1
|
Acosta‐Martínez M, Carter V, Nessim A, Panchal R, John D, Dhawan J, Beach TG, Serrano GE, Sundermann EE, Biegon A. Sex- and region-dependent neuroinflammation in Alzheimer's disease. Alzheimers Dement 2025; 21:e14603. [PMID: 40247152 PMCID: PMC12005983 DOI: 10.1002/alz.14603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 04/19/2025]
Abstract
INTRODUCTION Despite known sex differences in immune function and Alzheimer's disease (AD), most studies of neuroinflammation in AD have not been analyzed by sex. METHODS We performed quantitative in vitro autoradiography of hippocampus, entorhinal cortex, and parietal cortex using [3H]-PK1195 and [18F]-T807. Proinflammatory microRNA (miRNA) expression in parietal cortex was measured by quantitative polymerase chain reaction (qPCR). RESULTS We found significant, region-dependent elevations of translocator protein (TSPO) density in AD relative to cognitively normal (CN) and mild cognitive impairment (MCI) in women but not men. Density of tau was increased in AD relative to CN and MCI in both sexes, but only women showed a significant positive correlation between tau and TSPO density. The expression of proinflammatory miRNAs was also significantly increased in AD versus CN or MCI women but not men. DISCUSSION Women are more susceptible than men to AD/tau-related neuroinflammation, supporting a sex-specific re-examination of the effects of neuroinflammation-targeting interventions in AD. HIGHLIGHTS We show that neuroinflammation in Alzheimer's disease (AD) is modulated by sex in a region-specific manner. Neuroinflammation was highest in the subiculum and significant only in women. Inflammatory microRNAs (miRNAs) increased in the parietal cortex of women, but not men, with AD. Deposition of tau was highest in the entorhinal cortex and significant in both sexes. Density of tau and TSPO was positively and significantly correlated only in AD women.
Collapse
Affiliation(s)
- Maricedes Acosta‐Martínez
- Department of Physiology & BiophysicsRenaissance School of Medicine at Stony Brook UniversityStony BrookNew YorkUSA
| | - Vanessa Carter
- Department of RadiologyRenaissance School of Medicine at Stony Brook UniversityStony BrookNew YorkUSA
| | - Aviram Nessim
- Department of Physiology & BiophysicsRenaissance School of Medicine at Stony Brook UniversityStony BrookNew YorkUSA
| | - Radha Panchal
- Department of Physiology & BiophysicsRenaissance School of Medicine at Stony Brook UniversityStony BrookNew YorkUSA
| | - Dora John
- Department of Physiology & BiophysicsRenaissance School of Medicine at Stony Brook UniversityStony BrookNew YorkUSA
| | - Jasbeer Dhawan
- Department of RadiologyRenaissance School of Medicine at Stony Brook UniversityStony BrookNew YorkUSA
| | - Thomas G. Beach
- Banner Sun Banner Health Research InstituteSun CityArizonaUSA
| | | | | | - Anat Biegon
- Department of RadiologyRenaissance School of Medicine at Stony Brook UniversityStony BrookNew YorkUSA
| |
Collapse
|
2
|
Fu W, Lin Q, Fu Z, Yang T, Shi D, Ma P, Su H, Wang Y, Liu G, Ding J, Shi H, Cheng D. Synthesis and evaluation of TSPO-targeting radioligand [ 18F]F-TFQC for PET neuroimaging in epileptic rats. Acta Pharm Sin B 2025; 15:722-736. [PMID: 40177559 PMCID: PMC11959965 DOI: 10.1016/j.apsb.2024.05.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/15/2024] [Accepted: 05/25/2024] [Indexed: 04/05/2025] Open
Abstract
The translocator protein (TSPO) positron emission tomography (PET) can noninvasively detect neuroinflammation associated with epileptogenesis and epilepsy. This study explored the role of the TSPO-targeting radioligand [18F]F-TFQC, an m-trifluoromethyl ER176 analog, in the PET neuroimaging of epileptic rats. Initially, [18F]F-TFQC was synthesized with a radiochemical yield of 8%-10% (EOS), a radiochemical purity of over 99%, and a specific activity of 38.21 ± 1.73 MBq/nmol (EOS). After determining that [18F]F-TFQC exhibited good biochemical properties, [18F]F-TFQC PET neuroimaging was performed in epileptic rats at multiple time points in various stages of disease progression. PET imaging showed specific [18F]F-TFQC uptake in the right hippocampus (KA-injected site, i.e., epileptogenic zone), which was most pronounced at 1 week (T/NT 1.63 ± 0.21) and 1 month (T/NT 1.66 ± 0.20). The PET results were further validated using autoradiography and pathological analysis. Thus, [18F]F-TFQC can reflect the TSPO levels and localize the epileptogenic zone, thereby offering the potential for monitoring neuroinflammation and guiding anti-inflammatory treatment in patients with epilepsy.
Collapse
Affiliation(s)
- Wenhui Fu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Qingyu Lin
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Zhequan Fu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Tingting Yang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Dai Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Pengcheng Ma
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Hongxing Su
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Yunze Wang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Guobing Liu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| |
Collapse
|
3
|
Wang H, Shi C, Jiang L, Liu X, Tang R, Tang M. Neuroimaging techniques, gene therapy, and gut microbiota: frontier advances and integrated applications in Alzheimer's Disease research. Front Aging Neurosci 2024; 16:1485657. [PMID: 39691161 PMCID: PMC11649678 DOI: 10.3389/fnagi.2024.1485657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/19/2024] [Indexed: 12/19/2024] Open
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disorder marked by cognitive decline, for which effective treatments remain elusive due to complex pathogenesis. Recent advances in neuroimaging, gene therapy, and gut microbiota research offer new insights and potential intervention strategies. Neuroimaging enables early detection and staging of AD through visualization of biomarkers, aiding diagnosis and tracking of disease progression. Gene therapy presents a promising approach for modifying AD-related genetic expressions, targeting amyloid and tau pathology, and potentially repairing neuronal damage. Furthermore, emerging evidence suggests that the gut microbiota influences AD pathology through the gut-brain axis, impacting inflammation, immune response, and amyloid metabolism. However, each of these technologies faces significant challenges, including concerns about safety, efficacy, and ethical considerations. This article reviews the applications, advantages, and limitations of neuroimaging, gene therapy, and gut microbiota research in AD, with a particular focus on their combined potential for early diagnosis, mechanistic insights, and therapeutic interventions. We propose an integrated approach that leverages these tools to provide a multi-dimensional framework for advancing AD diagnosis, treatment, and prevention.
Collapse
Affiliation(s)
- Haitao Wang
- School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China
- The School of Clinical Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Chen Shi
- Department of Gynaecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ling Jiang
- Department of Anorectal, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xiaozhu Liu
- Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Rui Tang
- School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Mingxi Tang
- School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China
- Department of Pathology, Yaan People’s Hospital (Yaan Hospital of West China Hospital of Sichuan University), Yaan, Sichuan, China
| |
Collapse
|
4
|
Rui X, Zhao X, Zhang N, Ding Y, Seki C, Ono M, Higuchi M, Zhang MR, Chu Y, Wei R, Xu M, Cheng C, Zuo C, Kimura Y, Ni R, Kai M, Tian M, Yuan C, Ji B. Development of a novel radioiodinated compound for amyloid and tau deposition imaging in Alzheimer's disease and tauopathy mouse models. Neuroimage 2024; 303:120947. [PMID: 39571640 DOI: 10.1016/j.neuroimage.2024.120947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
Non-invasive determination of amyloid-β peptide (Aβ) and tau deposition are important for early diagnosis and therapeutic intervention for Alzheimer's disease (AD) and non-AD tauopathies. In the present study, we investigated the capacity of a novel radioiodinated compound AD-DRK (123/125I-AD-DRK) with 50% inhibitory concentrations of 11 nM and 2 nM for Aβ and tau aggregates, respectively, as a single photon emission computed tomography (SPECT) ligand in living brains. In vitro and ex vivo autoradiography with 125I-AD-DRK was performed in postmortem human and two transgenic (Tg) mice lines with either fibrillar Aβ or tau accumulation, APP23 and rTg4510 mice. SPECT imaging of 123I-AD-DRK was performed in APP23 mice to investigate the ability of AD-DRK to visualize fibrillar protein deposition in the living brain. In-vitro autoradiogram of 125I-AD-DRK showed high specific radioactivity accumulation in the temporal cortex and hippocampus of AD patients and the motor cortex of progressive supranuclear palsy (PSP) patients enriched by Aβ and/or tau aggregates. Ex-vivo autoradiographic images also demonstrated a significant increase in 125I-AD-DRK binding in the forebrain of both APP23 and rTg450 mice compared to their corresponding non-Tg littermates. SPECT imaging successfully captured Aβ deposition in the living brain of aged APP23 mice. The present study developed a novel high-contrast SPECT agent for assisting the diagnosis of AD and non-AD tauopathies, likely benefiting from its affinity for both fibrillar Aβ and tau.
Collapse
Affiliation(s)
- Xiyan Rui
- Department of Radiopharmacy and Molecular Imaging, Minhang Hospital & School of Pharmacy, Fudan University, Shanghai, China; Institute for Small-Molecule Drug Discovery & Development, Quzhou Fudan Institute, Quzhou, China
| | - Xinran Zhao
- Department of Radiopharmacy and Molecular Imaging, Minhang Hospital & School of Pharmacy, Fudan University, Shanghai, China; Institute for Small-Molecule Drug Discovery & Development, Quzhou Fudan Institute, Quzhou, China
| | - Nailian Zhang
- Department of Radiopharmacy and Molecular Imaging, Minhang Hospital & School of Pharmacy, Fudan University, Shanghai, China; Institute for Small-Molecule Drug Discovery & Development, Quzhou Fudan Institute, Quzhou, China
| | - Yuzhou Ding
- Department of Radiopharmacy and Molecular Imaging, Minhang Hospital & School of Pharmacy, Fudan University, Shanghai, China; Institute for Small-Molecule Drug Discovery & Development, Quzhou Fudan Institute, Quzhou, China
| | - Chie Seki
- Department of Functional Brain Imaging Research, China
| | - Maiko Ono
- Department of Functional Brain Imaging Research, China
| | | | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yong Chu
- Department of Radiopharmacy and Molecular Imaging, Minhang Hospital & School of Pharmacy, Fudan University, Shanghai, China; Institute for Small-Molecule Drug Discovery & Development, Quzhou Fudan Institute, Quzhou, China
| | - Ruonan Wei
- Department of Radiopharmacy and Molecular Imaging, Minhang Hospital & School of Pharmacy, Fudan University, Shanghai, China
| | - Miaomiao Xu
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Chao Cheng
- Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Changjing Zuo
- Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yasuyuki Kimura
- Department of Clinical and Experimental Neuroimaging, Centre for Development of Advanced Medicine for Dementia, National Centre for Geriatrics and Gerontology, Obu, Japan
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland; Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Mototora Kai
- Research Department, Shanghai Fuji Medical Technology Co. LTD, Shanghai, China
| | - Mei Tian
- Human Phenome Institute, Fudan University, Shanghai, China; Department of Nuclear Medicine and PET‑CT Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.
| | - Chunyan Yuan
- Department of Radiopharmacy and Molecular Imaging, Minhang Hospital & School of Pharmacy, Fudan University, Shanghai, China; Department of Pathology, Minhang Hospital & School of Pharmacy, Fudan University, 170 Xinsong Road, Shanghai 201199, China.
| | - Bin Ji
- Department of Radiopharmacy and Molecular Imaging, Minhang Hospital & School of Pharmacy, Fudan University, Shanghai, China; Department of Functional Brain Imaging Research, China; Department of Clinical and Experimental Neuroimaging, Centre for Development of Advanced Medicine for Dementia, National Centre for Geriatrics and Gerontology, Obu, Japan; Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Shanghai, China; Institute for Small-Molecule Drug Discovery & Development, Quzhou Fudan Institute, Quzhou, China.
| |
Collapse
|
5
|
Cumbers GA, Harvey-Latham ED, Kassiou M, Werry EL, Danon JJ. Emerging TSPO-PET Radiotracers for Imaging Neuroinflammation: A Critical Analysis. Semin Nucl Med 2024; 54:856-874. [PMID: 39477764 DOI: 10.1053/j.semnuclmed.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 11/19/2024]
Abstract
The translocator protein (TSPO) is a biomarker for imaging neuroinflammation via Positron Emission Tomography (PET) across a broad range of CNS conditions. Most clinically used PET ligands targeting TSPO have limitations, including high lipophilicity and off-target binding or poor binding to a mutated TSPO isoform present in up to 30% of the population. Research efforts over the past decade have focused on development of improved TSPO PET radiotracers that overcome these limitations. This review provides a critical analysis of the development and validation of these so-called "third-generation" radiotracers in clinical and preclinical settings. We also offer our perspective on the future directions of TSPO PET imaging, including recommendations for overcoming current challenges and capitalizing on emerging opportunities in molecular imaging for neuroinflammatory diseases.
Collapse
Affiliation(s)
- Grace A Cumbers
- School of Chemistry, Faculty of Science, The University of Sydney, New South Wales, Australia
| | - Edward D Harvey-Latham
- School of Chemistry, Faculty of Science, The University of Sydney, New South Wales, Australia
| | - Michael Kassiou
- School of Chemistry, Faculty of Science, The University of Sydney, New South Wales, Australia.
| | - Eryn L Werry
- School of Chemistry, Faculty of Science, The University of Sydney, New South Wales, Australia; Central Clinical School, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
| | - Jonathan J Danon
- School of Chemistry, Faculty of Science, The University of Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Fairley LH, Lai KO, Grimm A, Eckert A, Barron AM. The mitochondrial translocator protein (TSPO) in Alzheimer's disease: Therapeutic and immunomodulatory functions. Biochimie 2024; 224:120-131. [PMID: 38971458 DOI: 10.1016/j.biochi.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
The translocator protein (TSPO) has been widely investigated as a PET-imaging biomarker of neuroinflammation and, more recently, as a therapeutic target for the treatment of neurodegenerative disease. TSPO ligands have been shown to exert neuroprotective effects in vivo and in vitro models of Alzheimer's disease (AD), by reducing toxic beta amyloid peptides, and attenuating brain atrophy. Recent transcriptomic and proteomic analyses, and the generation of TSPO-KO mice, have enabled new insights into the mechanistic function of TSPO in AD. Using a multi-omics approach in both TSPO-KO- and TSPO ligand-treated mice, we have demonstrated a key role for TSPO in microglial respiratory metabolism and phagocytosis in AD. In this review, we discuss emerging evidence for therapeutic and immunomodulatory functions of TSPO in AD, and new tools for studying TSPO in the brain.
Collapse
Affiliation(s)
- Lauren H Fairley
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 308232, Singapore
| | - Kei Onn Lai
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 308232, Singapore
| | - Amandine Grimm
- Transfaculty Research Platform, Molecular & Cognitive Neuroscience, Neurobiology Laboratory for Brain Aging and Mental Health, University of Basel, Basel, Switzerland; Psychiatric University Clinics, Basel, Switzerland
| | - Anne Eckert
- Transfaculty Research Platform, Molecular & Cognitive Neuroscience, Neurobiology Laboratory for Brain Aging and Mental Health, University of Basel, Basel, Switzerland; Psychiatric University Clinics, Basel, Switzerland
| | - Anna M Barron
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 308232, Singapore.
| |
Collapse
|
7
|
Huang Q, Wang Y, Chen S, Liang F. Glycometabolic Reprogramming of Microglia in Neurodegenerative Diseases: Insights from Neuroinflammation. Aging Dis 2024; 15:1155-1175. [PMID: 37611905 PMCID: PMC11081147 DOI: 10.14336/ad.2023.0807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023] Open
Abstract
Neurodegenerative diseases (ND) are conditions defined by progressive deterioration of the structure and function of the nervous system. Some major examples include Alzheimer's disease (AD), Parkinson's disease (PD), and Amyotrophic lateral sclerosis (ALS). These diseases lead to various dysfunctions, like impaired cognition, memory, and movement. Chronic neuroinflammation may underlie numerous neurodegenerative disorders. Microglia, an important immunocell in the brain, plays a vital role in defending against neuroinflammation. When exposed to different stimuli, microglia are activated and assume different phenotypes, participating in immune regulation of the nervous system and maintaining tissue homeostasis. The immunological activity of activated microglia is affected by glucose metabolic alterations. However, in the context of chronic neuroinflammation, specific alterations of microglial glucose metabolism and their mechanisms of action remain unclear. Thus, in this paper, we review the glycometabolic reprogramming of microglia in ND. The key molecular targets and main metabolic pathways are the focus of this research. Additionally, this study explores the mechanisms underlying microglial glucose metabolism reprogramming in ND and offers an analysis of the most recent therapeutic advancements. The ultimate aim is to provide insights into the development of potential treatments for ND.
Collapse
Affiliation(s)
- Qi Huang
- Department of Rehabilitation, The Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.
| | - Yanfu Wang
- Department of Rehabilitation, The Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.
| | - Shanshan Chen
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Fengxia Liang
- Department of Acupuncture and Moxibustion, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
8
|
Sahara N, Higuchi M. Diagnostic and therapeutic targeting of pathological tau proteins in neurodegenerative disorders. FEBS Open Bio 2024; 14:165-180. [PMID: 37746832 PMCID: PMC10839408 DOI: 10.1002/2211-5463.13711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/06/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023] Open
Abstract
Tauopathies, characterized by fibrillar tau accumulation in neurons and glial cells, constitute a major neuropathological category of neurodegenerative diseases. Neurofibrillary tau lesions are strongly associated with cognitive deficits in these diseases, but the causal mechanisms underlying tau-induced neuronal dysfunction remain unresolved. Recent advances in cryo-electron microscopy examination have revealed various core structures of tau filaments from different tauopathy patients, which can be used to classify tauopathies. In vivo visualization of tau pathology is now available using several tau positron emission tomography tracers. Among these radioprobes, PM-PBB3 allows high-contrast imaging of tau deposits in the brains of patients with diverse disorders and tauopathy mouse models. Selective degradation of pathological tau species by the ubiquitin-proteasome system or autophagy machinery is a potential therapeutic strategy. Alternatively, the non-cell-autonomous clearance of pathological tau species through neuron-glia networks could be reinforced as a disease-modifying treatment. In addition, the development of neuroinflammatory biomarkers is required for understanding the contribution of immunocompetent cells in the brain to preventing neurodegeneration. This review provides an overview of the current research and development of diagnostic and therapeutic agents targeting divergent tau pathologies.
Collapse
Affiliation(s)
- Naruhiko Sahara
- Department of Functional Brain Imaging, Institute for Quantum Medical SciencesNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Makoto Higuchi
- Department of Functional Brain Imaging, Institute for Quantum Medical SciencesNational Institutes for Quantum Science and TechnologyChibaJapan
| |
Collapse
|
9
|
Kumar P, Mathew S, Gamage R, Bodkin F, Doyle K, Rossetti I, Wagnon I, Zhou X, Raju R, Gyengesi E, Münch G. From the Bush to the Brain: Preclinical Stages of Ethnobotanical Anti-Inflammatory and Neuroprotective Drug Discovery-An Australian Example. Int J Mol Sci 2023; 24:11086. [PMID: 37446262 DOI: 10.3390/ijms241311086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
The Australian rainforest is a rich source of medicinal plants that have evolved in the face of dramatic environmental challenges over a million years due to its prolonged geographical isolation from other continents. The rainforest consists of an inherent richness of plant secondary metabolites that are the most intense in the rainforest. The search for more potent and more bioavailable compounds from other plant sources is ongoing, and our short review will outline the pathways from the discovery of bioactive plants to the structural identification of active compounds, testing for potency, and then neuroprotection in a triculture system, and finally, the validation in an appropriate neuro-inflammatory mouse model, using some examples from our current research. We will focus on neuroinflammation as a potential treatment target for neurodegenerative diseases including multiple sclerosis (MS), Parkinson's (PD), and Alzheimer's disease (AD) for these plant-derived, anti-inflammatory molecules and highlight cytokine suppressive anti-inflammatory drugs (CSAIDs) as a better alternative to conventional nonsteroidal anti-inflammatory drugs (NSAIDs) to treat neuroinflammatory disorders.
Collapse
Affiliation(s)
- Payaal Kumar
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Shintu Mathew
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Rashmi Gamage
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Frances Bodkin
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Kerrie Doyle
- Indigenous Health Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Ilaria Rossetti
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Ingrid Wagnon
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Ritesh Raju
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Erika Gyengesi
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Gerald Münch
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| |
Collapse
|
10
|
Conte M, De Feo MS, Sidrak MMA, Corica F, Gorica J, Granese GM, Filippi L, De Vincentis G, Frantellizzi V. Imaging of Tauopathies with PET Ligands: State of the Art and Future Outlook. Diagnostics (Basel) 2023; 13:diagnostics13101682. [PMID: 37238166 DOI: 10.3390/diagnostics13101682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
(1) Background: Tauopathies are a group of diseases characterized by the deposition of abnormal tau protein. They are distinguished into 3R, 4R, and 3R/4R tauopathies and also include Alzheimer's disease (AD) and chronic traumatic encephalopathy (CTE). Positron emission tomography (PET) imaging represents a pivotal instrument to guide clinicians. This systematic review aims to summarize the current and novel PET tracers. (2) Methods: Literature research was conducted on Pubmed, Scopus, Medline, Central, and the Web of Science using the query "pet ligands" and "tauopathies". Articles published from January 2018 to 9 February, 2023, were searched. Only studies on the development of novel PET radiotracers for imaging in tauopathies or comparative studies between existing PET tracers were included. (3) Results: A total of 126 articles were found, as follows: 96 were identified from PubMed, 27 from Scopus, one on Central, two on Medline, and zero on the Web of Science. Twenty-four duplicated works were excluded, and 63 articles did not satisfy the inclusion criteria. The remaining 40 articles were included for quality assessment. (4) Conclusions: PET imaging represents a valid instrument capable of helping clinicians in diagnosis, but it is not always perfect in differential diagnosis, even if further investigations on humans for novel promising ligands are needed.
Collapse
Affiliation(s)
- Miriam Conte
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza University of Rome, 00161 Rome, Italy
| | - Maria Silvia De Feo
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza University of Rome, 00161 Rome, Italy
| | - Marko Magdi Abdou Sidrak
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza University of Rome, 00161 Rome, Italy
| | - Ferdinando Corica
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza University of Rome, 00161 Rome, Italy
| | - Joana Gorica
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza University of Rome, 00161 Rome, Italy
| | - Giorgia Maria Granese
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza University of Rome, 00161 Rome, Italy
| | - Luca Filippi
- Department of Nuclear Medicine, Santa Maria Goretti Hospital, 00410 Latina, Italy
| | - Giuseppe De Vincentis
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza University of Rome, 00161 Rome, Italy
| | - Viviana Frantellizzi
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
11
|
18F-Radiolabeled Translocator Protein (TSPO) PET Tracers: Recent Development of TSPO Radioligands and Their Application to PET Study. Pharmaceutics 2022; 14:pharmaceutics14112545. [PMID: 36432736 PMCID: PMC9697781 DOI: 10.3390/pharmaceutics14112545] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Translocator protein 18 kDa (TSPO) is a transmembrane protein in the mitochondrial membrane, which has been identified as a peripheral benzodiazepine receptor. TSPO is generally present at high concentrations in steroid-producing cells and plays an important role in steroid synthesis, apoptosis, and cell proliferation. In the central nervous system, TSPO expression is relatively modest under normal physiological circumstances. However, some pathological disorders can lead to changes in TSPO expression. Overexpression of TSPO is associated with several diseases, such as neurodegenerative diseases, neuroinflammation, brain injury, and cancers. TSPO has therefore become an effective biomarker of related diseases. Positron emission tomography (PET), a non-invasive molecular imaging technique used for the clinical diagnosis of numerous diseases, can detect diseases related to TSPO expression. Several radiolabeled TSPO ligands have been developed for PET. In this review, we describe recent advances in the development of TSPO ligands, and 18F-radiolabeled TSPO in particular, as PET tracers. This review covers pharmacokinetic studies, preclinical and clinical trials of 18F-labeled TSPO PET ligands, and the synthesis of TSPO ligands.
Collapse
|
12
|
Wang X, Jiao B, Liu H, Wang Y, Hao X, Zhu Y, Xu B, Xu H, Zhang S, Jia X, Xu Q, Liao X, Zhou Y, Jiang H, Wang J, Guo J, Yan X, Tang B, Zhao R, Shen L. Machine learning based on Optical Coherence Tomography images as a diagnostic tool for Alzheimer's disease. CNS Neurosci Ther 2022; 28:2206-2217. [PMID: 36089740 PMCID: PMC9627364 DOI: 10.1111/cns.13963] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/03/2022] [Accepted: 08/23/2022] [Indexed: 02/06/2023] Open
Abstract
AIMS We mainly evaluate retinal alterations in Alzheimer's disease (AD) patients, investigate the associations between retinal changes with AD biomarkers, and explore an optimal machine learning (ML) model for AD diagnosis based on retinal thickness. METHODS A total of 159 AD patients and 299 healthy controls were enrolled. The retinal parameters of each participant were measured using optical coherence tomography (OCT). Additionally, cognitive impairment severity, brain atrophy, and cerebrospinal fluid (CSF) biomarkers were measured in AD patients. RESULTS AD patients demonstrated a significant decrease in the average, superior, and inferior quadrant peripapillary retinal nerve fiber layer, macular retinal nerve fiber layer, ganglion cell layer (GCL), inner plexiform layer (IPL) thicknesses, as well as total macular volume (TMV) (all p < 0.05). Moreover, TMV was positively associated with Mini-Mental State Examination and Montreal Cognitive Assessment scores, IPL thickness was correlated negatively with the medial temporal lobe atrophy score, and the GCL thickness was positively correlated with CSF Aβ42 /Aβ40 and negatively associated with p-tau level. Based on the significantly decreased OCT variables between both groups, the XGBoost algorithm exhibited the best diagnostic performance for AD, whose four references, including accuracy, area under the curve, f1 score, and recall, ranged from 0.69 to 0.74. Moreover, the macular retinal thickness exhibited an absolute superiority for AD diagnosis compared with other enrolled variables in all ML models. CONCLUSION We identified the retinal alterations in AD patients and found that macular thickness and volume were associated with AD severity and biomarkers. Furthermore, we confirmed that OCT combined with ML could serve as a potential diagnostic tool for AD.
Collapse
Affiliation(s)
- Xin Wang
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Bin Jiao
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric DisordersCentral South UniversityChangshaChina,Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesChangshaChina,Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
| | - Hui Liu
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Yaqin Wang
- Health Management Center, the Third Xiangya HospitalCentral South UniversityChangshaChina
| | - Xiaoli Hao
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Yuan Zhu
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Bei Xu
- Eye Center of Xiangya HospitalCentral South UniversityChangshaChina
| | - Huizhuo Xu
- Eye Center of Xiangya HospitalCentral South UniversityChangshaChina
| | - Sizhe Zhang
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Xiaoliang Jia
- School of Computer Science and EngineeringCentral South UniversityChangshaChina
| | - Qian Xu
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric DisordersCentral South UniversityChangshaChina,Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesChangshaChina,Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
| | - Xinxin Liao
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangshaChina,Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesChangshaChina,Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina,Department of Geriatrics, Xiangya HospitalCentral South UniversityChangshaChina
| | - Yafang Zhou
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangshaChina,Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesChangshaChina,Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina,Department of Geriatrics, Xiangya HospitalCentral South UniversityChangshaChina
| | - Hong Jiang
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric DisordersCentral South UniversityChangshaChina,Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesChangshaChina,Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
| | - Junling Wang
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric DisordersCentral South UniversityChangshaChina,Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesChangshaChina,Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
| | - Jifeng Guo
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric DisordersCentral South UniversityChangshaChina,Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesChangshaChina,Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
| | - Xinxiang Yan
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric DisordersCentral South UniversityChangshaChina,Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesChangshaChina,Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
| | - Beisha Tang
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric DisordersCentral South UniversityChangshaChina,Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesChangshaChina,Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
| | - Rongchang Zhao
- School of Computer Science and EngineeringCentral South UniversityChangshaChina
| | - Lu Shen
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric DisordersCentral South UniversityChangshaChina,Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesChangshaChina,Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina,Key Laboratory of Organ InjuryAging and Regenerative Medicine of Hunan ProvinceChangshaChina
| |
Collapse
|
13
|
van der Geest KSM, Sandovici M, Nienhuis PH, Slart RHJA, Heeringa P, Brouwer E, Jiemy WF. Novel PET Imaging of Inflammatory Targets and Cells for the Diagnosis and Monitoring of Giant Cell Arteritis and Polymyalgia Rheumatica. Front Med (Lausanne) 2022; 9:902155. [PMID: 35733858 PMCID: PMC9207253 DOI: 10.3389/fmed.2022.902155] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/13/2022] [Indexed: 12/26/2022] Open
Abstract
Giant cell arteritis (GCA) and polymyalgia rheumatica (PMR) are two interrelated inflammatory diseases affecting patients above 50 years of age. Patients with GCA suffer from granulomatous inflammation of medium- to large-sized arteries. This inflammation can lead to severe ischemic complications (e.g., irreversible vision loss and stroke) and aneurysm-related complications (such as aortic dissection). On the other hand, patients suffering from PMR present with proximal stiffness and pain due to inflammation of the shoulder and pelvic girdles. PMR is observed in 40-60% of patients with GCA, while up to 21% of patients suffering from PMR are also affected by GCA. Due to the risk of ischemic complications, GCA has to be promptly treated upon clinical suspicion. The treatment of both GCA and PMR still heavily relies on glucocorticoids (GCs), although novel targeted therapies are emerging. Imaging has a central position in the diagnosis of GCA and PMR. While [18F]fluorodeoxyglucose (FDG)-positron emission tomography (PET) has proven to be a valuable tool for diagnosis of GCA and PMR, it possesses major drawbacks such as unspecific uptake in cells with high glucose metabolism, high background activity in several non-target organs and a decrease of diagnostic accuracy already after a short course of GC treatment. In recent years, our understanding of the immunopathogenesis of GCA and, to some extent, PMR has advanced. In this review, we summarize the current knowledge on the cellular heterogeneity in the immunopathology of GCA/PMR and discuss how recent advances in specific tissue infiltrating leukocyte and stromal cell profiles may be exploited as a source of novel targets for imaging. Finally, we discuss prospective novel PET radiotracers that may be useful for the diagnosis and treatment monitoring in GCA and PMR.
Collapse
Affiliation(s)
- Kornelis S. M. van der Geest
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Maria Sandovici
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Pieter H. Nienhuis
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Riemer H. J. A. Slart
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Biomedical Photonic Imaging Group, University of Twente, Enschede, Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - William F. Jiemy
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
14
|
Cao L, Kong Y, Ji B, Ren Y, Guan Y, Ni R. Positron Emission Tomography in Animal Models of Tauopathies. Front Aging Neurosci 2022; 13:761913. [PMID: 35082657 PMCID: PMC8784812 DOI: 10.3389/fnagi.2021.761913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022] Open
Abstract
The microtubule-associated protein tau (MAPT) plays an important role in Alzheimer's disease and primary tauopathy diseases. The abnormal accumulation of tau contributes to the development of neurotoxicity, inflammation, neurodegeneration, and cognitive deficits in tauopathy diseases. Tau synergically interacts with amyloid-beta in Alzheimer's disease leading to detrimental consequence. Thus, tau has been an important target for therapeutics development for Alzheimer's disease and primary tauopathy diseases. Tauopathy animal models recapitulating the tauopathy such as transgenic, knock-in mouse and rat models have been developed and greatly facilitated the understanding of disease mechanisms. The advance in PET and imaging tracers have enabled non-invasive detection of the accumulation and spread of tau, the associated microglia activation, metabolic, and neurotransmitter receptor alterations in disease animal models. In vivo microPET studies on mouse or rat models of tauopathy have provided significant insights into the phenotypes and time course of pathophysiology of these models and allowed the monitoring of treatment targeting at tau. In this study, we discuss the utilities of PET and recently developed tracers for evaluating the pathophysiology in tauopathy animal models. We point out the outstanding challenges and propose future outlook in visualizing tau-related pathophysiological changes in brain of tauopathy disease animal models.
Collapse
Affiliation(s)
- Lei Cao
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Changes Technology Corporation Ltd., Shanghai, China
| | - Yanyan Kong
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Bin Ji
- Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, Shanghai, China
| | - Yutong Ren
- Guangdong Robotics Association, Guangzhou, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Xu Y, Jiang C, Wu J, Liu P, Deng X, Zhang Y, Peng B, Zhu Y. Ketogenic diet ameliorates cognitive impairment and neuroinflammation in a mouse model of Alzheimer's disease. CNS Neurosci Ther 2021; 28:580-592. [PMID: 34889516 PMCID: PMC8928920 DOI: 10.1111/cns.13779] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 12/17/2022] Open
Abstract
Introduction Alzheimer's disease (AD) is the most common neurodegenerative disorder that causes dementia and affects millions of people worldwide. Although it has devastating outcomes for patients and tremendous economic costs to society, there is currently no effective treatment available. Aims The high‐fat, low‐carbohydrate ketogenic diet (KD) is an established treatment for refractory epilepsy with a proven efficacy. Although the considerable interest has emerged in recent years for applying KD in AD patients, only few interventional studies in animals and humans have addressed the effects of KD on cognitive impairments, and the results were inconclusive. The aim of this study was to explore the impact of KD on cognitive functions and AD pathology in 5XFAD mice—a validated animal model of AD. Results Four months of a ketogenic diet improved spatial learning, spatial memory and working memory in 5XFAD mice. The improvement in cognitive functions was associated with a restored number of neurons and synapses in both the hippocampus and the cortex. Ketogenic diet treatment also reduced amyloid plaque deposition and microglial activation, resulting in reduced neuroinflammation. The positive effect of ketogenic diet on cognitive functions depended on the starting time and the duration of the diet. A shorter period (2 months) of ketogenic diet treatment had a weaker effect. Ketogenic diet initiated at late stage of AD (9 months of age) displayed no effect on cognitive improvement. Conclusions These findings indicate positive effects of ketogenic diet on both cognitive function and histopathology in Alzheimer's disease, which could be due to reduced microglial activation and neuroinflammation. Our findings provide new insights and therapeutic interventions for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Yunlong Xu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chenyu Jiang
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Junyan Wu
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peidong Liu
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaofei Deng
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Yadong Zhang
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bo Peng
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute for Translational Brain Research, Fudan University, Shanghai, China
| | - Yingjie Zhu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China.,Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| |
Collapse
|
16
|
Guilarte TR, Rodichkin AN, McGlothan JL, Acanda De La Rocha AM, Azzam DJ. Imaging neuroinflammation with TSPO: A new perspective on the cellular sources and subcellular localization. Pharmacol Ther 2021; 234:108048. [PMID: 34848203 DOI: 10.1016/j.pharmthera.2021.108048] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/04/2021] [Accepted: 11/24/2021] [Indexed: 12/14/2022]
Abstract
Translocator Protein 18 kDa (TSPO), previously named Peripheral Benzodiazepine Receptor, is a well-validated and widely used biomarker of neuroinflammation to assess diverse central nervous system (CNS) pathologies in preclinical and clinical studies. Many studies have shown that in animal models of human neurological and neurodegenerative disease and in the human condition, TSPO levels increase in the brain neuropil, and this increase is driven by infiltration of peripheral inflammatory cells and activation of glial cells. Therefore, a clear understanding of the dynamics of the cellular sources of the TSPO response is critically important in the interpretation of Positron Emission Tomography (PET) studies and for understanding the pathophysiology of CNS diseases. Within the normal brain compartment, there are tissues and cells such as the choroid plexus, ependymal cells of the lining of the ventricles, and vascular endothelial cells that also express TSPO at even higher levels than in glial cells. However, there is a paucity of knowledge if these cell types respond and increase TSPO in the diseased brain. These cells do provide a background signal that needs to be accounted for in TSPO-PET imaging studies. More recently, there are reports that TSPO may be expressed in neurons of the adult brain and TSPO expression may be increased by neuronal activity. Therefore, it is essential to study this topic with a great deal of detail, methodological rigor, and rule out alternative interpretations and imaging artifacts. High levels of TSPO are present in the outer mitochondrial membrane. Recent studies have provided evidence of its localization in other cellular compartments including the plasma membrane and perinuclear regions which may define functions that are different from that in mitochondria. A greater understanding of the TSPO subcellular localization in glial cells and infiltrating peripheral immune cells and associated function(s) may provide an additional layer of information to the understanding of TSPO neurobiology. This review is an effort to outline recent advances in understanding the cellular sources and subcellular localization of TSPO in brain cells and to examine remaining questions that require rigorous investigation.
Collapse
Affiliation(s)
- Tomás R Guilarte
- Brain, Behavior, & the Environment Program, Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL 33199, United States of America.
| | - Alexander N Rodichkin
- Brain, Behavior, & the Environment Program, Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL 33199, United States of America
| | - Jennifer L McGlothan
- Brain, Behavior, & the Environment Program, Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL 33199, United States of America
| | - Arlet Maria Acanda De La Rocha
- Brain, Behavior, & the Environment Program, Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL 33199, United States of America
| | - Diana J Azzam
- Brain, Behavior, & the Environment Program, Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL 33199, United States of America
| |
Collapse
|
17
|
Ni R. Positron Emission Tomography in Animal Models of Alzheimer's Disease Amyloidosis: Translational Implications. Pharmaceuticals (Basel) 2021; 14:1179. [PMID: 34832961 PMCID: PMC8623863 DOI: 10.3390/ph14111179] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/30/2022] Open
Abstract
Animal models of Alzheimer's disease amyloidosis that recapitulate cerebral amyloid-beta pathology have been widely used in preclinical research and have greatly enabled the mechanistic understanding of Alzheimer's disease and the development of therapeutics. Comprehensive deep phenotyping of the pathophysiological and biochemical features in these animal models is essential. Recent advances in positron emission tomography have allowed the non-invasive visualization of the alterations in the brain of animal models and in patients with Alzheimer's disease. These tools have facilitated our understanding of disease mechanisms and provided longitudinal monitoring of treatment effects in animal models of Alzheimer's disease amyloidosis. In this review, we focus on recent positron emission tomography studies of cerebral amyloid-beta accumulation, hypoglucose metabolism, synaptic and neurotransmitter receptor deficits (cholinergic and glutamatergic system), blood-brain barrier impairment, and neuroinflammation (microgliosis and astrocytosis) in animal models of Alzheimer's disease amyloidosis. We further propose the emerging targets and tracers for reflecting the pathophysiological changes and discuss outstanding challenges in disease animal models and future outlook in the on-chip characterization of imaging biomarkers towards clinical translation.
Collapse
Affiliation(s)
- Ruiqing Ni
- Institute for Biomedical Engineering, ETH & University of Zurich, 8093 Zurich, Switzerland;
- Institute for Regenerative Medicine, University of Zurich, 8952 Zurich, Switzerland
| |
Collapse
|
18
|
Potential of Multiscale Astrocyte Imaging for Revealing Mechanisms Underlying Neurodevelopmental Disorders. Int J Mol Sci 2021; 22:ijms221910312. [PMID: 34638653 PMCID: PMC8508625 DOI: 10.3390/ijms221910312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/18/2023] Open
Abstract
Astrocytes provide trophic and metabolic support to neurons and modulate circuit formation during development. In addition, astrocytes help maintain neuronal homeostasis through neurovascular coupling, blood-brain barrier maintenance, clearance of metabolites and nonfunctional proteins via the glymphatic system, extracellular potassium buffering, and regulation of synaptic activity. Thus, astrocyte dysfunction may contribute to a myriad of neurological disorders. Indeed, astrocyte dysfunction during development has been implicated in Rett disease, Alexander's disease, epilepsy, and autism, among other disorders. Numerous disease model mice have been established to investigate these diseases, but important preclinical findings on etiology and pathophysiology have not translated into clinical interventions. A multidisciplinary approach is required to elucidate the mechanism of these diseases because astrocyte dysfunction can result in altered neuronal connectivity, morphology, and activity. Recent progress in neuroimaging techniques has enabled noninvasive investigations of brain structure and function at multiple spatiotemporal scales, and these technologies are expected to facilitate the translation of preclinical findings to clinical studies and ultimately to clinical trials. Here, we review recent progress on astrocyte contributions to neurodevelopmental and neuropsychiatric disorders revealed using novel imaging techniques, from microscopy scale to mesoscopic scale.
Collapse
|
19
|
Zhou R, Ji B, Kong Y, Qin L, Ren W, Guan Y, Ni R. PET Imaging of Neuroinflammation in Alzheimer's Disease. Front Immunol 2021; 12:739130. [PMID: 34603323 PMCID: PMC8481830 DOI: 10.3389/fimmu.2021.739130] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
Neuroinflammation play an important role in Alzheimer's disease pathogenesis. Advances in molecular imaging using positron emission tomography have provided insights into the time course of neuroinflammation and its relation with Alzheimer's disease central pathologies in patients and in animal disease models. Recent single-cell sequencing and transcriptomics indicate dynamic disease-associated microglia and astrocyte profiles in Alzheimer's disease. Mitochondrial 18-kDa translocator protein is the most widely investigated target for neuroinflammation imaging. New generation of translocator protein tracers with improved performance have been developed and evaluated along with tau and amyloid imaging for assessing the disease progression in Alzheimer's disease continuum. Given that translocator protein is not exclusively expressed in glia, alternative targets are under rapid development, such as monoamine oxidase B, matrix metalloproteinases, colony-stimulating factor 1 receptor, imidazoline-2 binding sites, cyclooxygenase, cannabinoid-2 receptor, purinergic P2X7 receptor, P2Y12 receptor, the fractalkine receptor, triggering receptor expressed on myeloid cells 2, and receptor for advanced glycation end products. Promising targets should demonstrate a higher specificity for cellular locations with exclusive expression in microglia or astrocyte and activation status (pro- or anti-inflammatory) with highly specific ligand to enable in vivo brain imaging. In this review, we summarised recent advances in the development of neuroinflammation imaging tracers and provided an outlook for promising targets in the future.
Collapse
Affiliation(s)
- Rong Zhou
- Department of Nephrology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bin Ji
- Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, Shanghai, China
| | - Yanyan Kong
- Positron Emission Tomography (PET) Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Limei Qin
- Inner Mongolia Baicaotang Qin Chinese Mongolia Hospital, Hohhot, China
| | - Wuwei Ren
- School of Information Science and Technology, Shanghaitech University, Shanghai, China
| | - Yihui Guan
- Positron Emission Tomography (PET) Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, University of Zurich & Eidgenössische Technische Hochschule Zürich (ETH Zurich), Zurich, Switzerland
| |
Collapse
|