1
|
Duca A, Frosio L, Molinero L, Finazzi A, Oppedisano I, Bellazzi C, Nattino G, Signorini F, Bertolini G, Belotti E, Cosentini R. Does helmet CPAP reduce carotid flow compared to oronasal mask CPAP? A randomized cross-over trial in healthy subjects. Intern Emerg Med 2025:10.1007/s11739-025-03914-6. [PMID: 40072680 DOI: 10.1007/s11739-025-03914-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025]
Abstract
This study aimed to assess whether delivering Continuous Positive Airway Pressure (CPAP) through a Helmet interface (H-CPAP) reduces common carotid artery flow (CCAF), compared to breathing room air (RA) or using an oronasal mask (M-CPAP). This trial is an unblinded, randomized, controlled crossover trial. The primary outcome was CCAF, measured using Doppler ultrasound. The secondary outcome was mean arterial pressure (MAP). A convenient sample of adult healthy volunteers was enrolled. Subjects were enrolled and randomized to receive either H-CPAP or M-CPAP first at + 10 cmH2O, followed by the alternate intervention, each for 5 min. CCAF, mean arterial pressure (MAP), heart rate (HR), respiratory rate (RR), oxygen saturation (SpO₂), and anxiety score (AS) were recorded at baseline (RA) and after 5 min under each CPAP condition. Results showed a significant 14% reduction in CCAF between RA and H-CPAP (p = 0.001) and a 13% reduction between M-CPAP and H-CPAP (p = 0.004), with no significant difference between RA and M-CPAP. MAP remained unchanged across treatments, suggesting that the reduction in cerebral perfusion observed with H-CPAP was independent of systemic blood pressure changes. Helmet CPAP significantly reduces CCAF compared to RA and M-CPAP. While H-CPAP may offer advantages in respiratory support, its effect on cerebral perfusion suggests caution in patients with impaired cerebral autoregulation, such as those with stroke.
Collapse
Affiliation(s)
- Andrea Duca
- Agenzia Regionale Emergenza Urgenza, Milan, Italy.
| | | | | | | | | | | | - Giovanni Nattino
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Fabiola Signorini
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Guido Bertolini
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | | | | |
Collapse
|
2
|
Faber JE. Collateral blood vessels in stroke and ischemic disease: Formation, physiology, rarefaction, remodeling. J Cereb Blood Flow Metab 2025:271678X251322378. [PMID: 40072222 PMCID: PMC11904929 DOI: 10.1177/0271678x251322378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Collateral blood vessels are unique, naturally occurring endogenous bypass vessels that provide alternative pathways for oxygen delivery in obstructive arterial conditions and diseases. Surprisingly however, the capacity of the collateral circulation to provide protection varies greatly among individuals, resulting in a significant fraction having poor collateral circulation in their tissues. We recently reviewed evidence that the presence of naturally-occurring polymorphisms in genes that determine the number and diameter of collaterals that form during development (ie, genetic background), is a major contributor to this variation. The purpose of this review is to summarize current understanding of the other determinants of collateral blood flow, drawing on both animal and human studies. These include the level of smooth muscle tone in collaterals, hemodynamic forces, how collaterals form during development (collaterogenesis), de novo formation of additional new collaterals during adulthood, loss of collaterals with aging and cardiovascular risk factor presence (rarefaction), and collateral remodeling (structural lumen enlargement). We also review emerging evidence that collaterals not only provide protection in ischemic conditions but may also serve a physiological function in healthy individuals. Primary focus is on studies conducted in brain, however relevant findings in other tissues are also reviewed, as are questions for future investigation.
Collapse
Affiliation(s)
- James E Faber
- Department of Cell Biology and Physiology, Curriculum in Neuroscience, McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
3
|
Faber JE. Genetic determinants of insufficiency of the collateral circulation. J Cereb Blood Flow Metab 2025:271678X251317880. [PMID: 39901795 DOI: 10.1177/0271678x251317880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
It has been estimated that approximately two million neurons, sixteen billion synapses and twelve kilometers of axons are lost each minute following anterior large-vessel stroke. The level of collateral blood flow has become recognized as a primary determinant of the pace of this loss and an important factor in clinical decision-making. Many of the topics in this review cover recent developments that have not been reviewed elsewhere. These include that: the number and diameter of collaterals and collateral blood flow vary greatly in the brain and other tissues of healthy individuals; a large percentage of individuals are deficient in collaterals; the underlying mechanism arises primarily from naturally occurring polymorphisms in genes/genetic loci within the pathway that drives collateral formation during development; evidence indicates collateral abundance does not exhibit sexual dimorphism; and that collaterals-besides their function as endogenous bypass vessels-may have a physiological role in optimizing oxygen delivery. Animal and human studies in brain and other tissues, where available, are reviewed. Details of many of the studies are provided so that the strength of the findings and conclusions can be assessed without consulting the original literature. Key questions that remain unanswered and strategies to address them are also discussed.
Collapse
Affiliation(s)
- James E Faber
- Department of Cell Biology and Physiology, Curriculum in Neuroscience, McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
4
|
Greșiță A, Hermann DM, Boboc IKS, Doeppner TR, Petcu E, Semida GF, Popa-Wagner A. Glial Cell Reprogramming in Ischemic Stroke: A Review of Recent Advancements and Translational Challenges. Transl Stroke Res 2025:10.1007/s12975-025-01331-7. [PMID: 39904845 DOI: 10.1007/s12975-025-01331-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 02/06/2025]
Abstract
Ischemic stroke, the second leading cause of death worldwide and the leading cause of long-term disabilities, presents a significant global health challenge, particularly in aging populations where the risk and severity of cerebrovascular events are significantly increased. The aftermath of stroke involves neuronal loss in the infarct core and reactive astrocyte proliferation, disrupting the neurovascular unit, especially in aged brains. Restoring the balance between neurons and non-neuronal cells within the perilesional area is crucial for post-stroke recovery. The aged post-stroke brain mounts a fulminant proliferative astroglial response, leading to gliotic scarring that prevents neural regeneration. While countless therapeutic techniques have been attempted for decades with limited success, alternative strategies aim to transform inhibitory gliotic tissue into an environment conducive to neuronal regeneration and axonal growth through genetic conversion of astrocytes into neurons. This concept gained momentum following discoveries that in vivo direct lineage reprogramming in the adult mammalian brain is a feasible strategy for reprogramming non-neuronal cells into neurons, circumventing the need for cell transplantation. Recent advancements in glial cell reprogramming, including transcription factor-based methods with factors like NeuroD1, Ascl1, and Neurogenin2, as well as small molecule-induced reprogramming and chemical induction, show promise in converting glial cells into functional neurons. These approaches leverage the brain's intrinsic plasticity for neuronal replacement and circuit restoration. However, applying these genetic conversion therapies in the aged, post-stroke brain faces significant challenges, such as the hostile inflammatory environment and compromised regenerative capacity. There is a critical need for safe and efficient delivery methods, including viral and non-viral vectors, to ensure targeted and sustained expression of reprogramming factors. Moreover, addressing the translational gap between preclinical successes and clinical applications is essential, emphasizing the necessity for robust stroke models that replicate human pathophysiology. Ethical considerations and biosafety concerns are critically evaluated, particularly regarding the long-term effects and potential risks of genetic reprogramming. By integrating recent research findings, this comprehensive review provides an in-depth understanding of the current landscape and future prospects of genetic conversion therapy for ischemic stroke rehabilitation, highlighting the potential to enhance personalized stroke management and regenerative strategies through innovative approaches.
Collapse
Affiliation(s)
- Andrei Greșiță
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349, Craiova, Romania
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY, 11568, USA
| | - Dirk M Hermann
- Chair of Vascular Neurology and Dementia, Department of Neurology, University Hospital Essen, 45147, Essen, Germany
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349, Craiova, Romania
| | - Ianis Kevyn Stefan Boboc
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349, Craiova, Romania
| | - Thorsten R Doeppner
- Department of Neurology, University Medical Center Göttingen, 37075, Göttingen, Germany
- Department of Neurology, University of Giessen Medical School, 35392, Giessen, Germany
| | - Eugen Petcu
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY, 11568, USA
- Department of Biological & Chemical Sciences, New York Institute of Technology, Old Westbury, NY, 11568, USA
| | - Ghinea Flavia Semida
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349, Craiova, Romania.
| | - Aurel Popa-Wagner
- Chair of Vascular Neurology and Dementia, Department of Neurology, University Hospital Essen, 45147, Essen, Germany.
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349, Craiova, Romania.
| |
Collapse
|
5
|
Zhou J, Lei Y, Zhang S, Liu Y, Yi D. Panaxadiol Attenuates Neuronal Oxidative Stress and Apoptosis in Cerebral Ischemia/Reperfusion Injury via Regulation of the JAK3/STAT3/HIF-1α Signaling Pathway. CNS Neurosci Ther 2025; 31:e70233. [PMID: 39957706 PMCID: PMC11831195 DOI: 10.1111/cns.70233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/06/2025] [Accepted: 01/13/2025] [Indexed: 02/18/2025] Open
Abstract
BACKGROUND Cerebral ischemic stroke (CIS) is a debilitating neurological condition lacking specific treatments. Cerebral ischemia/reperfusion injury (CIRI) is a critical pathological process in CIS. PURPOSE This study aimed to explore the protective effects of panaxadiol (PD) against oxidative stress-induced neuronal apoptosis in CIS/CIRI and its underlying mechanisms. METHOD An MCAO mouse model was established to investigate the therapeutic effects of PD in vivo. Network pharmacology and molecular docking techniques were used to predict PD's anti-CIS targets. The protective effects of PD were further validated in vitro using oxygen-glucose deprivation/reoxygenation (OGD/R)-treated HT22 cells. Finally, core targets were verified through combined in vivo and in vitro experiments to elucidate the mechanisms of PD in treating CIS. RESULT PD exhibited significant neuroprotective activity, demonstrated by restoration of behavioral performance, reduced infarct volume, and decreased neuronal apoptosis in mice. Network pharmacology analysis identified 24 overlapping target genes between PD and CIS-related targets. The hub genes, PTGS2, SERPINE1, ICAM-1, STAT3, MMP3, HMOX1, and NOS3, were associated with the HIF-1α pathway, which may play a crucial role in PD's anti-CIS effects. Molecular docking confirmed the stable binding of PD to these hub genes. Both in vitro and in vivo experiments further confirmed that PD significantly mitigates neuronal apoptosis and oxidative stress induced by CIS/CIRI. CONCLUSION PD significantly counteracts CIS/CIRI by modulating the JAK3/STAT3/HIF-1α signaling pathway, making it a promising therapeutic agent for treating CIS/CIRI.
Collapse
Affiliation(s)
- Jiabin Zhou
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei ProvincePeople's Republic of China
- Wuhan UniversityWuhanHubei ProvincePeople's Republic of China
| | - Yu Lei
- Wuhan UniversityWuhanHubei ProvincePeople's Republic of China
| | - Shilin Zhang
- Naval Aviation University of Chinese People's Liberation ArmyYantaiShandong ProvincePeople's Republic of China
| | - Yuhan Liu
- Department of GastroenterologyHubei Provincial Hospital of Integrated Chinese and Western MedicineWuhanHubei ProvincePeople's Republic of China
| | - Dongye Yi
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei ProvincePeople's Republic of China
| |
Collapse
|
6
|
Lakatos LB, Bolognese M, Oesterreich M, Müller M, Karwacki GM. Cerebrovascular regulation in patients with active tumors and an acute ischemic stroke: a retrospective analysis. Front Physiol 2024; 15:1423195. [PMID: 39749040 PMCID: PMC11693647 DOI: 10.3389/fphys.2024.1423195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025] Open
Abstract
Introduction Ischemic stroke in patients with a systemic tumor disease or cancer not in remission (active tumors) is less well understood. Some aspects of such paraneoplastic strokes remind on a generalized cerebrovascular disorder. We hypothesized that cerebrovascular regulation in active tumor patients with a stroke is different from other patients with stroke who have no active tumor disease. Methods Within the first 72 h after the acute ischemic stroke, cerebral blood flow regulation was analyzed by means of transfer function analysis between middle cerebral artery blood flow velocity and blood pressure with estimation of coherence, gain and phase in the very low (0.02-0.07 Hz), low (0.07-0.20 Hz) and high frequencies (0.20-0.5 Hz) in four stroke groups: active tumors, inactive tumors (untreated and in remission), hypertensive lacunar stroke (LS), and non-hypertensive embolic stroke (NHES). Results The 4 groups did not differ regarding age, sex distribution, and brain infarct size on magnet resonance imaging Between the four stroke groups, phase was not different in any frequency range in both hemispheres. Gain was highest (either significant or by trend) in the active tumor group in the HF range in comparison to all other stroke subgroups, it was also higher in the LF range in the stroke affected hemisphere when compared to the LS group. The HF gain findings were independent of end-tidal CO2 levels but exhibited some dependency of coherence. Discussion The high gain can be interpreted as a generalized high vascular resistance. The cerebrovascular regulation in active tumor patients seems to exhibit some analogy to hypertensive patients with lacunar stroke. Clinical Trial Registration clinicaltrials.gov, identifier NCT04611672.
Collapse
Affiliation(s)
| | - Manuel Bolognese
- Department of Neurology and Neurorehabilitation, Lucerne, Switzerland
| | | | - Martin Müller
- Department of Neurology and Neurorehabilitation, Lucerne, Switzerland
| | - Grzegorz Marek Karwacki
- Department of Radiology and Nuclear Medicine, Section Diagnostic and Invasive Neuroradiology, Lucerne Cantonal Hospital, Lucerne, Switzerland
| |
Collapse
|
7
|
Liu D, Zhu Y. Unveiling Smyd-2's Role in Cytoplasmic Nrf-2 Sequestration and Ferroptosis Induction in Hippocampal Neurons After Cerebral Ischemia/Reperfusion. Cells 2024; 13:1969. [PMID: 39682718 PMCID: PMC11639856 DOI: 10.3390/cells13231969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
SET and MYND Domain-Containing 2 (Smyd-2), a specific protein lysine methyltransferase (PKMT), influences both histones and non-histones. Its role in cerebral ischemia/reperfusion (CIR), particularly in ferroptosis-a regulated form of cell death driven by lipid peroxidation-remains poorly understood. This study identifies the expression of Smyd-2 in the brain and investigates its relationship with neuronal programmed cell death (PCD). We specifically investigated how Smyd-2 regulates ferroptosis in CIR through its interaction with the Nuclear Factor Erythroid-2-related Factor-2 (Nrf-2)/Kelch-like ECH-associated protein (Keap-1) pathway. Smyd-2 knockout protects HT-22 cells from Erastin-induced ferroptosis but not TNF-α + Smac-mimetic-induced apoptosis/necroptosis. This neuroprotective effect of Smyd-2 knockout in HT-22 cells after Oxygen-Glucose Deprivation/Reperfusion (OGD/R) was reversed by Erastin. Smyd-2 knockout in HT-22 cells shows neuroprotection primarily via the Nuclear Factor Erythroid-2-related Factor-2 (Nrf-2)/Kelch-like ECH-associated protein (Keap-1) pathway, despite the concurrent upregulation of Smyd-2 and Nrf-2 observed in both the middle cerebral artery occlusion (MCAO) and OGD/R models. Interestingly, vivo experiments demonstrated that Smyd-2 knockout significantly reduced ferroptosis and lipid peroxidation in hippocampal neurons following CIR. Moreover, the Nrf-2 inhibitor ML-385 abolished the neuroprotective effects of Smyd-2 knockout, confirming the pivotal role of Nrf-2 in ferroptosis regulation. Cycloheximide (CHX) fails to reduce Nrf-2 expression in Smyd-2 knockout HT-22 cells. Smyd-2 knockout suppresses Nrf-2 lysine methylation, thereby promoting the Nrf-2/Keap-1 pathway without affecting the PKC-δ/Nrf-2 pathway. Conversely, Smyd-2 overexpression disrupts Nrf-2 nuclear translocation, exacerbating ferroptosis and oxidative stress, highlighting its dual regulatory role. This study underscores Smyd-2's potential for ischemic stroke treatment by disrupting the Smyd-2/Nrf-2-driven antioxidant capacity, leading to hippocampal neuronal ferroptosis. By clarifying the intricate interplay between ferroptosis and oxidative stress via the Nrf-2/Keap-1 pathway, our findings provide new insights into the molecular mechanisms of CIR and identify Smyd-2 as a promising therapeutic target.
Collapse
Affiliation(s)
- Daohang Liu
- School of Pharmacy, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai 201203, China;
| | - Yizhun Zhu
- School of Pharmacy, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai 201203, China;
- School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
8
|
Niu B, Sihai G, Gong H, Hu P, Shah P, Liu X, Xia Y, Yao D, Klugah-Brown B, Biswal B. Assessment of Hyperacute Cerebral Ischemia Using Laser Speckle Contrast Imaging. Brain Connect 2024; 14:459-470. [PMID: 39291777 DOI: 10.1089/brain.2024.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Background: Accurate diagnosis of cerebral ischemia severity is crucial for clinical decision making. Laser speckle contrast imaging-based cerebral blood flow imaging can help assess the severity of cerebral ischemia by monitoring changes in blood flow. Method: In this study, we simulated hyperacute ischemia in rats, isolating arterial and venous flow-related signals from cortical vasculature. Pearson correlation was used to examine the correlation between damaged vessels. Granger causality analysis was used to investigate causality correlation in ischemic vessels. Results: Resting state analysis revealed a negative Pearson correlation between regional arteries and veins. Following cerebral ischemia induction, a positive artery-vein correlation emerged, which vanished after blood flow reperfusion. Granger causality analysis demonstrating enhanced causality coefficients for middle artery-vein pairs during occlusion, with a stronger left-right arterial effect than that of right-left, which persisted after reperfusion. Conclusions: These processing approaches amplify the understanding of cerebral ischemic images, promising potential future diagnostic advancements.
Collapse
Affiliation(s)
- Bochao Niu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Guan Sihai
- College of Electronic and Information, Southwest Minzu University, Chengdu, China
- Key Laboratory of Electronic and Information Engineering, State Ethnic Affairs Commission, Chengdu, China
| | - Hongyan Gong
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao, China
| | - Peng Hu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Pushti Shah
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Xiqin Liu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yang Xia
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Benjamin Klugah-Brown
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Bharat Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| |
Collapse
|
9
|
Lan X, Wang Q, Liu Y, You Q, Wei W, Zhu C, Hai D, Cai Z, Yu J, Zhang J, Liu N. Isoliquiritigenin alleviates cerebral ischemia-reperfusion injury by reducing oxidative stress and ameliorating mitochondrial dysfunction via activating the Nrf2 pathway. Redox Biol 2024; 77:103406. [PMID: 39454290 PMCID: PMC11546133 DOI: 10.1016/j.redox.2024.103406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
Cerebral ischemia-reperfusion injury (CIRI) refers to a secondary brain injury that occurs when blood supply is restored to ischemic brain tissue and is one of the leading causes of adult disability and mortality. Multiple pathological mechanisms are involved in the progression of CIRI, including neuronal oxidative stress and mitochondrial dysfunction. Isoliquiritigenin (ISL) has been preliminarily reported to have potential neuroprotective effects on rats subjected to cerebral ischemic insult. However, the protective mechanisms of ISL have not been elucidated. This study aims to further investigate the effects of ISL-mediated neuroprotection and elucidate the underlying molecular mechanism. The findings indicate that ISL treatment significantly alleviated middle cerebral artery occlusion (MCAO)-induced cerebral infarction, neurological deficits, histopathological damage, and neuronal apoptosis in mice. In vitro, ISL effectively mitigated the reduction of cell viability, Na+-K+-ATPase, and MnSOD activities, as well as the degree of DNA damage induced by oxygen-glucose deprivation (OGD) injury in PC12 cells. Mechanistic studies revealed that administration of ISL evidently improved redox homeostasis and restored mitochondrial function via inhibiting oxidative stress injury and ameliorating mitochondrial biogenesis, mitochondrial fusion-fission balance, and mitophagy. Moreover, ISL facilitated the dissociation of Keap1/Nrf2, enhanced the nuclear transfer of Nrf2, and promoted the binding activity of Nrf2 with ARE. Finally, ISL obviously inhibited neuronal apoptosis by activating the Nrf2 pathway and ameliorating mitochondrial dysfunction in mice. Nevertheless, Nrf2 inhibitor brusatol reversed the mitochondrial protective properties and anti-apoptotic effects of ISL both in vivo and in vitro. Overall, our findings revealed that ISL exhibited a profound neuroprotective effect on mice following CIRI insult by reducing oxidative stress and ameliorating mitochondrial dysfunction, which was closely related to the activation of the Nrf2 pathway.
Collapse
Affiliation(s)
- Xiaobing Lan
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qing Wang
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Yue Liu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Qing You
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Wei Wei
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Chunhao Zhu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Dongmei Hai
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Zhenyu Cai
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Jianqiang Yu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China; Ningxia Characteristic Traditional Chinese Medicine Modern Engineering Research Center, Ningxia Medical University, Yinchuan, 750004, China.
| | - Jian Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Ning Liu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China; Ningxia Characteristic Traditional Chinese Medicine Modern Engineering Research Center, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
10
|
You J, Li X, Xia J, Li H, Wang J. Hypoperfusion Intensity Ratio and Hemorrhagic Transformation in Patients with Successful Recanalization after Thrombectomy. AJNR Am J Neuroradiol 2024; 45:1475-1481. [PMID: 38719611 PMCID: PMC11448998 DOI: 10.3174/ajnr.a8329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/29/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND AND PURPOSE Hemorrhagic transformation remains a potentially devastating complication of acute ischemic stroke. We aimed to evaluate whether the hypoperfusion intensity ratio, a parameter derived from CT perfusion imaging, is associated with the development of hemorrhagic transformation in patients with anterior large-artery occlusion who had undergone thrombectomy. MATERIALS AND METHODS We retrospectively reviewed data from patients with consecutive acute ischemic strokes who had achieved successful recanalization (Thrombolysis in Cerebral Infarction score ≥2b) between January 2020 and December 2023. HIR was defined as the ratio of the volume of lesions with a time-to-maximum (Tmax) >6 seconds to those with a Tmax >10 second delay. The primary outcome, based on the European Cooperative Acute Stroke Study, was hemorrhagic transformation, diagnosed by follow-up imaging assessment in 24-hour windows, and radiologically classified as hemorrhagic infarction and parenchymal hematoma. The secondary outcome was a 3-month mRS score of ≥3. RESULTS Among 168 patients, 35 of 168 developed hemorrhagic transformation; 14 of 168 developed hemorrhagic infarction, and 21 of 168 developed parenchymal hematoma PH. After adjusting the latent covariates, increased hypoperfusion intensity ratio (per 0.1, adjusted OR [aOR] 1.68, 95% CI 1.26-2.25), ASPECTS (aOR 0.44, 95% CI 0.27-0.72), onset-to-puncture (aOR 1.01, 95% CI 1.00-1.02), and cardioembolism (aOR 5.6, 95% CI 1.59-19.7) were associated with hemorrhagic transformation in multivariable regression. The receiver operating characteristic curve indicated that hypoperfusion intensity ratio can predict hemorrhagic transformation accurately (area under the curve = 0.81; 95% CI, 0.738-0.882; P < .001) and predict parenchymal hematoma (area under the curve = 0.801; 95% CI, 0.727-0.875; P < .001). CONCLUSIONS Upon admission, hypoperfusion intensity ratio, an imaging parameter, predicted hemorrhagic transformation after reperfusion therapy in this patient population.
Collapse
Affiliation(s)
- Jiaxiang You
- From the Department of Emergency Medicine (J.Y., J.X., H.L., J.W.), Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, China
| | - Xiaoxi Li
- Department of Emergency Medicine (X.L., J.W.), Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jun Xia
- From the Department of Emergency Medicine (J.Y., J.X., H.L., J.W.), Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, China
| | - Haopeng Li
- From the Department of Emergency Medicine (J.Y., J.X., H.L., J.W.), Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, China
| | - Jun Wang
- From the Department of Emergency Medicine (J.Y., J.X., H.L., J.W.), Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, China
- Department of Emergency Medicine (X.L., J.W.), Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
11
|
Zhao Y, Yao Z, Lu L, Xu S, Sun J, Zhu Y, Wu Y, Yu Z. Carbon monoxide-releasing molecule-3 exerts neuroprotection effects after cardiac arrest in mice: A randomized controlled study. Resusc Plus 2024; 19:100703. [PMID: 39040821 PMCID: PMC11260602 DOI: 10.1016/j.resplu.2024.100703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
Background Post-cardiac arrest brain injury (PCABI) is the leading cause of death in survivors of cardiac arrest (CA). Carbon monoxide-releasing molecule (CORM-3) is a water-soluble exogenous carbon monoxide that has been shown to have neuroprotection benefits in several neurological disease models. However, the effects of CORM-3 on PCABI is still unclear. Methods A mice model combined asystole with hemorrhage was used. Mice were anesthetized and randomized into 4 groups (n = 12/group) and underwent either 9.5 min CA followed by cardiopulmonary resuscitation (CPR) or sham surgery. CORM-3 (30 mg/kg) or vehicle (normal saline) were administered at 1 h after return of spontaneous circulation or sham surgery. Survival, neurologic deficits, alterations in the permeability of the brain-blood barrier and cerebral blood flow, changes of oxidative stress level, level of neuroinflammation and neuronal degeneration, and the activation of Nrf2/HO-1 signaling pathway were measured. Results In CORM-3 treated mice that underwent CA/CPR, significantly improved survival (75.00% vs. 58.33%, P = 0.0146 (24 h) and 66.67% vs. 16.67%, P < 0.0001 (72 h)) and neurological function were observed at 24 h and 72 h after ROSC (P < 0.05 for each). Additionally, increased cerebral blood flow, expression of tight junctions, and reduced reactive oxygen species generation at 24 h after ROSC were observed (P < 0.05 for each). CORM-3 treated mice had less neuron death and alleviated neuroinflammation at 72 h after ROSC (P < 0.05 for each). Notably, the Nrf2/HO-1 signaling pathway was significantly activated in mice subjected to CA/CPR with CORM-3 treatment. Conclusions CORM-3 could improve survival and exert neuroprotection after CA/CPR in mice. CORM-3 may be a novel and promising pharmacological therapy for PCABI.
Collapse
Affiliation(s)
- Yuanrui Zhao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhun Yao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liping Lu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Song Xu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianfei Sun
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ying Zhu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanping Wu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhui Yu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Carvalho LB, Kaffenberger T, Chambers B, Borschmann K, Levi C, Churilov L, Thijs V, Bernhardt J. Cerebral hemodynamic response to upright position in acute ischemic stroke. Front Neurol 2024; 15:1392773. [PMID: 39055319 PMCID: PMC11269199 DOI: 10.3389/fneur.2024.1392773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction Concerns exist that a potential mechanism for harm from upright activity (sitting, standing, and walking) early after an acute ischaemic stroke could be the reduction of cerebral perfusion during this critical phase. We aimed to estimate the effects of upright positions (sitting and standing) on cerebral hemodynamics within 48 h and later, 3-7 days post-stroke, in patients with strokes with and without occlusive disease and in controls. Methods We investigated MCAv using transcranial Doppler in 0° head position, then at 30°, 70°, 90° sitting, and 90° standing, at <48 h post-stroke, and later at 3-7 days post-stroke. Mixed-effect linear regression modeling was used to estimate differences in MCAv between the 0° and other positions and to compare MCAv changes across groups. Results A total of 42 stroke participants (anterior and posterior circulation) (13 with occlusive disease, 29 without) and 22 controls were recruited. Affected hemisphere MCAv decreased in strokes with occlusive disease (<48 h post-stroke): from 0° to 90° sitting (-9.9 cm/s, 95% CI[-16.4, -3.4]) and from 0° to 90° standing (-7.1 cm/s, 95%CI[-14.3, -0.01]). Affected hemisphere MCAv also decreased in strokes without occlusive disease: from 0° to 90° sitting (-3.3 cm/s, 95%CI[-5.6, -1.1]) and from 0° to 90° standing (-3.6 cm/s, 95%CI [-5.9, -1.3]) (p-value interaction stroke with vs. without occlusive disease = 0.07). A decrease in MCAv when upright was also observed in controls: from 0° to 90° sitting (-3.8 cm/s, 95%CI[-6.0, -1.63]) and from 0° to 90° standing (-3 cm/s, 95%CI[-5.2, -0.81]) (p-value interaction stroke vs. controls = 0.85). Subgroup analysis of anterior circulation stroke showed similar patterns of change in MCAv in the affected hemisphere, with a significant interaction between those with occlusive disease (n = 11) and those without (n = 26) (p = 0.02). Changes in MCAv from 0° to upright at <48 h post-stroke were similar to 3-7 days. No association between changes in MCAv at <48 h and the 30-day modified Rankin Scale was found. Discussion Moving to more upright positions <2 days post-stroke does reduce MCAv in the affected hemisphere; however, these changes were not significantly different for stroke participants (anterior and posterior circulation) with and without occlusive disease, nor for controls. The decrease in MCAv in anterior circulation stroke with occlusive disease significantly differed from without occlusive disease. However, the sample size was small, and more research is warranted to confirm these findings.
Collapse
Affiliation(s)
- Lilian B. Carvalho
- Stroke Theme, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Heidelberg, VIC, Australia
| | - Tina Kaffenberger
- Stroke Theme, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Heidelberg, VIC, Australia
| | - Brian Chambers
- Neurology Department, Austin Health, Melbourne, VIC, Australia
| | - Karen Borschmann
- Stroke Theme, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Heidelberg, VIC, Australia
- Allied Health, St Vincent's Hospital, Melbourne, VIC, Australia
| | - Christopher Levi
- John Hunter Hospital, University of Newcastle, Newcastle, NSW, Australia
| | - Leonid Churilov
- Department of Medicine (Austin Health) and Melbourne Brain Centre at Royal Melbourne Hospital, Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia
| | - Vincent Thijs
- Stroke Theme, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Heidelberg, VIC, Australia
- Neurology Department, Austin Health, Melbourne, VIC, Australia
| | - Julie Bernhardt
- Stroke Theme, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Heidelberg, VIC, Australia
| |
Collapse
|
13
|
Zhang X, Deng F, Wang X, Liu F, Zhu Y, Yu B, Ruan M. Synergistic amelioration between Ligusticum striatum DC and borneol against cerebral ischemia by promoting astrocytes-mediated neurogenesis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:118062. [PMID: 38492790 DOI: 10.1016/j.jep.2024.118062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/20/2024] [Accepted: 03/14/2024] [Indexed: 03/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ligusticum chuanxiong Hort (LCH), with the accepted name of Ligusticum striatum DC in "The Plant List" database, is a widely used ethnomedicine in treating ischemic stroke, and borneol (BO) is usually prescribed with LCH for better therapy. Our previous study confirmed their synergistic effect on neurogenesis against cerebral ischemia. However, the underlying mechanism is still unclear. AIM OF THE STUDY More and more evidence indicated that astrocytes (ACs) might be involved in the modulation of neurogenesis via polarization reaction. The study was designed to explore the synergic mechanism between LCH and BO in promoting astrocyte-mediated neurogenesis. MATERIALS AND METHODS After primary cultures and identifications of ACs and neural stem cells (NSCs), the oxygen-glucose deprivation (OGD) model and the concentrations of LCH and BO were optimized. After the OGD-injured ACs were treated by LCH, BO, and their combination, the conditioned mediums were used to culture the OGD-injured NSCs. The proliferation, migration, and differentiation of NSCs were assessed, and the secretions of BDNF, CNTF, and VEGF from ACs were measured. Then the expressions of C3 and PTX3 were detected. Moreover, the mice were performed a global cerebral ischemia/reperfusion model and treated with LCH and (or) BO. After the assessments of Nissl staining, the expressions of Nestin, DCX, GFAP, C3, PTX3, p65 and p-p65 were probed. RESULTS The most appropriate duration of OGD for the injury of both NSCs and ACs was 6 h, and the optimized concentrations of LCH and BO were 1.30 μg/mL and 0.03 μg/mL, respectively. The moderate OGD environment induced NSCs proliferation, migration, astrogenesis, and neurogenesis, increased the secretions of CNTF and VEGF from ACs, and upregulated the expressions of C3 and PTX3. For the ACs, LCH further increased the secretions of BDNF and CNTF, enhanced PTX3 expression, and reduced C3 expression. Additionally, the conditioned medium from LCH-treated ACs further enhanced NSC proliferation, migration, and neurogenesis. The in vivo study showed that LCH markedly enhanced the Nissl score and neurogenesis, and decreased astrogenesis which was accompanied by downregulations of C3, p-p65, and p-p65/p65 and upregulation of PTX3. BO not only decreased the expression of C3 in ACs both in vitro and in vivo but also downregulated p-p65 and p-p65/p65 in vivo. Additionally, BO promoted the therapeutic effect of LCH for most indices. CONCLUSION A certain degree of OGD might induce ACs to stimulate the proliferation, astrogenesis, and neurogenesis of NSCs. LCH and BO exhibited a marked synergy in promoting ACs-mediated neurogenesis and reducing astrogenesis, in which LCH played a dominant role and BO boosted the effect of LCH. The mechanism of LCH might be involved in switching the polarization of ACs from A1 to A2, while BO preferred to inhibit the formation of A1 phenotype via downregulating NF-κB pathway.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Fengjiao Deng
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xueqing Wang
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Fanghan Liu
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yue Zhu
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Bin Yu
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ming Ruan
- Jiangsu Provincial Key Construction Laboratory of Special Biomass Waste Resource Utilization, School of Food Science, Nanjing Xiaozhuang University, Nanjing, 211117, China.
| |
Collapse
|
14
|
Yang L, Du H, Zhang X, Zhang D, Su X, Qiao Z, Gao B. Evaluation of the correlation between cerebral hemodynamics and blood pressure by comparative analysis of variation in cerebral blood flow in hypertensive versus normotensive individuals: A systematic review and meta-analysis. BIOMOLECULES & BIOMEDICINE 2024; 24:775-786. [PMID: 38709773 PMCID: PMC11293236 DOI: 10.17305/bb.2024.10230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/20/2024] [Accepted: 04/20/2024] [Indexed: 05/08/2024]
Abstract
Current understanding of the cerebral vascular response to variations in blood pressure (BP) among individuals with hypertension is limited. The aim of this meta-analysis was to determine the correlation between hypertension, risk of stroke, and cerebral blood flow (CBF). We reviewed studies published between 2000 and 2023 from PubMed, Google Scholar, and Science Direct that compared mean CBF in normotensive (NTN) and hypertensive (HTN) patients. A random effects model was used to construct the risk ratio (RR), 95% confidence interval (CI), forest plot, and inverse variance weighting. Additionally, a mixed-effects meta-regression was employed to examine the impact of study-specific patient variables. This meta-analysis included eight prospective cross-sectional studies published from 2002 to 2023. It revealed a significant average difference in the standard mean CBF of -0.45 (95% CI -0.60 to -0.30, I2 = 69%, P < 0.00001), distinguishing NTN from HTN subjects. A RR of 0.90 (95% CI 0.63 to 1.30, I2 = 89%, P = 0.04) indicated a significant decrease in CBF among individuals with hypertension. We found a statistically significant relationship between changes in diastolic and systolic BPs and the mean CBF (R -0.81, P = 0.001 and R = -0.90, P = 0.005, respectively). Our research demonstrates a strong relationship between elevated BP and reduced CBF, with hypertension reducing CBF compared to NTN individuals, by increasing cerebrovascular resistance.
Collapse
Affiliation(s)
- Lei Yang
- Department of Neurosurgery, Shijiazhuang People’s Hospital, Shijiazhuang, China
| | - Hong Du
- Department of Cardiology, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xuejing Zhang
- Center of Medical Research, Shijiazhuang People’s Hospital, Shijiazhuang, China
| | - Dongliang Zhang
- Department of Neurosurgery, Shijiazhuang People’s Hospital, Shijiazhuang, China
| | - Xianhui Su
- Department of Neurosurgery, Shijiazhuang People’s Hospital, Shijiazhuang, China
| | - Zongrong Qiao
- Department of Neurosurgery, Shijiazhuang People’s Hospital, Shijiazhuang, China
| | - Bulang Gao
- Center of Medical Research, Shijiazhuang People’s Hospital, Shijiazhuang, China
| |
Collapse
|
15
|
Whitaker AA, Waghmare S, Montgomery RN, Aaron SE, Eickmeyer SM, Vidoni ED, Billinger SA. Lower middle cerebral artery blood velocity during low-volume high-intensity interval exercise in chronic stroke. J Cereb Blood Flow Metab 2024; 44:627-640. [PMID: 37708242 PMCID: PMC11197145 DOI: 10.1177/0271678x231201472] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/16/2023]
Abstract
High-intensity interval training (HIIE) may present unique challenges to the cerebrovascular system in individuals post-stroke. We hypothesized lower middle cerebral artery blood velocity (MCAv) in individuals post-stroke: 1) during 10 minutes of HIIE, 2) immediately following HIIE, and 3) 30 minutes after HIIE, compared to age- and sex-matched controls (CON). We used a recumbent stepper submaximal exercise test to determine workloads for high-intensity and active recovery. Our low volume HIIE protocol consisted of 1-minute intervals for 10 minutes. During HIIE, we measured MCAv, mean arterial pressure (MAP), heart rate (HR), and end tidal carbon dioxide (PETCO2). We assessed carotid-femoral pulse wave velocity as a measure of arterial stiffness. Fifty participants completed the study (25 post-stroke, 76% ischemic, 32% moderate disability). Individuals post-stroke had lower MCAv during HIIE compared to CON (p = 0.03), which remained 30 minutes after HIIE. Individuals post-stroke had greater arterial stiffness (p = 0.01) which was moderately associated with a smaller MCAv responsiveness during HIIE (r = -0.44). No differences were found for MAP, HR, and PETCO2. This study suggests individuals post-stroke had a lower MCAv during HIIE compared to their peers, which remained during recovery up to 30 minutes. Arterial stiffness may contribute to the lower cerebrovascular responsiveness post-stroke.
Collapse
Affiliation(s)
- Alicen A Whitaker
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Saniya Waghmare
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Robert N Montgomery
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Stacey E Aaron
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sarah M Eickmeyer
- Department of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, KS, USA
| | - Eric D Vidoni
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, USA
| | - Sandra A Billinger
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, KS, USA
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
16
|
Medicherla C, Pashun R, Al-Mufti F. Review of Cerebral Collateral Circulation and Insight into Cardiovascular Strategies to Limit Collateral Damage in Ischemic Stroke. Cardiol Rev 2024; 32:188-193. [PMID: 37729598 DOI: 10.1097/crd.0000000000000614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Cerebral collateral circulation is a dynamic and adaptive process by which alternative vascular pathways supply perfusion to ischemic brain tissue in the event of an arterial occlusion. This complicated network of blood vessels that acts as a natural bypass plays a pivotal role in stroke pathophysiology and has become a key area of study given its significance in stroke treatment and patient outcomes. In this review, we will study the factors influencing the formation, recruitment, and endurance of collateral vessels; discuss imaging modalities for quantitative and qualitative assessment of this network; explore the role of collaterals in stroke management; and highlight several cardiovascular strategies to minimize damage to collaterals and optimize stroke outcomes.
Collapse
Affiliation(s)
| | - Raymond Pashun
- Department of Cardiology, New York University Langone Health, New York, NY
| | - Fawaz Al-Mufti
- Department of Neurology, Neurosurgery, and Radiology, New York Medical College, Valhalla, NY
| |
Collapse
|
17
|
Whitaker AA, Aaron SE, Chertoff M, Brassard P, Buchanan J, Nguyen K, Vidoni ED, Waghmare S, Eickmeyer SM, Montgomery RN, Billinger SA. Lower dynamic cerebral autoregulation following acute bout of low-volume high-intensity interval exercise in chronic stroke compared to healthy adults. J Appl Physiol (1985) 2024; 136:707-720. [PMID: 38357728 PMCID: PMC11286270 DOI: 10.1152/japplphysiol.00635.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/23/2024] [Accepted: 02/04/2024] [Indexed: 02/16/2024] Open
Abstract
Fluctuating arterial blood pressure during high-intensity interval exercise (HIIE) may challenge dynamic cerebral autoregulation (dCA), specifically after stroke after an injury to the cerebrovasculature. We hypothesized that dCA would be attenuated at rest and during a sit-to-stand transition immediately after and 30 min after HIIE in individuals poststroke compared with age- and sex-matched control subjects (CON). HIIE switched every minute between 70% and 10% estimated maximal watts for 10 min. Mean arterial pressure (MAP) and middle cerebral artery blood velocity (MCAv) were recorded. dCA was quantified during spontaneous fluctuations in MAP and MCAv via transfer function analysis. For sit-to-stand, time delay before an increase in cerebrovascular conductance index (CVCi = MCAv/MAP), rate of regulation, and % change in MCAv and MAP were measured. Twenty-two individuals poststroke (age 60 ± 12 yr, 31 ± 16 mo) and twenty-four CON (age 60 ± 13 yr) completed the study. Very low frequency (VLF) gain (P = 0.02, η2 = 0.18) and normalized gain (P = 0.01, η2 = 0.43) had a group × time interaction, with CON improving after HIIE whereas individuals poststroke did not. Individuals poststroke had lower VLF phase (P = 0.03, η2 = 0.22) after HIIE compared with CON. We found no differences in the sit-to-stand measurement of dCA. Our study showed lower dCA during spontaneous fluctuations in MCAv and MAP following HIIE in individuals poststroke compared with CON, whereas the sit-to-stand response was maintained.NEW & NOTEWORTHY This study provides novel insights into poststroke dynamic cerebral autoregulation (dCA) following an acute bout of high-intensity interval exercise (HIIE). In people after stroke, dCA appears attenuated during spontaneous fluctuations in mean arterial pressure (MAP) and middle cerebral artery blood velocity (MCAv) following HIIE. However, the dCA response during a single sit-to-stand transition after HIIE showed no significant difference from controls. These findings suggest that HIIE may temporarily challenge dCA after exercise in individuals with stroke.
Collapse
Affiliation(s)
- Alicen A Whitaker
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, Kansas, United States
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Stacey E Aaron
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Mark Chertoff
- Department of Hearing and Speech, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Jake Buchanan
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Katherine Nguyen
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Eric D Vidoni
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, United States
- University of Kansas Alzheimer's Disease Research Center, Fairway, Kansas, United States
| | - Saniya Waghmare
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, Kansas, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Sarah M Eickmeyer
- Department of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Robert N Montgomery
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Sandra A Billinger
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, United States
- University of Kansas Alzheimer's Disease Research Center, Fairway, Kansas, United States
- Department of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, Kansas, United States
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States
| |
Collapse
|
18
|
Boseley RE, Sylvain NJ, Peeling L, Kelly ME, Pushie MJ. A review of concepts and methods for FTIR imaging of biomarker changes in the post-stroke brain. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184287. [PMID: 38266967 DOI: 10.1016/j.bbamem.2024.184287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Stroke represents a core area of study in neurosciences and public health due to its global contribution toward mortality and disability. The intricate pathophysiology of stroke, including ischemic and hemorrhagic events, involves the interruption in oxygen and nutrient delivery to the brain. Disruption of these crucial processes in the central nervous system leads to metabolic dysregulation and cell death. Fourier transform infrared (FTIR) spectroscopy can simultaneously measure total protein and lipid content along with a number of key biomarkers within brain tissue that cannot be observed using conventional techniques. FTIR imaging provides the opportunity to visualize this information in tissue which has not been chemically treated prior to analysis, thus retaining the spatial distribution and in situ chemical information. Here we present a review of FTIR imaging methods for investigating the biomarker responses in the post-stroke brain.
Collapse
Affiliation(s)
- Rhiannon E Boseley
- Department of Surgery, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
| | - Nicole J Sylvain
- Department of Surgery, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
| | - Lissa Peeling
- Department of Surgery, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
| | - Michael E Kelly
- Department of Surgery, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
| | - M Jake Pushie
- Department of Surgery, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada.
| |
Collapse
|
19
|
Panerai RB, Davies A, Clough RH, Beishon LC, Robinson TG, Minhas JS. The effect of hypercapnia on the directional sensitivity of dynamic cerebral autoregulation and the influence of age and sex. J Cereb Blood Flow Metab 2024; 44:272-283. [PMID: 37747437 PMCID: PMC10993882 DOI: 10.1177/0271678x231203475] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/24/2023] [Accepted: 09/05/2023] [Indexed: 09/26/2023]
Abstract
The cerebral circulation responds differently to increases in mean arterial pressure (MAP), compared to reductions in MAP. We tested the hypothesis that this directional sensitivity is reduced by hypercapnia. Retrospective analysis of 104 healthy subjects (46 male (44%), age range 19-74 years), with five minute recordings of middle cerebral blood velocity (MCAv, transcranial Doppler), non-invasive MAP (Finometer) and end-tidal CO2 (capnography) at rest, during both poikilocapnia and hypercapnia (5% CO2 breathing in air) produced MCAv step responses allowing estimation of the classical Autoregulation Index (ARIORIG), and corresponding values for both positive (ARI+D) and negative (ARI-D) changes in MAP. Hypercapnia led to marked reductions in ARIORIG, ARI+D and ARI-D (p < 0.0001, all cases). Females had a lower value of ARIORIG compared to males (p = 0.030) at poikilocapnia (4.44 ± 1.74 vs 4.74 ± 1.48) and hypercapnia (2.44 ± 1.93 vs 3.33 ± 1.61). The strength of directional sensitivity (ARI+D-ARI-D) was not influenced by hypercapnia (p = 0.46), sex (p = 0.76) or age (p = 0.61). During poikilocapnia, ARI+D decreased with age in females (p = 0.027), but not in males. Directional sensitivity was not affected by hypercapnia, suggesting that its origins are more likely to be inherent to the mechanics of vascular smooth muscle than to myogenic pathways.
Collapse
Affiliation(s)
- Ronney B Panerai
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, UK
- NIHR Leicester Biomedical Research Centre, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Aaron Davies
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, UK
| | - Rebecca H Clough
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, UK
| | - Lucy C Beishon
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, UK
| | - Thompson G Robinson
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, UK
- NIHR Leicester Biomedical Research Centre, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Jatinder S Minhas
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, UK
- NIHR Leicester Biomedical Research Centre, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| |
Collapse
|
20
|
van der Knaap N, Franx BAA, Majoie CBLM, van der Lugt A, Dijkhuizen RM. Implications of Post-recanalization Perfusion Deficit After Acute Ischemic Stroke: a Scoping Review of Clinical and Preclinical Imaging Studies. Transl Stroke Res 2024; 15:179-194. [PMID: 36653525 PMCID: PMC10796479 DOI: 10.1007/s12975-022-01120-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/20/2023]
Abstract
The goal of reperfusion therapy for acute ischemic stroke (AIS) is to restore cerebral blood flow through recanalization of the occluded vessel. Unfortunately, successful recanalization does not always result in favorable clinical outcome. Post-recanalization perfusion deficits (PRPDs), constituted by cerebral hypo- or hyperperfusion, may contribute to lagging patient recovery rates, but its clinical significance remains unclear. This scoping review provides an overview of clinical and preclinical findings on post-ischemic reperfusion, aiming to elucidate the pattern and consequences of PRPD from a translational perspective. The MEDLINE database was searched for quantitative clinical and preclinical studies of AIS reporting PRPD based on cerebral circulation parameters acquired by translational tomographic imaging methods. PRPD and stroke outcome were mapped on a charting table, creating an overview of PRPD after AIS. Twenty-two clinical and twenty-two preclinical studies were included. Post-recanalization hypoperfusion is rarely reported in clinical studies (4/22) but unequivocally associated with detrimental outcome. Post-recanalization hyperperfusion is more commonly reported (18/22 clinical studies) and may be associated with positive or negative outcome. PRPD has been replicated in animal studies, offering mechanistic insights into causes and consequences of PRPD and allowing delineation of possible courses of PRPD. Complex relationships exist between PRPD and stroke outcome. Diversity in methods and lack of standardized definitions in reperfusion studies complicate the characterization of reperfusion patterns. Recommendations are made to advance the understanding of PRPD mechanisms and to further disentangle the relation between PRPD and disease outcome.
Collapse
Affiliation(s)
- Noa van der Knaap
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Bart A A Franx
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands.
| | - Charles B L M Majoie
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Location University of Amsterdam, Amsterdam, The Netherlands
| | - Aad van der Lugt
- Department of Radiology & Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rick M Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
21
|
Coccarelli A, Pant S, Polydoros I, Harraz OF. A new model for evaluating pressure-induced vascular tone in small cerebral arteries. Biomech Model Mechanobiol 2024; 23:271-286. [PMID: 37925376 PMCID: PMC10901969 DOI: 10.1007/s10237-023-01774-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/17/2023] [Indexed: 11/06/2023]
Abstract
The capacity of small cerebral arteries (SCAs) to adapt to pressure fluctuations has a fundamental physiological role and appears to be relevant in different pathological conditions. Here, we present a new computational model for quantifying the link, and its contributors, between luminal pressure and vascular tone generation in SCAs. This is assembled by combining a chemical sub-model, representing pressure-induced smooth muscle cell (SMC) signalling, with a mechanical sub-model for the tone generation and its transduction at tissue level. The devised model can accurately reproduce the impact of luminal pressure on different cytoplasmic components involved in myogenic signalling, both in the control case and when combined with some specific pharmacological interventions. Furthermore, the model is also able to capture and predict experimentally recorded pressure-outer diameter relationships obtained for vessels under control conditions, both in a Ca2 + -free bath and under drug inhibition. The modularity of the proposed framework allows the integration of new components for the study of a broad range of processes involved in the vascular function.
Collapse
Affiliation(s)
- Alberto Coccarelli
- Zienkiewicz Institute for Modelling, Data and AI, Faculty of Science and Engineering, Swansea University, Swansea, UK.
| | - Sanjay Pant
- Zienkiewicz Institute for Modelling, Data and AI, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | - Ioannis Polydoros
- Zienkiewicz Institute for Modelling, Data and AI, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | - Osama F Harraz
- Department of Pharmacology, Larner College of Medicine, and Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, USA
| |
Collapse
|
22
|
Liu T, Wang Y, Li Y, Zhang K, Fan H, Ren J, Li J, Li Y, Li X, Wu X, Wang J, Xue L, Gao X, Yan Y, Li G, Liu Q, Niu W, Du W, Liu Y, Niu X. Minor stroke patients with mild-moderate diastolic blood pressure derive greater benefit from dual antiplatelet therapy. Hypertens Res 2024; 47:291-301. [PMID: 37670003 PMCID: PMC10838769 DOI: 10.1038/s41440-023-01422-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 09/07/2023]
Abstract
Not only systolic blood pressure (SBP) but also diastolic blood pressure (DBP) increases the risk of recurrence in the short- or long-term outcomes of stroke. The interaction between DBP and antiplatelet treatment for China stroke patients is unclear. This multicenter, observational cohort study included 2976 minor ischemic stroke patients. Patients accepted single antiplatelet therapy (SAPT) or dual antiplatelet therapy (DAPT) after arrival, and baseline DBP levels were trichotomized into <90 mmHg, 90-110 mmHg and ≥110 mmHg. We explore the interaction effect between antiplatelet therapy and DBP on 90-days composite vascular events. A total of 257 (8.6%) patients reached a composite vascular event during follow-up. The interaction term between DBP levels and treatment group (SAPT vs. DAPT) was significant (P for interaction = 0.013). DAPT's adjusted HR for composite events in patients with DBP between 90 and 110 mmHg was 0.56 (95% confidence interval, 0.36 0.88; P = 0.011) and DBP ≥ 110 mmHg was 4.35 (95% confidence interval, 1.11-19.94; P = 0.046). The association between treatment and DBP was still consistent after propensity score matching of the baseline characteristics. The interaction term of DBP × treatment was not significant for the safety outcomes of severe bleeding (P for interaction = 0.301) or hemorrhage stroke (P for interaction = 0.831). In this cohort study based on the real world, patients with a DBP between 90 and 110 mmHg received a greater benefit from 90 days of DAPT than those with lower and higher baseline DBP. REGISTRATION: ( https://www.chictr.org.cn ; Unique identifier: ChiCTR1900025214).
Collapse
Affiliation(s)
- Tingting Liu
- Department of Neurology, First Hospital of Shanxi Medical University, No. 85, Jiefang Nan Street, Yingze District, Taiyuan, Shanxi, China
| | - Yongle Wang
- Department of Neurology, First Hospital of Shanxi Medical University, No. 85, Jiefang Nan Street, Yingze District, Taiyuan, Shanxi, China
- Shanxi Medical University, No. 58, Xinjian Nan Street, Yingze District, Taiyuan, China
| | - Yanan Li
- Department of Neurology, First Hospital of Shanxi Medical University, No. 85, Jiefang Nan Street, Yingze District, Taiyuan, Shanxi, China
- Shanxi Medical University, No. 58, Xinjian Nan Street, Yingze District, Taiyuan, China
| | - Kaili Zhang
- Department of Neurology of Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Haimei Fan
- Department of Neurology, Sixth Hospital of Shanxi Medical University (General Hospital of Tisco), Taiyuan, Shanxi, China
| | - Jing Ren
- Shanxi Province Cardiovascular Disease Hospital, Taiyuan, Shanxi, China
| | - Juan Li
- Chanzhou Central Hospital, Chanzhou, Hebei, China
| | - Yali Li
- Department of Neurology, First Hospital of Shanxi Medical University, No. 85, Jiefang Nan Street, Yingze District, Taiyuan, Shanxi, China
- Shanxi Medical University, No. 58, Xinjian Nan Street, Yingze District, Taiyuan, China
| | - Xinyi Li
- Department of Neurology of Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Xuemei Wu
- Department of Neurology, Sixth Hospital of Shanxi Medical University (General Hospital of Tisco), Taiyuan, Shanxi, China
| | - Junhui Wang
- Yanhu Branch First Hospital of Shanxi Medical University, Yuncheng, Shanxi, China
| | - Lixi Xue
- Yanhu Branch First Hospital of Shanxi Medical University, Yuncheng, Shanxi, China
| | - Xiaolei Gao
- Taiyuan Wanbailin District Medical Group Central Hospital, Taiyuan, Shanxi, China
| | - Yuping Yan
- Taiyuan Wanbailin District Medical Group Central Hospital, Taiyuan, Shanxi, China
| | - Gaimei Li
- China Railway 17th Bureau Group Company Central Hospital, Taiyuan, Shanxi, China
| | - Qingping Liu
- China Railway 17th Bureau Group Company Central Hospital, Taiyuan, Shanxi, China
| | - Wenhua Niu
- First People's Hospital of JIN ZHONG, Jinzhong, Shanxi, China
| | - Wenxian Du
- First People's Hospital of JIN ZHONG, Jinzhong, Shanxi, China
| | - Yuting Liu
- Shanxi Province Cardiovascular Disease Hospital, Taiyuan, Shanxi, China
| | - Xiaoyuan Niu
- Department of Neurology, First Hospital of Shanxi Medical University, No. 85, Jiefang Nan Street, Yingze District, Taiyuan, Shanxi, China.
| |
Collapse
|
23
|
Zhao M, Liu A, Wu J, Mo L, Lu F, Wan G. Il1r2 and Tnfrsf12a in transcranial magnetic stimulation effect of ischemic stroke via bioinformatics analysis. Medicine (Baltimore) 2024; 103:e36109. [PMID: 38277520 PMCID: PMC10817048 DOI: 10.1097/md.0000000000036109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/23/2023] [Indexed: 01/28/2024] Open
Abstract
Ischemic stroke refers to ischemic necrosis or softening of localized brain tissue. Transcranial magnetic stimulation (TMS) is a painless, noninvasive and green treatment method, which acts on the central nervous system through a pulsed magnetic field to assist in the treatment of central nervous system injury diseases. However, the role of Il1r2 and Tnfrsf12a in this is unknown. The ischemic stroke datasets GSE81302 and TMS datasets GSE230148 were downloaded from Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened and weighted gene co-expression network analysis (WGCNA) was performed. The construction and analysis of protein-protein interaction (PPI) network and functional enrichment analysis were performed. Draw heat map gene expression. Through the Comparative Toxicogenomics Database (CTD) to find the most relevant and core gene diseases. TargetScan was used to screen miRNAs regulating DEGs. A total of 39 DEGs were identified. According to gene ontology (GO) analysis results, in biological process (BP) analysis, they were mainly enriched in the positive regulation of apoptosis process, inflammatory response, positive regulation of p38MAPK cascade, and regulation of cell cycle. In cellular component (CC) analysis, they were mainly enriched in the cell surface, cytoplasm, and extracellular space. In Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, they were mainly enriched in nf-κB signaling pathway, fluid shear stress and atherosclerosis, P53 signaling pathway, TNF signaling pathway, and apoptosis. Among the enrichment items of metascape, negative regulation of T cell activation, hematopoietic cell lineage, positive regulation of apoptotic process, fluid shear stress and atherosclerosis were observed in GO enrichment items. Five core genes (Socs3, Irf1, Il1r2, Ccr1, and Tnfrsf12a) were obtained, which were highly expressed in ischemic stroke samples. Il1r2 and Tnfrsf12a were lowly expressed in TMS samples. CTD analysis found that the core gene (Socs3, Irf1 and Il1r2, Ccr1, Tnfrsf12a) and ischemic stroke, atherosclerosis, hypertension, hyperlipidemia, thrombosis, stroke, myocardial ischemia, myocardial infarction, and inflammation. Il1r2 and Tnfrsf12a are highly expressed in ischemic stroke, but lowly expressed in TMS samples.
Collapse
Affiliation(s)
- Man Zhao
- Neurological Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing
| | - Aixian Liu
- Neurological Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing
| | - Jiaojiao Wu
- Neurological Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing
| | - Linhong Mo
- Neurological Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing
| | - Fang Lu
- Neurological Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing
| | - Guiling Wan
- Neurological Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing
| |
Collapse
|
24
|
Shi L, Jiang C, Xu H, Wu J, Lu J, He Y, Yin X, Chen Z, Cao D, Shen X, Hou X, Han J. Hyperoside ameliorates cerebral ischaemic-reperfusion injury by opening the TRPV4 channel in vivo through the IP 3-PKC signalling pathway. PHARMACEUTICAL BIOLOGY 2023; 61:1000-1012. [PMID: 37410551 DOI: 10.1080/13880209.2023.2228379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/15/2023] [Accepted: 06/18/2023] [Indexed: 07/08/2023]
Abstract
CONTEXT Hyperoside (Hyp), one of the active flavones from Rhododendron (Ericaceae), has beneficial effects against cerebrovascular disease. However, the effect of Hyp on vasodilatation has not been elucidated. OBJECTIVE To explore the effect of Hyp on vasodilatation in the cerebral basilar artery (CBA) of Sprague-Dawley (SD) rats suffering with ischaemic-reperfusion (IR) injury. MATERIALS AND METHODS Sprague-Dawley rats were randomly divided into sham, model, Hyp, Hyp + channel blocker and channel blocker groups. Hyp (50 mg/kg, IC50 = 18.3 μg/mL) and channel blocker were administered via tail vein injection 30 min before ischaemic, followed by 20 min of ischaemic and 2 h of reperfusion. The vasodilation, hyperpolarization, ELISA assay, haematoxylin-eosin (HE), Nissl staining and channel-associated proteins and qPCR were analysed. Rat CBA smooth muscle cells were isolated to detect the Ca2+ concentration and endothelial cells were isolated to detect apoptosis rate. RESULTS Hyp treatment significantly ameliorated the brain damage induced by IR and evoked endothelium-dependent vasodilation rate (47.93 ± 3.09% vs. 2.99 ± 1.53%) and hyperpolarization (-8.15 ± 1.87 mV vs. -0.55 ± 0.42 mV) by increasing the expression of IP3R, PKC, transient receptor potential vanilloid channel 4 (TRPV4), IKCa and SKCa in the CBA. Moreover, Hyp administration significantly reduced the concentration of Ca2+ (49.08 ± 7.74% vs. 83.52 ± 6.93%) and apoptosis rate (11.27 ± 1.89% vs. 23.44 ± 2.19%) in CBA. Furthermore, these beneficial effects of Hyp were blocked by channel blocker. DISCUSSION AND CONCLUSIONS Although Hyp showed protective effect in ischaemic stroke, more clinical trial certification is needed due to the difference between animals and humans.
Collapse
Affiliation(s)
- Lei Shi
- Pharmacology 3rd Grade Laboratory of the State Administration of Traditional Chinese Medicine, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wannan Medical College, Wuhu, China
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Chenchen Jiang
- Pharmacology 3rd Grade Laboratory of the State Administration of Traditional Chinese Medicine, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wannan Medical College, Wuhu, China
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Hanghang Xu
- Pharmacology 3rd Grade Laboratory of the State Administration of Traditional Chinese Medicine, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, China
| | - Jiangping Wu
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, China
| | - Jiajun Lu
- Pharmacology 3rd Grade Laboratory of the State Administration of Traditional Chinese Medicine, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wannan Medical College, Wuhu, China
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Yuxiang He
- Pharmacology 3rd Grade Laboratory of the State Administration of Traditional Chinese Medicine, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wannan Medical College, Wuhu, China
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Xiuyun Yin
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, China
- Drug Research and Development Center, Wannan Medical College, Wuhu, China
| | - Zhuo Chen
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, China
- Drug Research and Development Center, Wannan Medical College, Wuhu, China
| | - Di Cao
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wannan Medical College, Wuhu, China
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
- Drug Research and Development Center, Wannan Medical College, Wuhu, China
| | - Xuebin Shen
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, China
- Drug Research and Development Center, Wannan Medical College, Wuhu, China
| | - Xuefeng Hou
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wannan Medical College, Wuhu, China
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
- Drug Research and Development Center, Wannan Medical College, Wuhu, China
| | - Jun Han
- Pharmacology 3rd Grade Laboratory of the State Administration of Traditional Chinese Medicine, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wannan Medical College, Wuhu, China
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, China
- Drug Research and Development Center, Wannan Medical College, Wuhu, China
| |
Collapse
|
25
|
Chiang HL, Wu KC, Chen YY, Ho CJ, Wang HL, Fu YH, Chen WY, Lin CJ. The Critical Role of Equilibrative Nucleoside Transporter-2 in Modulating Cerebral Damage and Vascular Dysfunction in Mice with Brain Ischemia-Reperfusion. Pharm Res 2023; 40:2541-2554. [PMID: 37498500 DOI: 10.1007/s11095-023-03565-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Cerebral vascular protection is critical for stroke treatment. Adenosine modulates vascular flow and exhibits neuroprotective effects, in which brain extracellular concentration of adenosine is dramatically increased during ischemic events and ischemia-reperfusion. Since the equilibrative nucleoside transporter-2 (Ent2) is important in regulating brain adenosine homeostasis, the present study aimed to investigate the role of Ent2 in mice with cerebral ischemia-reperfusion. METHODS Cerebral ischemia-reperfusion injury was examined in mice with transient middle cerebral artery occlusion (tMCAO) for 90 minutes, followed by 24-hour reperfusion. Infarct volume, brain edema, neuroinflammation, microvascular structure, regional cerebral blood flow (rCBF), cerebral metabolic rate of oxygen (CMRO2), and the production of reactive oxygen species (ROS) were examined following the reperfusion. RESULTS Ent2 deletion reduced the infarct volume, brain edema, and neuroinflammation in mice with cerebral ischemia-reperfusion. tMCAO-induced disruption of brain microvessels was ameliorated in Ent2-/- mice, with a reduced expression of matrix metalloproteinases-9 and aquaporin-4 proteins. Following the reperfusion, the rCBF of the wild-type (WT) mice was quickly restored to the baseline, whereas, in Ent2-/- mice, rCBF was slowly recovered initially, but was then higher than that in the WT mice at the later phase of reperfusion. The improved CMRO2 and reduced ROS level support the beneficial effects caused by the changes in the rCBF of Ent2-/- mice. Further studies showed that the protective effects of Ent2 deletion in mice with tMCAO involve adenosine receptor A2AR. CONCLUSIONS Ent2 plays a critical role in modulating cerebral collateral circulation and ameliorating pathological events of brain ischemia and reperfusion injury.
Collapse
Affiliation(s)
- Hui-Ling Chiang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuo-Chen Wu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang-Ming-Chiao-Tung University, Taipei, Taiwan
| | - Chin-Jui Ho
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Han-Lin Wang
- Department of Biomedical Engineering, National Yang-Ming-Chiao-Tung University, Taipei, Taiwan
| | - Yu-Hua Fu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Yu Chen
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Jung Lin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
26
|
Guan Y, Gu Y, Shao H, Ma W, Li G, Guo M, Shao Q, Li Y, Liu Y, Wang C, Tian Z, Liu J, Ji X. Intermittent hypoxia protects against hypoxic-ischemic brain damage by inducing functional angiogenesis. J Cereb Blood Flow Metab 2023; 43:1656-1671. [PMID: 37395346 PMCID: PMC10581229 DOI: 10.1177/0271678x231185507] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/04/2023]
Abstract
Ischemic stroke (IS) induces neurological damage due to cerebrovascular occlusion. Restoring blood perfusion to the ischemic brain area in a timely fashion is the most effective treatment strategy. Hypoxia is an effective way of restoring blood perfusion by improving cerebrovascular microcirculation, while the effect varies greatly depending on hypoxic mode. This study aimed to screen for the optimal hypoxic mode to improve cerebrovascular microcirculation and prevent IS. Here, we found that compared with continuous hypoxia (CH), intermittent hypoxia (IH) significantly improved cerebral blood flow and oxygen saturation in mice without causing neurological impairment. By analyzing cerebrovascular microcirculation from mice, we found that the IH mode (13%, 5*10) with 13% O2, 5 min interval, and 10 cycles per day significantly improved the cerebrovascular microcirculation by promoting angiogenesis without affecting the integrity of the blood-brain barrier. In addition, IH (13%, 5*10) treatment of distal middle cerebral artery occlusion (dMCAO) mice significantly alleviated neurological dysfunction and reduced cerebral infarct volume by improving cerebrovascular microcirculation. CH had none of these positive effects. In summary, our study screened for an appropriate intermittent hypoxic mode that could improve cerebrovascular microcirculation, laying a theoretical foundation for the prevention and treatment of IS in clinical practice.
Collapse
Affiliation(s)
- Yuying Guan
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yakun Gu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Haitao Shao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Wei Ma
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Gaifen Li
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Mengyuan Guo
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Qianqian Shao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Yuning Li
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Yingxia Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Chaoyu Wang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Zhengming Tian
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Jia Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
27
|
Guo ZN, Yue BH, Fan L, Liu J, Zhu Y, Zhao Y, Zhong J, Lou Z, Liu XL, Abuduxukuer R, Zhang P, Qu Y, Shen Z, Shi B, Zhang KJ, Liu J, Chang J, Jin H, Sun X, Yang Y. Effectiveness of butylphthalide on cerebral autoregulation in ischemic stroke patients with large artery atherosclerosis (EBCAS study): A randomized, controlled, multicenter trial. J Cereb Blood Flow Metab 2023; 43:1702-1712. [PMID: 37021629 PMCID: PMC10581234 DOI: 10.1177/0271678x231168507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 04/07/2023]
Abstract
Finding appropriate drugs to improve cerebral autoregulation (CA) in patients with acute ischemic stroke (AIS) is necessary to improve prognosis. We aimed to investigate the effect of butylphthalide on CA in patients with AIS. In this randomized controlled trial, 99 patients were 2:1 randomized to butylphthalide or placebo group. The butylphthalide group received intravenous infusion with a preconfigured butylphthalide-sodium chloride solution for 14 days and an oral butylphthalide capsule for additional 76 days. The placebo group synchronously received an intravenous infusion of 100 mL 0.9% saline and an oral butylphthalide simulation capsule. The transfer function parameter, phase difference (PD), and gain were used to quantify CA. The primary outcomes were CA levels on the affected side on day 14 and day 90. Eighty patients completed the follow-up (52 in the butylphthalide group and 28 in the placebo group). The PD of the affected side on 14 days or discharge and on 90 days was higher in the butylphthalide group than in the placebo group. The differences in safety outcomes were not significant. Therefore, butylphthalide treatment for 90 days can significantly improve CA in patients with AIS.Trial registration: ClinicalTrial.gov: NCT03413202.
Collapse
Affiliation(s)
- Zhen-Ni Guo
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Neuroscience Research Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Bing-Hong Yue
- Department of Neurology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Lei Fan
- Department of Neurology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Jie Liu
- Department of Neurology, The People's Hospital of Lixin County, Bozhou, China
| | - Yuanyuan Zhu
- Department of Neurology, The People's Hospital of Lixin County, Bozhou, China
| | - Yuanqi Zhao
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingxin Zhong
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhan Lou
- Department of Neurology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Xing-Liang Liu
- Department of Neurology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Reziya Abuduxukuer
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Peng Zhang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yang Qu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Ziduo Shen
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Baoyang Shi
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Ke-Jia Zhang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Jia Liu
- Laboratory for Engineering and Scientific Computing, Institute of Advanced Computing and Digital Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Junlei Chang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hang Jin
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Xin Sun
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yi Yang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
28
|
Xu Z, Han Z, Wang J, Jin R, Li Z, Wu Z, Zhao Z, Lv S, Zhao X, Liu Y, Guo X, Tao L. Association Between Long-Term Exposure to Fine Particulate Matter Constituents and Progression of Cerebral Blood Flow Velocity in Beijing: Modifying Effect of Greenness. GEOHEALTH 2023; 7:e2023GH000796. [PMID: 37449300 PMCID: PMC10337285 DOI: 10.1029/2023gh000796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/23/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023]
Abstract
Few studies have explored the effects of fine particulate matter (PM2.5) and its constituents on the progression of cerebral blood flow velocity (BFV) and the potential modifying role of greenness. In this study, we investigated the association of PM2.5 and its constituents, including sulfate (SO4 2-), nitrate (NO3 -), ammonium (NH4 +), organic matter (OM), and black carbon (BC), with the progression of BFV in the middle cerebral artery. Participants from the Beijing Health Management Cohort who underwent at least two transcranial Doppler sonography examinations during 2015-2020 were recruited. BFV change and BFV change rate were used to define the progression of cerebral BFV. Linear mixed effects models were employed to analyze the data, and the weighted quantile sum regression assessed the contribution of PM2.5 constituents. Additionally, greenness was examined as a modifier. Among the examined constituents, OM exhibited the strongest association with BFV progression. An interquartile range increase in PM2.5 and OM exposure concentrations was associated with a decrease of -16.519 cm/s (95% CI: -17.837, -15.201) and -15.403 cm/s (95% CI: -16.681, -14.126) in BFV change, and -10.369 cm/s/year (95% CI: -11.387, -9.352) and -9.615 cm/s/year (95% CI: -10.599, -8.632) in BFV change rate, respectively. Furthermore, stronger associations between PM2.5 and BFV progression were observed in individuals working in areas with lower greenness, those aged under 45 years, and females. In conclusion, reducing PM2.5 levels in the air, particularly the OM constituent, and enhancing greenness could potentially contribute to the protection of cerebrovascular health.
Collapse
Affiliation(s)
- Zongkai Xu
- Beijing Municipal Key Laboratory of Clinical EpidemiologyDepartment of Epidemiology and Health StatisticsSchool of Public HealthCapital Medical UniversityBeijingChina
| | - Ze Han
- Beijing Municipal Key Laboratory of Clinical EpidemiologyDepartment of Epidemiology and Health StatisticsSchool of Public HealthCapital Medical UniversityBeijingChina
| | - Jinqi Wang
- Beijing Municipal Key Laboratory of Clinical EpidemiologyDepartment of Epidemiology and Health StatisticsSchool of Public HealthCapital Medical UniversityBeijingChina
| | - Rui Jin
- Beijing Municipal Key Laboratory of Clinical EpidemiologyDepartment of Epidemiology and Health StatisticsSchool of Public HealthCapital Medical UniversityBeijingChina
| | - Zhiwei Li
- Beijing Municipal Key Laboratory of Clinical EpidemiologyDepartment of Epidemiology and Health StatisticsSchool of Public HealthCapital Medical UniversityBeijingChina
| | - Zhiyuan Wu
- Beijing Municipal Key Laboratory of Clinical EpidemiologyDepartment of Epidemiology and Health StatisticsSchool of Public HealthCapital Medical UniversityBeijingChina
- Center of Precision HealthSchool of Medical and Health SciencesEdith Cowan UniversityJoondalupWAAustralia
| | - Zemeng Zhao
- Beijing Municipal Key Laboratory of Clinical EpidemiologyDepartment of Epidemiology and Health StatisticsSchool of Public HealthCapital Medical UniversityBeijingChina
| | - Shiyun Lv
- Beijing Municipal Key Laboratory of Clinical EpidemiologyDepartment of Epidemiology and Health StatisticsSchool of Public HealthCapital Medical UniversityBeijingChina
| | - Xiaoyu Zhao
- Beijing Municipal Key Laboratory of Clinical EpidemiologyDepartment of Epidemiology and Health StatisticsSchool of Public HealthCapital Medical UniversityBeijingChina
| | - Yueruijing Liu
- Beijing Municipal Key Laboratory of Clinical EpidemiologyDepartment of Epidemiology and Health StatisticsSchool of Public HealthCapital Medical UniversityBeijingChina
| | - Xiuhua Guo
- Beijing Municipal Key Laboratory of Clinical EpidemiologyDepartment of Epidemiology and Health StatisticsSchool of Public HealthCapital Medical UniversityBeijingChina
| | - Lixin Tao
- Beijing Municipal Key Laboratory of Clinical EpidemiologyDepartment of Epidemiology and Health StatisticsSchool of Public HealthCapital Medical UniversityBeijingChina
| |
Collapse
|
29
|
Wei Z, Li Y, Bibic A, Duan W, Xu J, Lu H. Toward accurate cerebral blood flow estimation in mice after accounting for anesthesia. Front Physiol 2023; 14:1169622. [PMID: 37123257 PMCID: PMC10130671 DOI: 10.3389/fphys.2023.1169622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
Purpose: To improve the accuracy of cerebral blood flow (CBF) measurement in mice by accounting for the anesthesia effects. Methods: The dependence of CBF on anesthesia dose and time was investigated by simultaneously measuring respiration rate (RR) and heart rate (HR) under four different anesthetic regimens. Quantitative CBF was measured by a phase-contrast (PC) MRI technique. RR was evaluated with a mouse monitoring system (MouseOX) while HR was determined using an ultrashort-TE MRI sequence. CBF, RR, and HR were recorded dynamically with a temporal resolution of 1 min in a total of 19 mice. Linear regression models were used to investigate the relationships among CBF, anesthesia dose, RR, and HR. Results: CBF, RR, and HR all showed a significant dependence on anesthesia dose (p < 0.0001). However, the dose in itself was insufficient to account for the variations in physiological parameters, in that they showed a time-dependent change even for a constant dose. RR and HR together can explain 52.6% of the variations in CBF measurements, which is greater than the amount of variance explained by anesthesia dose (32.4%). Based on the multi-parametric regression results, a model was proposed to correct the anesthesia effects in mouse CBF measurements, specificallyC B F c o r r e c t e d = C B F + 0.58 R R - 0.41 H R - 32.66 D o s e . We also reported awake-state CBF in mice to be 142.0 ± 8.8 mL/100 g/min, which is consistent with the model-predicted value. Conclusion: The accuracy of CBF measurement in mice can be improved by using a correction model that accounts for respiration rate, heart rate, and anesthesia dose.
Collapse
Affiliation(s)
- Zhiliang Wei
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, United States
| | - Yuguo Li
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, United States
| | - Adnan Bibic
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, United States
| | - Wenzhen Duan
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jiadi Xu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, United States
| | - Hanzhang Lu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, United States
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
30
|
Armario P, Garcia-Sánchez S, Cardona P. Management of high blood pressure in acute stroke. What is the right answer? HIPERTENSION Y RIESGO VASCULAR 2022; 39:145-148. [DOI: 10.1016/j.hipert.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 10/15/2022]
|
31
|
Moncion K, Allison EY, Al-Khazraji BK, MacDonald MJ, Roig M, Tang A. What are the effects of acute exercise and exercise training on cerebrovascular hemodynamics following stroke? A systematic review and meta-analysis. J Appl Physiol (1985) 2022; 132:1379-1393. [PMID: 35482325 DOI: 10.1152/japplphysiol.00872.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Limited data exist regarding the effects of acute exercise and exercise training on cerebrovascular hemodynamic variables post-stroke. PURPOSE This systematic review and meta-analysis 1) examined the effects of acute exercise and exercise training on cerebrovascular hemodynamic variables reported in the stroke exercise literature; and 2) synthesized the peak middle cerebral artery blood velocity (MCAv) achieved during an acute bout of moderate-intensity exercise in individuals post-stroke. METHODS Six databases (MEDLINE, EMBASE, Web of Science, CINAHL, PsycINFO, AMED) were searched from inception to December 1st 2021, for studies that examined the effect of acute exercise or exercise training on cerebrovascular hemodynamics in adults post-stroke. Two reviewers conducted title and abstract screening, full-text evaluation, data extraction, and quality appraisal. Random effects models were used in meta-analysis. RESULTS Nine studies, including 4 acute exercise (n=61) and 5 exercise training studies (n=193), were included. Meta-analyses were not statistically feasible for several cerebrovascular hemodynamic variables. Descriptive analysis reveals that exercise training may increase cerebral blood flow and cerebrovascular reactivity to carbon dioxide among individuals post-stroke. Meta-analysis of three acute exercise studies revealed no significant changes in MCAv during acute moderate intensity exercise (n=48 participants, mean difference = 5.2 cm/s, 95% CI [-0.6, 11.0], P=0.08) compared to resting MCAv values. CONCLUSION This review suggests that individuals post-stroke may have attenuated cerebrovascular hemodynamics as measured by the MCAv during acute moderate-intensity exercise. Higher quality research utilizing agreed upon hemodynamic variables are needed to synthesize the effects of exercise training on cerebrovascular hemodynamics post-stroke.
Collapse
Affiliation(s)
- Kevin Moncion
- School of Rehabilitation Sciences, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Elric Y Allison
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Baraa K Al-Khazraji
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Maureen J MacDonald
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Marc Roig
- School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, Québec, Canada
| | - Ada Tang
- School of Rehabilitation Sciences, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
32
|
Fan JL, Nogueira RC, Brassard P, Rickards CA, Page M, Nasr N, Tzeng YC. Integrative physiological assessment of cerebral hemodynamics and metabolism in acute ischemic stroke. J Cereb Blood Flow Metab 2022; 42:454-470. [PMID: 34304623 PMCID: PMC8985442 DOI: 10.1177/0271678x211033732] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Restoring perfusion to ischemic tissue is the primary goal of acute ischemic stroke care, yet only a small portion of patients receive reperfusion treatment. Since blood pressure (BP) is an important determinant of cerebral perfusion, effective BP management could facilitate reperfusion. But how BP should be managed in very early phase of ischemic stroke remains a contentious issue, due to the lack of clear evidence. Given the complex relationship between BP and cerebral blood flow (CBF)-termed cerebral autoregulation (CA)-bedside monitoring of cerebral perfusion and oxygenation could help guide BP management, thereby improve stroke patient outcome. The aim of INFOMATAS is to 'identify novel therapeutic targets for treatment and management in acute ischemic stroke'. In this review, we identify novel physiological parameters which could be used to guide BP management in acute stroke, and explore methodologies for monitoring them at the bedside. We outline the challenges in translating these potential prognostic markers into clinical use.
Collapse
Affiliation(s)
- Jui-Lin Fan
- Manaaki Mānawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand
| | - Ricardo C Nogueira
- Neurology Department, School of Medicine, Hospital das Clinicas, University of São Paulo, São Paulo, Brazil.,Neurology Department, Hospital Nove de Julho, São Paulo, Brazil
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Caroline A Rickards
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Matthew Page
- Department of Radiology, Wellington Regional Hospital, Wellington, New Zealand
| | - Nathalie Nasr
- Department of Neurology, Toulouse University Hospital, NSERM UMR 1297, Toulouse, France
| | - Yu-Chieh Tzeng
- Wellington Medical Technology Group, Department of Surgery & Anaesthesia, University of Otago, Wellington, New Zealand.,Centre for Translational Physiology, Department of Surgery & Anaesthesia, University of Otago, Wellington, New Zealand
| |
Collapse
|
33
|
Llwyd O, Fan JL, Müller M. Effect of drug interventions on cerebral hemodynamics in ischemic stroke patients. J Cereb Blood Flow Metab 2022; 42:471-485. [PMID: 34738511 PMCID: PMC8985436 DOI: 10.1177/0271678x211058261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The ischemic penumbra is sensitive to alterations in cerebral perfusion. A myriad of drugs are used in acute ischemic stroke (AIS) management, yet their impact on cerebral hemodynamics is poorly understood. As part of the Cerebral Autoregulation Network led INFOMATAS project (Identifying New Targets for Management and Therapy in Acute Stroke), this paper reviews some of the most common drugs a patient with AIS will come across and their potential influence on cerebral hemodynamics with a particular focus being on cerebral autoregulation (CA). We first discuss how compounds that promote clot lysis and prevent clot formation could potentially impact cerebral hemodynamics, before focusing on how the different classes of antihypertensive drugs can influence cerebral hemodynamics. We discuss the different properties of each drug and their potential impact on cerebral perfusion and CA. With emerging interest in CA status of AIS patients, either during or soon after treatment when timely reperfusion and salvageable tissue is at its most critical, the properties of these pharmacological agents may be relevant for modelling cerebral perfusion accuracy and for setting individualised treatment strategies.
Collapse
Affiliation(s)
- Osian Llwyd
- Department of Cardiovascular Sciences, Cerebral Haemodynamics in Ageing and Stroke Medicine Research Group, University of Leicester, Leicester, UK
| | - Jui-Lin Fan
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand
| | - Martin Müller
- Neurozentrum, Klinik für Neurologie und Neurorehabilitation, Luzerner Kantonsspital, Spitalstrasse, Luzern, Switzerland
| |
Collapse
|
34
|
Claassen JA. How can integrative physiology advance stroke research and stroke care? J Cereb Blood Flow Metab 2022; 42:383-386. [PMID: 34727759 PMCID: PMC8985440 DOI: 10.1177/0271678x211057403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Jurgen Ahr Claassen
- Department of Geriatrics, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
35
|
Fong D, Gradon K, Barrett CJ, Guild SJ, Tzeng YC, Paton JFR, McBryde FD. A method to evaluate dynamic cerebral pressure-flow relationships in the conscious rat. J Appl Physiol (1985) 2021; 131:1361-1369. [PMID: 34498945 DOI: 10.1152/japplphysiol.00289.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The classic dogma of cerebral autoregulation is that cerebral blood flow is steadily maintained across a wide range of perfusion pressures. This has been challenged by recent studies suggesting little to no "autoregulatory plateau" in the relationship between cerebral blood flow and blood pressure (BP). Therefore, the mechanisms underlying the cerebral pressure-flow relationship still require further understanding. Here, we present a novel approach to examine dynamic cerebral autoregulation in conscious Wistar rats (n = 16) instrumented to measure BP and internal carotid blood flow (iCBF), as an indicator of cerebral blood flow. Transient reductions in BP were induced by occluding the vena cava via inflation of a chronically implanted intravascular silicone balloon. Falls in BP were paralleled by progressive decreases in iCBF, with no evidence of a steady-state plateau. No significant changes in internal carotid vascular resistance (iCVR) were observed. In contrast, intravenous infusions of the vasoactive drug sodium nitroprusside (SNP) produced a similar fall in BP but increases in iCBF and decreases in iCVR were observed. These data suggest a considerable confounding influence of vasodilatory drugs such as SNP on cerebrovascular tone in the rat, making them unsuitable to investigate cerebral autoregulation. We demonstrate that our technique of transient vena cava occlusion produced reliable and repeatable depressor responses, highlighting the potential for our approach to permit assessment of the dynamic cerebral pressure-flow relationship over time in conscious rats.NEW & NOTEWORTHY We present a novel technique to overcome the use of vasoactive agents when studying cerebrovascular dynamics in the conscious rat. Our method of vena cava occlusion to reduce BP was associated with decreased iCBF and no change in iCVR. In contrast, comparable BP falls with intravenous SNP increased iCBF and reduced iCVR. Thus, the dynamic cerebral pressure-flow relationship shows a narrower, less level autoregulatory plateau than conventionally thought. We confirm our method allows repeatable assessment of cerebrovascular dynamics in conscious rats.
Collapse
Affiliation(s)
- Debra Fong
- Manaaki Mānawa-The Centre for Heart Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Kelly Gradon
- Manaaki Mānawa-The Centre for Heart Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Carolyn J Barrett
- Manaaki Mānawa-The Centre for Heart Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Sarah-Jane Guild
- Manaaki Mānawa-The Centre for Heart Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Yu Chieh Tzeng
- Wellington Medical Technology Group, Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| | - Julian F R Paton
- Manaaki Mānawa-The Centre for Heart Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Fiona D McBryde
- Manaaki Mānawa-The Centre for Heart Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|