruionu G, Baish J, McMahon S, Blauvelt D, Gruionu LG, Lenco MO, Vakoc BJ, Padera TP, Munn LL. Experimental and theoretical model of microvascular network remodeling and blood flow redistribution following minimally invasive microvessel laser ablation. Sci Rep 2024; 14:8767. [PMID: 38627467 PMCID: PMC11021487 DOI: 10.1038/s41598-024-59296-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
Overly dense microvascular networks are treated by selective reduction of vascular elements. Inappropriate manipulation of microvessels could result in loss of host tissue function or a worsening of the clinical problem. Here, experimental, and computational models were developed to induce blood flow changes via selective artery and vein laser ablation and study the compensatory collateral flow redistribution and vessel diameter remodeling. The microvasculature was imaged non-invasively by bright-field and multi-photon laser microscopy, and optical coherence tomography pre-ablation and up to 30 days post-ablation. A theoretical model of network remodeling was developed to compute blood flow and intravascular pressure and identify vessels most susceptible to changes in flow direction. The skin microvascular remodeling patterns were consistent among the five specimens studied. Significant remodeling occurred at various time points, beginning as early as days 1-3 and continuing beyond day 20. The remodeling patterns included collateral development, venous and arterial reopening, and both outward and inward remodeling, with variations in the time frames for each mouse. In a representative specimen, immediately post-ablation, the average artery and vein diameters increased by 14% and 23%, respectively. At day 20 post-ablation, the maximum increases in arterial and venous diameters were 2.5× and 3.3×, respectively. By day 30, the average artery diameter remained 11% increased whereas the vein diameters returned to near pre-ablation values. Some arteries regenerated across the ablation sites via endothelial cell migration, while veins either reconnected or rerouted flow around the ablation site, likely depending on local pressure driving forces. In the intact network, the theoretical model predicts that the vessels that act as collaterals after flow disruption are those most sensitive to distant changes in pressure. The model results correlate with the post-ablation microvascular remodeling patterns.
Collapse
Affiliation(s)
- Gabriel Gruionu
- Department of Medicine, Krannert Cardiovascular Research Center, Indiana University School of Medicine, Indianapolis, 46202, USA.
- Department of Radiation Oncology, Edwin L. Steele Laboratory for Tumor Biology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, USA.
- Department of Mechanical Engineering, University of Craiova, 200585, Craiova, Romania.
| | - James Baish
- Department of Biomedical Engineering, Bucknell University, Lewisburg, 17837, USA
| | - Sean McMahon
- Department of Physics, Virginia Tech, Blacksburg, 24060, USA
| | - David Blauvelt
- Department of Anesthesia, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, 02115, USA
| | - Lucian G Gruionu
- Department of Mechanical Engineering, University of Craiova, 200585, Craiova, Romania
| | | | - Benjamin J Vakoc
- Department of Dermatology and Wellman Center of Photomedicine, Harvard Medical School and Massachusetts General Hospital, Boston, 02114, USA
| | - Timothy P Padera
- Department of Radiation Oncology, Edwin L. Steele Laboratory for Tumor Biology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, USA
| | - Lance L Munn
- Department of Radiation Oncology, Edwin L. Steele Laboratory for Tumor Biology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, USA.
| |
Collapse
|
7
|
Cipolla MJ, Hunt RD, Liebeskind DS, Tremble SM. The impact of collateral therapeutics on stroke hemodynamics in normotensive and hypertensive rats: a step toward translation. Front Neurol 2024; 15:1373445. [PMID: 38585360 PMCID: PMC10996366 DOI: 10.3389/fneur.2024.1373445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/01/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction Stroke interventions that increase collateral flow have the potential to salvage penumbral tissue and increase the number of patients eligible for reperfusion therapy. We compared the efficacy of two different collateral therapeutics during transient middle cerebral artery occlusion (tMCAO) in normotensive and hypertensive rats. Methods The change in collateral and core perfusion was measured using dual laser Doppler in response to either a pressor agent (phenylephrine, 10 mg/kg iv or vehicle) or a collateral vasodilator (TM5441, 5 mg/kg iv or vehicle) given 30 min into tMCAO in male Wistar and spontaneously hypertensive rats (SHRs). Results Pressor therapy increased collateral flow in the Wistar rats but was ineffective in the SHRs. The increase in collateral flow in the Wistar rats was associated with impaired cerebral blood flow autoregulation (CBFAR) that was intact in the SHRs. TM5441 caused a decrease in collateral perfusion in the Wistar rats and a modest increase in the SHRs. The pressor therapy reduced early infarction in both groups but increased edema in the SHRs, whereas TM5441 did not have any beneficial effects in either group. Conclusions Thus, the pressor therapy was superior to a collateral vasodilator in increasing collateral flow and improving outcomes in the Wistar rats, likely due to pial collaterals that were pressure passive; the lack of CBF response in the SHRs to pressor therapy was likely due to intact CBFAR that limited perfusion. While TM5441 modestly increased CBF in the SHRs but not in the Wistar rats, it did not have a beneficial effect on stroke outcomes. These results suggest that collateral therapies may need to be selected for certain comorbidities.
Collapse
Affiliation(s)
- Marilyn J. Cipolla
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, United States
- Department of Obstetrics, Gynecology and Reproductive Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, United States
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, United States
- Department of Electrical and Biomedical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT, United States
| | - Ryan D. Hunt
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - David S. Liebeskind
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, United States
| | - Sarah M. Tremble
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| |
Collapse
|
8
|
van der Knaap N, Franx BAA, Majoie CBLM, van der Lugt A, Dijkhuizen RM. Implications of Post-recanalization Perfusion Deficit After Acute Ischemic Stroke: a Scoping Review of Clinical and Preclinical Imaging Studies. Transl Stroke Res 2024; 15:179-194. [PMID: 36653525 PMCID: PMC10796479 DOI: 10.1007/s12975-022-01120-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/20/2023]
Abstract
The goal of reperfusion therapy for acute ischemic stroke (AIS) is to restore cerebral blood flow through recanalization of the occluded vessel. Unfortunately, successful recanalization does not always result in favorable clinical outcome. Post-recanalization perfusion deficits (PRPDs), constituted by cerebral hypo- or hyperperfusion, may contribute to lagging patient recovery rates, but its clinical significance remains unclear. This scoping review provides an overview of clinical and preclinical findings on post-ischemic reperfusion, aiming to elucidate the pattern and consequences of PRPD from a translational perspective. The MEDLINE database was searched for quantitative clinical and preclinical studies of AIS reporting PRPD based on cerebral circulation parameters acquired by translational tomographic imaging methods. PRPD and stroke outcome were mapped on a charting table, creating an overview of PRPD after AIS. Twenty-two clinical and twenty-two preclinical studies were included. Post-recanalization hypoperfusion is rarely reported in clinical studies (4/22) but unequivocally associated with detrimental outcome. Post-recanalization hyperperfusion is more commonly reported (18/22 clinical studies) and may be associated with positive or negative outcome. PRPD has been replicated in animal studies, offering mechanistic insights into causes and consequences of PRPD and allowing delineation of possible courses of PRPD. Complex relationships exist between PRPD and stroke outcome. Diversity in methods and lack of standardized definitions in reperfusion studies complicate the characterization of reperfusion patterns. Recommendations are made to advance the understanding of PRPD mechanisms and to further disentangle the relation between PRPD and disease outcome.
Collapse
Affiliation(s)
- Noa van der Knaap
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Bart A A Franx
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands.
| | - Charles B L M Majoie
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Location University of Amsterdam, Amsterdam, The Netherlands
| | - Aad van der Lugt
- Department of Radiology & Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rick M Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
9
|
Gruionu G, Baish J, McMahon S, Blauvelt D, Gruionu LG, Lenco MO, Vakoc BJ, Padera TP, Munn LL. Experimental and Theoretical Model of Single Vessel Minimally Invasive Micro-Laser Ablation: Inducing Microvascular Network Remodeling and Blood Flow Redistribution Without Compromising Host Tissue Function. RESEARCH SQUARE 2023:rs.3.rs-3754775. [PMID: 38196660 PMCID: PMC10775362 DOI: 10.21203/rs.3.rs-3754775/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Overly dense microvascular networks are treated by selective reduction of vascular elements. Inappropriate manipulation of microvessels could result in loss of host tissue function or a worsening of the clinical problem. Here, experimental, and computational models were developed to induce blood flow changes via selective artery and vein laser ablation and study the compensatory collateral flow redistribution and vessel diameter remodeling. The microvasculature was imaged non-invasively by bright-field and multi-photon laser microscopy, and Optical Coherence Tomography pre-ablation and up to 30 days post-ablation. A theoretical model of network remodeling was developed to compute blood flow and intravascular pressure and identify vessels most susceptible to changes in flow direction. The skin microvascular remodeling patterns were consistent among the five specimens studied. Significant remodeling occurred at various time points, beginning as early as days 1-3 and continuing beyond day 20. The remodeling patterns included collateral development, venous and arterial reopening, and both outward and inward remodeling, with variations in the time frames for each mouse. In a representative specimen, immediately post-ablation, the average artery and vein diameters increased by 14% and 23%, respectively. At day 20 post-ablation, the maximum increases in arterial and venous diameters were 2.5x and 3.3x, respectively. By day 30, the average artery diameter remained 11% increased whereas the vein diameters returned to near pre-ablation values. Some arteries regenerated across the ablation sites via endothelial cell migration, while veins either reconnected or rerouted flow around the ablation site, likely depending on local pressure driving forces. In the intact network, the theoretical model predicts that the vessels that act as collaterals after flow disruption are those most sensitive to distant changes in pressure. The model results match the post-ablation microvascular remodeling patterns.
Collapse
Affiliation(s)
- Gabriel Gruionu
- Indiana University School of Medicine, Krannert Cardiovascular Research Center, Department of Medicine, Indianapolis, 46202, USA
- Massachusetts General Hospital and Harvard Medical School, Edwin L. Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Boston, 02114, USA
- University of Craiova, Department of Mechanical Engineering, Craiova, 200585, Romania
| | - James Baish
- Bucknell University, Department of Biomedical Engineering, Lewisburg, 17837, USA
| | - Sean McMahon
- Virginia Tech, Department of Physics, Blacksburg, 24060, USA
| | - David Blauvelt
- Boston Children’s Hospital, Department of Anesthesia, Critical Care, and Pain Medicine, Boston, 02115, USA
| | - Lucian G. Gruionu
- University of Craiova, Department of Mechanical Engineering, Craiova, 200585, Romania
| | | | - Benjamin J. Vakoc
- Harvard Medical School and Massachusetts General Hospital, Department of Dermatology and Wellman Center of Photomedicine, Boston, 02114, USA
| | - Timothy P. Padera
- Massachusetts General Hospital and Harvard Medical School, Edwin L. Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Boston, 02114, USA
| | - Lance L. Munn
- Massachusetts General Hospital and Harvard Medical School, Edwin L. Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Boston, 02114, USA
| |
Collapse
|
10
|
Faber JE, Zhang H, Xenakis JG, Bell TA, Hock P, Pardo-Manuel de Villena F, Ferris MT, Rzechorzek W. Large differences in collateral blood vessel abundance among individuals arise from multiple genetic variants. J Cereb Blood Flow Metab 2023; 43:1983-2004. [PMID: 37572089 PMCID: PMC10676139 DOI: 10.1177/0271678x231194956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/14/2023]
Abstract
Collateral blood flow varies greatly among humans for reasons that remain unclear, resulting in significant differences in ischemic tissue damage. A similarly large variation has also been found in mice that is caused by genetic background-dependent differences in the extent of collateral formation, termed collaterogenesis-a unique angiogenic process that occurs during development and determines collateral number and diameter in the adult. Previous studies have identified several quantitative trait loci (QTL) linked to this variation. However, understanding has been hampered by the use of closely related inbred strains that do not model the wide genetic variation present in the "outbred" human population. The Collaborative Cross (CC) multiparent mouse genetic reference panel was developed to address this limitation. Herein we measured the number and average diameter of cerebral collaterals in 60 CC strains, their 8 founder strains, 8 F1 crosses of CC strains selected for abundant versus sparse collaterals, and 2 intercross populations created from the latter. Collateral number evidenced 47-fold variation among the 60 CC strains, with 14% having poor, 25% poor-to-intermediate, 47% intermediate-to-good, and 13% good collateral abundance, that was associated with large differences in post-stroke infarct volume. Collateral number in skeletal muscle and intestine of selected high- and low-collateral strains evidenced the same relative abundance as in brain. Genome-wide mapping demonstrated that collateral abundance is a highly polymorphic trait. Subsequent analysis identified: 6 novel QTL circumscribing 28 high-priority candidate genes harboring putative loss-of-function polymorphisms (SNPs) associated with low collateral number; 335 predicted-deleterious SNPs present in their human orthologs; and 32 genes associated with vascular development but lacking protein coding variants. Six additional suggestive QTL (LOD > 4.5) were also identified in CC-wide QTL mapping. This study provides a comprehensive set of candidate genes for future investigations aimed at identifying signaling proteins within the collaterogenesis pathway whose variants potentially underlie genetic-dependent collateral insufficiency in brain and other tissues.
Collapse
Affiliation(s)
- James E Faber
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
- Curriculum in Neuroscience, University of North Carolina, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Hua Zhang
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - James G Xenakis
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Timothy A Bell
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Pablo Hock
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Martin T Ferris
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Wojciech Rzechorzek
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
11
|
Cipolla MJ. Therapeutic Induction of Collateral Flow. Transl Stroke Res 2023; 14:53-65. [PMID: 35416577 PMCID: PMC10155807 DOI: 10.1007/s12975-022-01019-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 01/31/2023]
Abstract
Therapeutic induction of collateral flow as a means to salvage tissue and improve outcome from acute ischemic stroke is a promising approach in the era in which endovascular therapy is no longer time-dependent but collateral-dependent. The importance of collateral flow enhancement as a therapeutic for acute ischemic stroke extends beyond those patients with large amounts of salvageable tissue. It also has the potential to extend the time window for reperfusion therapies in patients who are ineligible for endovascular thrombectomy. In addition, collateral enhancement may be an important adjuvant to neuroprotective agents by providing a more robust vascular route for which treatments can gain access to at risk tissue. However, our understanding of collateral hemodynamics, including under comorbid conditions that are highly prevalent in the stroke population, has hindered the efficacy of collateral flow augmentation for improving stroke outcome in the clinical setting. This review will discuss our current understanding of pial collateral function and hemodynamics, including vasoactivity that is critical for enhancing penumbral perfusion. In addition, mechanisms by which collateral flow can be increased during acute ischemic stroke to limit ischemic injury, that may be different depending on the state of the brain and vasculature prior to stroke, will also be reviewed.
Collapse
Affiliation(s)
- Marilyn J Cipolla
- Department of Neurological Sciences, University of Vermont Robert Larner College of Medicine, 149 Beaumont Ave, HSRF 416A, Burlington, VT, USA.
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Vermont Larner College of Medicine, Burlington, VT, USA.
- Department of Pharmacology, University of Vermont Larner College of Medicine, Burlington, VT, USA.
| |
Collapse
|
12
|
Yuan H, Liu J, Gu Y, Ji X, Nan G. Intermittent hypoxia conditioning as a potential prevention and treatment strategy for ischemic stroke: Current evidence and future directions. Front Neurosci 2022; 16:1067411. [PMID: 36507357 PMCID: PMC9732261 DOI: 10.3389/fnins.2022.1067411] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/11/2022] [Indexed: 11/26/2022] Open
Abstract
Ischemic stroke (IS) is the leading cause of disability and death worldwide. Owing to the aging population and unhealthy lifestyles, the incidence of cerebrovascular disease is high. Vascular risk factors include hypertension, diabetes, dyslipidemia, and obesity. Therefore, in addition to timely and effective reperfusion therapy for IS, it is crucial to actively control these risk factors to reduce the incidence and recurrence rates of IS. Evidence from human and animal studies suggests that moderate intermittent hypoxia (IH) exposure is a promising therapeutic strategy to ameliorate common vascular risk factors and comorbidities. Given the complex pathophysiological mechanisms underlying IS, effective treatment must focus on reducing injury in the acute phase and promoting repair in the recovery phase. Therefore, this review discusses the preclinical perspectives on IH conditioning as a potential treatment for neurovascular injury and highlights IH pre and postconditioning strategies for IS. Hypoxia conditioning reduces brain injury by increasing resistance to acute ischemic and hypoxic stress, exerting neuroprotective effects, and promoting post-injury repair and regeneration. However, whether IH produces beneficial effects depends not only on the hypoxic regimen but also on inter-subject differences. Therefore, we discuss the factors that may influence the effectiveness of IH treatment, including age, sex, comorbidities, and circadian rhythm, which can be used to help identify the optimal intervention population and treatment protocols for more accurate, individualized clinical translation. In conclusion, IH conditioning as a non-invasive, non-pharmacological, systemic, and multi-targeted intervention can not only reduce brain damage after stroke but can also be applied to the prevention and functional recovery of IS, providing brain protection at different stages of the disease. It represents a promising therapeutic strategy. For patients with IS and high-risk groups, IH conditioning is expected to develop as an adjunctive clinical treatment option to reduce the incidence, recurrence, disability, and mortality of IS and to reduce disease burden.
Collapse
Affiliation(s)
- Honghua Yuan
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jia Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Yuhang Gu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China,Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China,*Correspondence: Xunming Ji,
| | - Guangxian Nan
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China,Guangxian Nan,
| |
Collapse
|
13
|
le Noble F, Kupatt C. Interdependence of Angiogenesis and Arteriogenesis in Development and Disease. Int J Mol Sci 2022; 23:ijms23073879. [PMID: 35409246 PMCID: PMC8999596 DOI: 10.3390/ijms23073879] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 02/04/2023] Open
Abstract
The structure of arterial networks is optimized to allow efficient flow delivery to metabolically active tissues. Optimization of flow delivery is a continuous process involving synchronization of the structure and function of the microcirculation with the upstream arterial network. Risk factors for ischemic cardiovascular diseases, such as diabetes mellitus and hyperlipidemia, adversely affect endothelial function, induce capillary regression, and disrupt the micro- to macrocirculation cross-talk. We provide evidence showing that this loss of synchronization reduces arterial collateral network recruitment upon arterial stenosis, and the long-term clinical outcome of current revascularization strategies in these patient cohorts. We describe mechanisms and signals contributing to synchronized growth of micro- and macrocirculation in development and upon ischemic challenges in the adult organism and identify potential therapeutic targets. We conclude that a long-term successful revascularization strategy should aim at both removing obstructions in the proximal part of the arterial tree and restoring “bottom-up” vascular communication.
Collapse
Affiliation(s)
- Ferdinand le Noble
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131 Karlsruhe, Germany
- Institute for Biological and Chemical Systems—Biological Information Processing, Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021 Karlsruhe, Germany
- Institute of Experimental Cardiology, Heidelberg Germany and German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, University of Heidelberg, 69117 Heidelberg, Germany
- Correspondence: (F.l.N.); (C.K.)
| | - Christian Kupatt
- Klinik und Poliklinik für Innere Medizin I, Klinikum Rechts der Isar, Technical University Munich, 81675 Munich, Germany
- DZHK (German Center for Cardiovascular Research), Munich Heart Alliance, 80802 Munich, Germany
- Correspondence: (F.l.N.); (C.K.)
| |
Collapse
|
14
|
Bonnin P, Kubis N, Charriaut-Marlangue C. Collateral Supply in Preclinical Cerebral Stroke Models. Transl Stroke Res 2021; 13:512-527. [PMID: 34797519 PMCID: PMC9232412 DOI: 10.1007/s12975-021-00969-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 02/01/2023]
Abstract
Enhancing the collateral blood supply during the acute phase of cerebral ischemia may limit both the extension of the core infarct, by rescuing the penumbra area, and the degree of disability. Many imaging techniques have been applied to rodents in preclinical studies, to evaluate the magnitude of collateral blood flow and the time course of responses during the early phase of ischemic stroke. The collateral supply follows several different routes at the base of the brain (the circle of Willis) and its surface (leptomeningeal or pial arteries), corresponding to the proximal and distal collateral pathways, respectively. In this review, we describe and illustrate the cerebral collateral systems and their modifications following pre-Willis or post-Willis occlusion in rodents. We also review the potential pharmaceutical agents for stimulating the collateral blood supply tested to date. The time taken to establish a collateral blood flow supply through the leptomeningeal anastomoses differs between young and adult animals and between different species and genetic backgrounds. Caution is required when transposing preclinical findings to humans, and clinical trials must be performed to check the added value of pharmacological agents for stimulating the collateral blood supply at appropriate time points. However, collateral recruitment appears to be a rapid, beneficial, endogenous mechanism that can be stimulated shortly after artery occlusion. It should be considered a treatment target for use in addition to recanalization strategies.
Collapse
Affiliation(s)
- Philippe Bonnin
- APHP, Physiologie Clinique - Explorations Fonctionnelles, Hôpital Lariboisiere, Université de Paris, 2 rue Ambroise Paré, F-75010, Paris, France. .,INSERM U1148, LVTS, Hôpital Bichat, Université de Paris, F-75018, Paris, France.
| | - Nathalie Kubis
- APHP, Physiologie Clinique - Explorations Fonctionnelles, Hôpital Lariboisiere, Université de Paris, 2 rue Ambroise Paré, F-75010, Paris, France.,INSERM U1148, LVTS, Hôpital Bichat, Université de Paris, F-75018, Paris, France
| | | |
Collapse
|
15
|
Ma Y, Zhu L, Ma Z, Gao Z, Wei Y, Shen Y, Li L, Liu X, Ren M. Distinguishing feature of gut microbiota in Tibetan highland coronary artery disease patients and its link with diet. Sci Rep 2021; 11:18486. [PMID: 34531508 PMCID: PMC8445913 DOI: 10.1038/s41598-021-98075-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 09/03/2021] [Indexed: 12/19/2022] Open
Abstract
The prevalence of coronary artery disease (CAD) in Tibetan Highlanders is lower than that in plain-living individuals, but the mechanism still unclear. Gut microbiota (GM) disorder is considered one of the potential factors involved in the pathogenesis of CAD, but the GM characteristics of Tibetan Highlanders suffering from CAD are unknown. We sequenced the V3-V4 region of the 16S ribosomal RNA of gut bacteria from fecal samples from Tibetan and Han CAD patients and healthy individuals inhabiting the Qinghai-Tibet Plateau, as well as from Han CAD patients and healthy individuals living at sea level, and we analyzed the GM characteristics of these subjects by bioinformatics analysis. The results showed that Tibetan Highlanders suffering from CAD had higher GM α-diversity, with differently distributed cluster compared with healthy Tibetan Highlanders and Han CAD patients living at high and low altitudes. Genera Catenibacterium, Clostridium_sensu_stricto, Holdemanella, and Ruminococcus 2 were enriched in Tibetan Highlanders suffering from CAD compared with healthy Tibetan Highlanders and Han CAD patients living at high- and low-altitudes. Prevotella was enriched in Tibetan Highlanders suffering from CAD compared with Han CAD patients living at high- and low-altitudes. Moreover, Catenibacterium was positively correlated with Prevotella. Additionally, Catenibacterium, Holdemanella, and Prevotella were positively correlated with fermented dairy product, carbohydrate and fiber intake by the subjects, while Clostridium_sensu_stricto was negatively correlated with protein intake by the subjects. In conclusion, our study indicated that Tibetan Highlanders suffering from CAD showed distinct GM, which was linked to their unique dietary characteristics and might associated with CAD.
Collapse
Affiliation(s)
- Yulan Ma
- Department of Cardiology, Affiliated Hospital of Qinghai University, Xining, 810001, China
| | - Lulu Zhu
- Department of Cardiology, Affiliated Hospital of Qinghai University, Xining, 810001, China
| | - Zhijun Ma
- Department of Surgical Oncology, Affiliated Hospital of Qinghai University, Xining, 810001, China
| | - Zhongshan Gao
- Department of Cardiology, Affiliated Hospital of Qinghai University, Xining, 810001, China
| | - Yumiao Wei
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Youlu Shen
- Department of Cardiology, Affiliated Hospital of Qinghai University, Xining, 810001, China
| | - Lin Li
- Department of Cardiology, Affiliated Hospital of Qinghai University, Xining, 810001, China
| | - Xingli Liu
- Department of Cardiology, Affiliated Hospital of Qinghai University, Xining, 810001, China
| | - Ming Ren
- Department of Cardiology, Affiliated Hospital of Qinghai University, Xining, 810001, China.
| |
Collapse
|
16
|
Aghajanian A, Zhang H, Buckley BK, Wittchen ES, Ma WY, Faber JE. Decreased inspired oxygen stimulates de novo formation of coronary collaterals in adult heart. J Mol Cell Cardiol 2021; 150:1-11. [PMID: 33038388 PMCID: PMC7855913 DOI: 10.1016/j.yjmcc.2020.09.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/13/2020] [Accepted: 09/25/2020] [Indexed: 01/18/2023]
Abstract
RATIONALE Collateral vessels lessen myocardial ischemia when acute or chronic coronary obstruction occurs. It has long been assumed that although native (pre-existing) collaterals enlarge in obstructive disease, new collaterals do not form in the adult. However, the latter was recently shown to occur after coronary artery ligation. Understanding the signals that drive this process is challenged by the difficulty in studying collateral vessels directly and the complex milieu of signaling pathways, including cell death, induced by ligation. Herein we show that hypoxemia alone is capable of inducing collateral vessels to form and that the novel gene Rabep2 is required. OBJECTIVE Hypoxia stimulates angiogenesis during embryonic development and in pathological states. We hypothesized that hypoxia also stimulates collateral formation in adult heart by a process that involves RABEP2, a recently identified protein required for formation of collateral vessels during development. METHODS AND RESULTS Exposure of mice to reduced FiO2 induced collateral formation that resulted in smaller infarctions following LAD ligation and that reversed on return to normoxia. Deletion of Rabep2 or knockdown of Vegfa inhibited formation. Hypoxia upregulated Rabep2, Vegfa and Vegfr2 in heart and brain microvascular endothelial cells (HBMVECs). Knockdown of Rabep2 impaired migration of HBMVECs. In contrast to systemic hypoxia, deletion of Rabep2 did not affect collateral formation induced by ischemic injury caused by LAD ligation. CONCLUSIONS Hypoxia induced formation of coronary collaterals by a process that required VEGFA and RABEP2, proteins also required for collateral formation during development. Knockdown of Rabep2 impaired cell migration, providing one potential mechanism for RABEP2's role in collateral formation. This appears specific to hypoxia, since formation after acute ischemic injury was unaffected in Rabep2-/- mice. These findings provide a novel model for studying coronary collateral formation, and demonstrate that hypoxia alone can induce new collaterals to form in adult heart.
Collapse
Affiliation(s)
- Amir Aghajanian
- Department of Cell Biology and Physiology and the McAllister Heart Institute, University of North Carolina at Chapel Hill, United States of America
| | - Hua Zhang
- Department of Cell Biology and Physiology and the McAllister Heart Institute, University of North Carolina at Chapel Hill, United States of America
| | - Brian K Buckley
- Department of Cell Biology and Physiology and the McAllister Heart Institute, University of North Carolina at Chapel Hill, United States of America
| | - Erika S Wittchen
- Department of Cell Biology and Physiology and the McAllister Heart Institute, University of North Carolina at Chapel Hill, United States of America
| | - Willa Y Ma
- Department of Cell Biology and Physiology and the McAllister Heart Institute, University of North Carolina at Chapel Hill, United States of America
| | - James E Faber
- Department of Cell Biology and Physiology and the McAllister Heart Institute, University of North Carolina at Chapel Hill, United States of America.
| |
Collapse
|