1
|
Zhu XH, Yu X, Kong XW, Zhang Y, Jiang SL, Chai JH, Liang J, Kuang HX, Xia YG. Insight of action mechanism of Astragaloside IV for relieving of cerebral ischemic injury in a rat model of middle cerebral artery occlusion reperfusion via proteomics and network pharmacology. J Nat Med 2025; 79:591-607. [PMID: 40208491 DOI: 10.1007/s11418-025-01892-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/04/2025] [Indexed: 04/11/2025]
Abstract
Astragaloside IV (AS-IV) is the principal active component of Astragalus membranaceus (fisch.) Bge. var. mongholicus (Bge.) Hsiao. This study aims to explore action mechanism of AS-IV for relieving of cerebral ischemic injury in a rat model of middle cerebral artery occlusion reperfusion (MCAO) via proteomics and network pharmacology. Pharmacodynamics experiments showed that AS-IV could effectively alleviate MACO-induced cerebral infarction, preserve the structural integrity of neurons, and promote the formation of Sol bodies. In addition, TMT quantitative proteomics revealed differential proteins (DEPs), e.g., DGKQ, PPT1, Gnai3, Gnal, PLA2G4A, and Ppp2ca. These DEPs might be closely related to AS-IV for the therapeutic effects on ischemic stroke. In combination with network pharmacology, the PLA2G4A was further identified as key target protein of AS-IV ascribed to its involvement in the regulation of inflammatory mediators in the TRP pathway. Ultimately, in vitro validation demonstrated that AS-IV offers neuroprotective effects by targeting the PLA2G4A, reducing the release of arachidonic acid (AA) and COX-2, and facilitating Ca2+ inflow into cells. This study provided a scientific basis on development and application of AS-IV for treating ischemic stroke.
Collapse
Affiliation(s)
- Xin-Hua Zhu
- Key Laboratory of Basic and Application Research of Bei Yao, Ministry of Education, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, People's Republic of China
| | - Xin Yu
- Key Laboratory of Basic and Application Research of Bei Yao, Ministry of Education, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, People's Republic of China
| | - Xiang-Wen Kong
- Key Laboratory of Basic and Application Research of Bei Yao, Ministry of Education, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, People's Republic of China
| | - Yi Zhang
- Key Laboratory of Basic and Application Research of Bei Yao, Ministry of Education, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, People's Republic of China
| | - Si-Liang Jiang
- Key Laboratory of Basic and Application Research of Bei Yao, Ministry of Education, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, People's Republic of China
| | - Jun-Hong Chai
- Key Laboratory of Basic and Application Research of Bei Yao, Ministry of Education, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, People's Republic of China
| | - Jun Liang
- Key Laboratory of Basic and Application Research of Bei Yao, Ministry of Education, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, People's Republic of China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Bei Yao, Ministry of Education, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, People's Republic of China
| | - Yong-Gang Xia
- Key Laboratory of Basic and Application Research of Bei Yao, Ministry of Education, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, People's Republic of China.
| |
Collapse
|
2
|
Wang S, Wang J, Zhang X, Xu S, Peng Q, Li Y, Ding R, Jiang B, Wang S, Zhang S, Hu S, Rastegar‐Kashkooli Y, Xing N, Li N, Wang M, Wang J, Chen X, Jiang C, Fan X, Wang J. Distribution of Intranasally Administered rIL-10 Along the Olfactory Nerve and Perivascular Space After Intracerebral Hemorrhage. CNS Neurosci Ther 2025; 31:e70372. [PMID: 40237247 PMCID: PMC12000929 DOI: 10.1111/cns.70372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/14/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
RATIONALE The utilization of anti-inflammatory therapy for treating brain diseases holds promise; however, research on intranasal administration of drug compounds remains limited. Quantitative data, particularly pharmacokinetics, are scant, and direct evidence of the distribution of intranasally administered recombinant interleukin 10 (rIL-10) within the brain is lacking. METHODS Employing fluorescent labeling, in vivo imaging, and confocal microscopy, we meticulously monitored the distribution and delivery pathways of intranasally administered rIL-10 in the brain. RESULTS AND CONCLUSIONS Our findings demonstrate that rIL-10 can permeate the blood-brain barrier and reach the perihematomal area in the striatum of mice with intracerebral hemorrhage. Intranasally administered rIL-10 primarily targets the cerebral cortex, striatum, and thalamus, traversing the olfactory nerve pathway and perivascular space to access these brain regions. This mode of delivery effectively mitigated secondary brain injury after intracerebral hemorrhage. This study contributes to intranasal drug delivery research, offering compelling evidence to support the intranasal delivery of anti-inflammatory cytokines or alternative drug candidates for treating brain diseases.
Collapse
Affiliation(s)
- Shaoshuai Wang
- Department of Pain MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
- Non‐Commissioned Officer School of Army Medical UniversityShijiazhuangChina
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Xinru Zhang
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Shijun Xu
- School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese MedicineChengduChina
| | - Qinfeng Peng
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Yifei Li
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Ruoqi Ding
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Bing Jiang
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Shuyu Wang
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Shuaibing Zhang
- Nanozyme Laboratory in ZhongyuanHenan Academy of Innovations in Medical ScienceZhengzhouChina
| | - Siyuan Hu
- Department of Pain MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | | | - Na Xing
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Nan Li
- Department of NeurologyThe Second Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Menglu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Junyang Wang
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Xuemei Chen
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Chao Jiang
- Department of NeurologyPeople's Hospital of Zhengzhou University and Henan Provincial People's HospitalZhengzhouChina
| | - Xiaochong Fan
- Department of Pain MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jian Wang
- Department of Pain MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| |
Collapse
|
3
|
Oppici L, Bērziņa G, Hestetun-Mandrup AM, Løvstad M, Opheim A, Pacheco MM, Rafsten L, Sunnerhagen KS, Rudd JR. A Scoping Review of Preclinical Environmental Enrichment Protocols in Models of Poststroke to Set the Foundations for Translating the Paradigm to Clinical Settings. Transl Stroke Res 2025:10.1007/s12975-025-01335-3. [PMID: 39913056 DOI: 10.1007/s12975-025-01335-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/09/2025] [Accepted: 01/26/2025] [Indexed: 02/07/2025]
Abstract
The translation of the highly effective Environmental Enrichment (EE) paradigm from preclinical animal models to human clinical settings has been slow and showed inconsistent results. The primary translational challenge lies in defining what constitutes an EE for humans. To tackle this challenge, this study conducted a scoping review of preclinical EE protocols to explore what constitutes EE for animal models of stroke, laying the foundation for the translation of EE to human application. A systematic search was conducted in the MEDLINE, PsycINFO, and Web of Science databases to identify studies that conducted an EE intervention in the post-stroke animal model. A total of 116 studies were included in the review. A critical reflection of the characteristics of the included studies revealed that EE for post-stroke is a strategy that frequently modifies the animals' daily environment to create a richness of spatial, structural, and/or social opportunities to engage in a variety of daily life-related motor, cognitive, and social exploratory activities. These activities are relevant to the inhabiting individual and involve the activation of the body function(s) affected by the stroke. This review also identified six principles that underpinned the EE protocols: complexity (spatial and social), variety, novelty, targeting needs, scaffolding, and integration of rehabilitation tasks. These findings can be used as steppingstones to define what constitutes EE in human clinical applications and to develop a set of principles that can inform the design of EE protocols for patients after a stroke.
Collapse
Affiliation(s)
- Luca Oppici
- Department of Teacher Education and Outdoor Studies, Norwegian School of Sport Sciences, 0863, Oslo, Norway.
| | - Guna Bērziņa
- Department of Rehabilitation, Faculty of Health and Sport Sciences, Riga Stradiņš University, Riga, Latvia
- Clinic of Rehabilitation, Riga East University Hospital, Riga, Latvia
| | - Ann Marie Hestetun-Mandrup
- Sunnaas Rehabilitation Hospital, 1450, Nesoddtangen, Norway
- Department of Rehabilitation Science and Health Technology, Oslo Metropolitan University, Oslo, Norway
| | - Marianne Løvstad
- Sunnaas Rehabilitation Hospital, 1450, Nesoddtangen, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Arve Opheim
- Sunnaas Rehabilitation Hospital, 1450, Nesoddtangen, Norway
- Institute of Neuroscience and Physiology, Dept of Clinical Neuroscience and Rehabilitation Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Lena Rafsten
- Institute of Neuroscience and Physiology, Dept of Clinical Neuroscience and Rehabilitation Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Occupational Therapy and Physiotherapy, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Katharina S Sunnerhagen
- Institute of Neuroscience and Physiology, Dept of Clinical Neuroscience and Rehabilitation Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - James R Rudd
- Department of Teacher Education and Outdoor Studies, Norwegian School of Sport Sciences, 0863, Oslo, Norway.
- Department of Sport, Food and Natural Sciences, Faculty of Education, Arts and Sports, Western Norway University of Applied Sciences, 6856, Sogndal, Norway.
| |
Collapse
|
4
|
Unadkat P, Rebeiz T, Ajmal E, De Souza V, Xia A, Jinu J, Powell K, Li C. Neurobiological Mechanisms Underlying Psychological Dysfunction After Brain Injuries. Cells 2025; 14:74. [PMID: 39851502 PMCID: PMC11763422 DOI: 10.3390/cells14020074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Despite the presentation of similar psychological symptoms, psychological dysfunction secondary to brain injury exhibits markedly lower treatment efficacy compared to injury-independent psychological dysfunction. This gap remains evident, despite extensive research efforts. This review integrates clinical and preclinical evidence to provide a comprehensive overview of the neurobiological mechanisms underlying neuropsychological disorders, focusing on the role of key brain regions in emotional regulation across various forms of brain injuries. It examines therapeutic interventions and mechanistic targets, with the primary goal of identifying pathways for targeted treatments. The review highlights promising therapeutic avenues for addressing injury-associated psychological dysfunction, emphasizing Nrf2, neuropeptides, and nonpharmacological therapies as multi-mechanistic interventions capable of modulating upstream mediators to address the complex interplay of factors underlying psychological dysfunction in brain injury. Additionally, it identifies sexually dimorphic factors as potential areas for further exploration and advocates for detailed investigations into sex-specific patterns to uncover additional contributors to these disorders. Furthermore, it underscores significant gaps, particularly the inadequate consideration of interactions among causal factors, environmental influences, and individual susceptibilities. By addressing these gaps, this review provides new insights and calls for a paradigm shift toward a more context-specific and integrative approach to developing targeted therapies for psychological dysfunction following brain injuries.
Collapse
Affiliation(s)
- Prashin Unadkat
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Department of Neurosurgery, North Shore University Hospital at Northwell Health, Manhasset, NY 11030, USA
| | - Tania Rebeiz
- Department of Neurosurgery, North Shore University Hospital at Northwell Health, Manhasset, NY 11030, USA
| | - Erum Ajmal
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- SUNY Downstate College of Medicine, Brooklyn, NY 11225, USA
| | - Vincent De Souza
- Department of Neurosurgery, Staten Island University Hospital at Northwell Health, Staten Island, NY 10305, USA
| | - Angela Xia
- Department of Neurosurgery, North Shore University Hospital at Northwell Health, Manhasset, NY 11030, USA
| | - Julia Jinu
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Biology Department, Adelphi University, Garden City, NY 11530, USA
| | - Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Department of Neurosurgery, North Shore University Hospital at Northwell Health, Manhasset, NY 11030, USA
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
5
|
Niu X, Zheng Y, Wang W, Zhang L, Wang S, Lu X, Wang J, Yang G, Zhao T, Li Q, Li N, Wang J, Wang J, Li C. Esketamine Provides Neuroprotection After Intracerebral Hemorrhage in Mice via the NTF3/PI3K/AKT Pathway. CNS Neurosci Ther 2024; 30:e70145. [PMID: 39690816 DOI: 10.1111/cns.70145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 09/23/2024] [Accepted: 11/16/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Esketamine (ESK), a noncompetitive antagonist of N-methyl-D-aspartate (NMDA) receptors, modulates neurotransmitter signaling in the central nervous system. However, the specific mechanisms and therapeutic potential of ESK for intracerebral hemorrhage (ICH) remain unclear. This study aimed to investigate whether ESK promotes nerve repair and improves neurological outcomes in an experimental model of ICH. METHODS ICH was induced in mice via collagenase injection into the striatum. Body weight, neurological impairment, and behavioral changes were assessed. ESK administration significantly improved several indicators of ICH. Comprehensive RNA transcriptome sequencing and network pharmacology analyses identified neurotrophin-3 (NTF3) and the PI3K/AKT signaling pathway as targets for ESK treatment. Western blotting and immunofluorescence detected the protein expression levels and cellular localization of NTF3. RESULTS After 28 days of adeno-associated virus infection in the mouse striatum, ESK treatment significantly enhanced neuroprotection, indicating the crucial role of NTF3 in ESK-mediated neuroprotection in ICH mice. Inhibition of the PI3K/AKT pathway using the PI3K-specific inhibitor LY294002 significantly attenuated the therapeutic effects of ESK, suggesting that this pathway is involved in ESK-mediated neurorepair in ICH mice. CONCLUSIONS ESK treatment significantly improved functional outcomes and demonstrated neuroprotective effects in animal models of ICH. NTF3/PI3K/AKT pathway activation by ESK indicates its therapeutic potential in the treatment of ICH.
Collapse
Affiliation(s)
- Xiaoyu Niu
- Department of Anesthesiology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuanyuan Zheng
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wang Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Liwei Zhang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shaoshuai Wang
- Non-Commissioned Officer School of Army Medical University, Shijiazhuang, China
| | - Xihua Lu
- Department of Anesthesiology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Junyang Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Gaiqing Yang
- Department of Neurology, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, China
| | - Ting Zhao
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiang Li
- Department of Neurology, Shanghai Gongli Hospital of Pudong New Area, Shanghai, China
| | - Nan Li
- Department of Neurology, The 2nd Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jian Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Changsheng Li
- Department of Anesthesiology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
- Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Wang S, Li C, Kang X, Su X, Liu Y, Wang Y, Liu S, Deng X, Huang H, Li T, Lu D, Cai W, Lu Z, Wei L, Lu T. Agomelatine promotes differentiation of oligodendrocyte precursor cells and preserves white matter integrity after cerebral ischemic stroke. J Cereb Blood Flow Metab 2024; 44:1487-1500. [PMID: 38853430 PMCID: PMC11574932 DOI: 10.1177/0271678x241260100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 06/11/2024]
Abstract
White matter injury contributes to neurological disorders after acute ischemic stroke (AIS). The repair of white matter injury is dependent on the re-myelination by oligodendrocytes. Both melatonin and serotonin antagonist have been proved to protect against post-stroke white matter injury. Agomelatine (AGM) is a multi-functional treatment which is both a melatonin receptor agonist and selective serotonin receptor antagonist. Whether AGM protects against white matter injury after stroke and the underlying mechanisms remain elusive. Here, using the transient middle cerebral artery occlusion (tMCAO) model, we evaluated the therapeutic effects of AGM in stroke mice. Sensorimotor and cognitive functions, white matter integrity, oligodendroglial regeneration and re-myelination in stroke hemisphere after AGM treatment were analyzed. We found that AGM efficiently preserved white matter integrity, reduced brain tissue loss, attenuated long-term sensorimotor and cognitive deficits in tMCAO models. AGM treatment promoted OPC differentiation and enhanced re-myelination both in vitro, ex vivo and in vivo, although OPC proliferation was unaffected. Mechanistically, AGM activated low density lipoprotein receptor related protein 1 (LRP1), peroxisome proliferator-activated receptor γ (PPARγ) signaling thus promoted OPC differentiation and re-myelination after stroke. Inhibition of PPARγ or knock-down of LRP1 in OPCs reversed the beneficial effects of AGM. Altogether, our data indicate that AGM represents a novel therapy against white matter injury after cerebral ischemia.
Collapse
Affiliation(s)
- Shisi Wang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chunyi Li
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xinmei Kang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaotao Su
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuxin Liu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuge Wang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Sanxin Liu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaohui Deng
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huipeng Huang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tiemei Li
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Danli Lu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Cai
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China
| | - Zhengqi Lu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lei Wei
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tingting Lu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Wang S, Qin M, Fan X, Jiang C, Hou Q, Ye Z, Zhang X, Yang Y, Xiao J, Wallace K, Rastegar-Kashkooli Y, Peng Q, Jin D, Wang J, Wang M, Ding R, Tao J, Kim YT, Bhawal UK, Wang J, Chen X, Wang J. The role of metal ions in stroke: Current evidence and future perspectives. Ageing Res Rev 2024; 101:102498. [PMID: 39243890 DOI: 10.1016/j.arr.2024.102498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/24/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Metal ions play a pivotal role in maintaining optimal brain function within the human body. Nevertheless, the accumulation of these ions can result in irregularities that lead to brain damage and dysfunction. Disruptions of metal ion homeostasis can result in various pathologies, including inflammation, redox dysregulation, and blood-brain barrier disruption. While research on metal ions has chiefly focused on neurodegenerative diseases, little attention has been given to their involvement in the onset and progression of stroke. Recent studies have identified cuproptosis and confirmed ferroptosis as significant factors in stroke pathology, underscoring the importance of metal ions in stroke pathology, including abnormal ion transport, neurotoxicity, blood-brain barrier damage, and cell death. Additionally, it provides an overview of contemporary metal ion chelators and detection techniques, which may offer novel approaches to stroke treatment.
Collapse
Affiliation(s)
- Shaoshuai Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; Non-commissioned Officer School of Army Medical University, Shijiazhuang, Hebei 050000, China
| | - Mengzhe Qin
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Xiaochong Fan
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Chao Jiang
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Qingchuan Hou
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ziyi Ye
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xinru Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yunfan Yang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jingyu Xiao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Kevin Wallace
- College of Mathematical and Natural Sciences, University of Maryland, College Park, MD 20742, USA
| | - Yousef Rastegar-Kashkooli
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; School of International Education, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Qinfeng Peng
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Dongqi Jin
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Junyang Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Menglu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ruoqi Ding
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jin Tao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yun Tai Kim
- Division of Functional Food Research, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, Korea University of Science & Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Ujjal K Bhawal
- Center for Global Health Research, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India; Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba 271-8587, Japan
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Xuemei Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Jian Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
8
|
Lu L, Xu W, Feng L, Teng X, Ban W, Xue Y, Xing X, Zeng W, Li B. Mechanism of Treadmill Exercise Combined with Rich Environmental Stimulation to Improve Depression in Post-stroke Depression Model Rats. ACTAS ESPANOLAS DE PSIQUIATRIA 2024; 52:693-704. [PMID: 39403905 PMCID: PMC11475051 DOI: 10.62641/aep.v52i5.1771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
BACKGROUND Post-stroke depression (PSD) is a common complication, occurring in approximately one-third of these patients. The neurological symptoms of PSD affect patients' daily life and subsequent recovery. Analyzing the pathogenesis of post-stroke depression from a psychological perspective, it was found that PSD patients often feel despair and anxiety, and it is crucial to explore non-pharmacological ways to improve post-stroke depressive symptoms. A combination of exercise and rich environmental stimulation (RES) has been found effective in improving post-stroke depressive symptoms. Therefore, this study aimed to explore the effects of exercise and rich environmental stimulation on PSD in rats and their potential underlying mechanisms and to provide a theoretical basis for managing PSD. METHODS The PSD rat model was constructed, and the depression-like behaviors of rats in each group were evaluated using the open field test (OFT), sucrose preference test (SPT), and forced swimming test (FST). Moreover, changes in the morphological behavior of rat hippocampus were observed using hematoxylin-eosin (HE) staining and Nissl staining. The expression levels of 5-hydroxytryptamine (5-HT) and norepinephrine (NE) in hippocampus tissues were assessed using enzyme linked immunosorbent assay (ELISA), and the levels of tryptophan-related proteins were determined employing western blot analysis. Additionally, a kynurenine-3-monooxygenase (KMO) inhibitor was administered to the combined stimulation group, and the levels of tryptophan (TRP), 5-HT, kynurenine (KYN), 3-hydroxy-kynurenine (3-HK), and quinolinic acid (QA) were evaluated using liquid chromatography mass spectrometry/mass spectrometry (LC-MS/MS). RESULTS Treadmill exercise combined with rich environmental stimulation significantly reduced the immobility time in the FST (p < 0.01), increased the exploratory behavior in the OFT (p < 0.05), and increased the sucrose water consumption in the SPT (p < 0.01), indicating that the depression-like behavior was improved. Treadmill exercise combined with rich environmental stimulation also improved the shape of the damaged hippocampus and increased the number of neurons in the hippocampus. Additionally, treadmill exercise combined with rich environmental stimulation significantly increased the levels of 5-HT and NE in hippocampus tissues (p < 0.01) and decreased KMO protein level (p < 0.01). In the KMO inhibitor group, the neural function was efficiently restored, the levels of 3-HK, QA, and KMO in the hippocampus were substantially reduced (p < 0.01), and the expression level of 5-HT was increased (p < 0.01). CONCLUSIONS Exercise stimulation combined with enriched environmental stimuli alleviates post-stroke depression in rats, and the underlying mechanisms may be related to TRP/KYN/3-HK/QA excitotoxicity pathways and increased 5-hydroxytryptamine levels.
Collapse
Affiliation(s)
- Lina Lu
- Rehabilitation Department 2, The Second Clinical Medical College of Heilongjiang University of Chinese Medicine, 150000 Harbin, Heilongjiang, China
| | - Wenting Xu
- Rehabilitation Department 2, The Second Clinical Medical College of Heilongjiang University of Chinese Medicine, 150000 Harbin, Heilongjiang, China
| | - Lin Feng
- Spine and Scoliosis Clinic, The Second Clinical Medical College of Heilongjiang University of Chinese Medicine, 150000 Harbin, Heilongjiang, China
| | - Xiuying Teng
- Rehabilitation Department 2, The Second Clinical Medical College of Heilongjiang University of Chinese Medicine, 150000 Harbin, Heilongjiang, China
| | - Weigu Ban
- Rehabilitation Department 2, The Second Clinical Medical College of Heilongjiang University of Chinese Medicine, 150000 Harbin, Heilongjiang, China
| | - Yuman Xue
- Rehabilitation Department 4, The Second Clinical Medical College of Heilongjiang University of Chinese Medicine, 150000 Harbin, Heilongjiang, China
| | - Xueliang Xing
- Rehabilitation Department 4, The Second Clinical Medical College of Heilongjiang University of Chinese Medicine, 150000 Harbin, Heilongjiang, China
| | - Wen Zeng
- Postgraduate College, Heilongjiang University of Chinese Medicine, 150040 Harbin, Heilongjiang, China
| | - Baolong Li
- Rehabilitation Medicine Basic Teaching and Research Office, The Second Clinical Medical College of Heilongjiang University of Chinese Medicine, 150000 Harbin, Heilongjiang, China
| |
Collapse
|
9
|
Wu Y, Deng J, Ma J, Chen Y, Hu N, Hao S, Wang B. Unraveling the Pathogenesis of Post-Stroke Depression in a Hemorrhagic Mouse Model through Frontal Lobe Circuitry and JAK-STAT Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402152. [PMID: 38946585 PMCID: PMC11434213 DOI: 10.1002/advs.202402152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/13/2024] [Indexed: 07/02/2024]
Abstract
Post-stroke depression is a common complication that imposes significant burdens and challenges on patients. The occurrence of depression is often associated with frontal lobe hemorrhage, however, current understanding of the underlying mechanisms remains limited. Here, the pathogenic mechanisms associated with the circuitry connectivity, electrophysiological alterations, and molecular characteristics are investigated related to the frontal lobe in adult male mice following unilateral injection of blood in the medial prefrontal cortex (mPFC). It is demonstrated that depression is a specific neurological complication in the unilateral hematoma model of the mPFC, and the ventral tegmental area (VTA) shows a higher percentage of connectivity disruption compared to the lateral habenula (LHb) and striatum (STR). Additionally, long-range projections originating from the frontal lobe demonstrate higher damage percentages within the connections between each region and the mPFC. mPFC neurons reveal reduced neuronal excitability and altered synaptic communication. Furthermore, transcriptomic analysis identifies the involvement of the Janus Kinase-Signal Transducer and Activator of Transcription (JAK-STAT) signaling pathway, and targeting the JAK-STAT pathway significantly alleviates the severity of depressive symptoms. These findings improve the understanding of post-hemorrhagic depression and may guide the development of efficient treatments.
Collapse
Affiliation(s)
- Yingqing Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqing400030China
| | - Jia Deng
- College of Environment and ResourcesChongqing Technology and Business UniversityChongqing400030China
| | - Jinsong Ma
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqing400030China
| | - Yujie Chen
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest HospitalThird Military Medical University (Army Medical University)Chongqing400038China
| | - Ning Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqing400030China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqing400030China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqing400030China
| |
Collapse
|
10
|
Liu G, Xie C, Li J, Jiang X, Tang H, Li C, Zhang K. Enriched environment treatment promotes neurofunctional recovery by regulating the ALK5/Smad2/3/Gadd45β signaling pathway in rats with cerebral ischemia /reperfusion injury. Neurochem Int 2024; 178:105806. [PMID: 39025366 DOI: 10.1016/j.neuint.2024.105806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
It has been demonstrated that an enriched environment (EE) treatment can alter neuroplasticity in neurodegenerative diseases. However, the role of EE treatment in ischemic stroke remains unclear. Previous findings have revealed that EE treatment can promote cerebral activin-receptor-like-kinase-5 (ALK5) expression after cerebral ischemia/reperfusion (I/R) injury. ALK5 has been identified as a potential mediator of neuroplasticity through its modulation of Smad2/3 and Gadd45β. Therefore, the aim of this study was to investigate whether EE treatment could promote neurofunctional recovery by regulating the ALK5/Smad2/3/Gadd45β pathway. The study utilized the rat model of middle cerebral artery occlusion/reperfusion (MCAO/R). The ALK5/Smad2/3/Gadd45β signaling pathway changes were evaluated using western blotting (WB). Brain injury was assessed by infarct volume and neurobehavioral scores. The effect of EE treatment on neurogenesis was evaluated using Doublecortin (DCX) and Nestin, axonal plasticity with biotinylated dextran amine (BDA) nerve tracing, and dendritic plasticity was assessed using Golgi-Cox staining. EE treatment has been demonstrated to modulate the Smad2/3/Gadd45β pathway by regulating the expression of ALK5. The protective effects of EE treatment on brain infarct volume, neurological function, newborn neurons, dendritic and axonal plasticity following cerebral I/R injury were counteracted by ALK5 silencing. EE treatment can enhance neurofunctional recovery after cerebral I/R injury, which is achieved by regulating the ALK5/Smad2/3/Gadd45β signaling pathway to promote neuroplasticity.
Collapse
Affiliation(s)
- Gang Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Chenchen Xie
- Department of Neurology, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu, Sichuan Province, China; Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Jiani Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Xia Jiang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Hao Tang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Changqing Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Keming Zhang
- School of Clinical Medicine, Chongqing Medical and Pharmaceutical College, Chongqing, China.
| |
Collapse
|
11
|
Chen C, Zhu S, Fu T, Chen Y, Chen D. The protective effects of Ferrostatin-1 against inflammation-induced preterm birth and fetal brain injury. J Reprod Immunol 2024; 164:104260. [PMID: 38761507 DOI: 10.1016/j.jri.2024.104260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/19/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
INTRODUCTION Recent studies have suggested the involvement of ferroptosis in preterm birth. Despite compelling evidence, the underlying mechanism remains unknown. This investigation aimed to determine the therapeutic effects of Ferrostatin-1 (Fer-1), an inhibitor of ferroptosis, in preterm birth and fetal brain injury. METHODS Human placenta samples and clinical data of participants were collected to ascertain whether placental ferroptosis was associated with preterm birth. Lipopolysaccharide (LPS)-induced preterm birth mouse model was used to examine the protective effects of Fer-1 on preterm birth. Fetal brain tissues and offspring mice at 5 and 8 weeks were studied to determine the effects of Fer-1 on the cognitive function of offspring. RESULTS We examined the mechanism of spontaneous preterm birth and discovered that placental ferroptosis was associated with preterm birth. Fer-1 inhibited preterm birth by ameliorating placental ferroptosis and maternal inflammation, thus improving LPS-induced intrauterine inflammation to maintain pregnancy. Antenatal administration of Fer-1 prevented LPS-induced fetal brain damage in the acute phase and improved long-term neurodevelopmental impairments by improving placental neuroendocrine signaling and maintaining placental function. CONCLUSION Fer-1 inhibited preterm birth and fetal brain injury by inhibiting maternal inflammation and improving placental function. Our findings provide a novel therapeutic strategy for preterm birth.
Collapse
Affiliation(s)
- Chaolu Chen
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Zhejiang 310006, China
| | - Shuaiying Zhu
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Zhejiang 310006, China
| | - Tiantian Fu
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Zhejiang 310006, China
| | - Yanmin Chen
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Zhejiang 310006, China
| | - Danqing Chen
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Zhejiang 310006, China.
| |
Collapse
|
12
|
Liu X, Wang J, Jin J, Hu Q, Zhao T, Wang J, Gao J, Man J. S100A9 deletion in microglia/macrophages ameliorates brain injury through the STAT6/PPARγ pathway in ischemic stroke. CNS Neurosci Ther 2024; 30:e14881. [PMID: 39107960 PMCID: PMC11303267 DOI: 10.1111/cns.14881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/30/2024] [Accepted: 07/14/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Microglia and infiltrated macrophages (M/M) are integral components of the innate immune system that play a critical role in facilitating brain repair after ischemic stroke (IS) by clearing cell debris. Novel therapeutic strategies for IS therapy involve modulating M/M phenotype shifting. This study aims to elucidate the pivotal role of S100A9 in M/M and its downstream STAT6/PPARγ signaling pathway in neuroinflammation and phagocytosis after IS. METHODS In the clinical study, we initially detected the expression pattern of S100A9 in monocytes from patients with acute IS and investigated its association with the long-term prognosis. In the in vivo study, we generated the S100A9 conditional knockout (CKO) mice and compared the stroke outcomes with the control group. We further tested the S100A9-specific inhibitor paqunimod (PQD), for its pharmaceutical effects on stroke outcomes. Transcriptomics and in vitro studies were adopted to explore the mechanism of S100A9 in modulating the M/M phenotype, which involves the regulation of the STAT6/PPARγ signaling pathway. RESULTS S100A9 was predominantly expressed in classical monocytes and was correlated with unfavorable outcomes in patients of IS. S100A9 CKO mitigated infarction volume and white matter injury, enhanced cerebral blood flow and functional recovery, and prompted anti-inflammation phenotype and efferocytosis after tMCAO. The STAT6/PPARγ pathway, an essential signaling cascade involved in immune response and inflammation, might be the downstream target mediated by S100A9 deletion, as evidenced by the STAT6 phosphorylation inhibitor AS1517499 abolishing the beneficial effect of S100A9 inhibition in tMCAO mice and cell lines. Moreover, S100A9 inhibition by PQD treatment protected against neuronal death in vitro and brain injuries in vivo. CONCLUSION This study provides evidence for the first time that S100A9 in classical monocytes could potentially be a biomarker for predicting IS prognosis and reveals a novel therapeutic strategy for IS. By demonstrating that S100A9-mediated M/M polarization and phagocytosis can be reversed by S100A9 inhibition in a STAT6/PPARγ pathway-dependent manner, this study opens up new avenues for drug development in the field.
Collapse
Affiliation(s)
- Xi Liu
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Jian Jin
- MRI imaging core, Medical Research CenterThird Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Qiongqiong Hu
- Department of Neurology, Zhengzhou Central HospitalZhengzhou UniversityZhengzhouChina
| | - Ting Zhao
- Department of NeurologyPeople's Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jian Wang
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Jianbo Gao
- Department of RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jiang Man
- Department of RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
13
|
Chen Q, Wu B, Shi Z, Wang Y, Yuan Y, Chen X, Wang Y, Hu J, Mao L, Gao Y, Wu G. LncRNA H19 knockdown promotes neuropathologic and functional recovery via the Nrf2/HO-1 axis after traumatic brain injury. CNS Neurosci Ther 2024; 30:e14870. [PMID: 39049714 PMCID: PMC11269889 DOI: 10.1111/cns.14870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
AIMS Traumatic brain injury (TBI) stands as a significant concern in public health, frequently leading to enduring neurological deficits. Long non-coding RNA H19 (lncRNA H19) exerts a potential regulator role in the pathology of brain injury. This study investigates the effects of lncRNA H19 knockdown (H19-KD) on the pathophysiology of TBI and its potential neuroprotective mechanisms. METHODS Controlled cortical impact was employed to establish a stable TBI mouse model. The expression levels of various genes in perilesional cortex and striatum tissue after TBI was detected by RT-qPCR. AAV9-shRNA-H19 was injected into the lateral ventricle of mice to knockdown the expression of lncRNA H19. Various behavioral tests were performed to evaluate sensorimotor and cognitive functions after TBI. Immunofluorescence and Nissl staining were performed to assess brain tissue damage and neuroinflammation. The Nrf2 and HO-1 expression was performed by Western blot. RESULTS After TBI, the expression of lncRNA H19 was elevated in perilesional tissue and gradually reverted to baseline. Behavioral tests demonstrated that H19-KD significantly promoted the recovery of sensorimotor and cognitive functions after TBI. Besides, H19-KD reduced brain tissue loss, preserved neuronal integrity, and ameliorated white matter damage at the histological level. In addition, H19-KD restrained the pro-inflammatory and facilitated anti-inflammatory phenotypes of microglia/macrophages, attenuating the neuroinflammatory response after TBI. Furthermore, H19-KD promoted activation of the Nrf2/HO-1 axis after TBI, while suppression of Nrf2 partially abolished the neuroprotective effect. CONCLUSION H19-KD exerts neuroprotective effects after TBI in mice, partially mediated by the activation of the Nrf2/HO-1 axis.
Collapse
Affiliation(s)
- Qiankang Chen
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain Science, Fudan UniversityShanghaiChina
| | - Biwu Wu
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain Science, Fudan UniversityShanghaiChina
| | - Ziyu Shi
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain Science, Fudan UniversityShanghaiChina
| | - Yana Wang
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain Science, Fudan UniversityShanghaiChina
| | - Yiwen Yuan
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain Science, Fudan UniversityShanghaiChina
| | - Xingdong Chen
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain Science, Fudan UniversityShanghaiChina
| | - Yuqing Wang
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain Science, Fudan UniversityShanghaiChina
| | - Jin Hu
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain Science, Fudan UniversityShanghaiChina
| | - Leilei Mao
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain Science, Fudan UniversityShanghaiChina
| | - Yanqin Gao
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain Science, Fudan UniversityShanghaiChina
| | - Gang Wu
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain Science, Fudan UniversityShanghaiChina
| |
Collapse
|
14
|
Jiang ST, Lian SY, Sun YH, Pan MB, Wang B, Wang H, Hua J, Wang YC, Wang QL, Dong YF. The oxytocin receptor is essential for the protective effect of pair housing on post-stroke depression in mice. Exp Gerontol 2024; 190:112432. [PMID: 38614224 DOI: 10.1016/j.exger.2024.112432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
The beneficial effect of social interaction in mitigating the incidence of post-stroke depression (PSD) and ameliorating depressive symptoms has been consistently demonstrated through preclinical and clinical studies. However, the underlying relationship with oxytocin requires further investigation. In light of this, the present study aimed to explore the protective effect of pair housing on the development of PSD and the potential relationship with oxytocin receptors. The PSD model was induced by middle cerebral artery occlusion (MCAO) for 50 min, followed by 4-week isolated housing and restrained stress. Subsequently, each mouse in the pair-housing group (PH) was pair-housed with an isosexual healthy partner. Another group was continuously administrated fluoxetine (10 mg/Kg, i.p, once a day) for 3 weeks. To elucidate the potential role of oxytocin, we subjected pair-housed PSD mice to treatment with an oxytocin receptor (OXTR) antagonist (L368,889) (5 mg/Kg, i.p, once a day) for 3 weeks. At 31 to 32 days after MCAO, anxiety- and depressive-like behaviors were assessed using sucrose consumption, forced swim test, and tail-suspension test. The results showed that pair housing significantly improved post-stroke depression to an extent comparable to that of fluoxetine treatment. Furthermore, pair housing significantly decreased corticosterone in serum, increasing OXT mRNA expression in the hypothalamus. Treatment with L368,889 essentially reversed the effect of pair housing, with no discernible sex differences apart from changes in body weight. Pair housing increased hippocampal serotonin (5-HT), but treatment with L368,889 had no significant impact. Additionally, pair housing effectively reduced the number of reactive astrocytes and increased Nissl's body in the cortex and hippocampal CA3 regions. Correspondingly, treatment with L368,889 significantly reversed the changes in the Nissl's body and reactive astrocytes. Moreover, pair housing downregulated mRNA levels of TNF-α, IL-1β, and IL-6 in the cortex caused by PSD, which was also reversed by treatment with L368,889. In conclusion, pair housing protects against the development of PSD depending on OXT and OXTR in the brain, with no significant divergence based on sex. These findings provide valuable insights into the potential of social interaction and oxytocin as therapeutic targets for PSD. Further research into the underlying mechanisms of these effects may contribute to the development of novel treatments for PSD.
Collapse
Affiliation(s)
- Su-Ting Jiang
- Department of Medical Care, School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shu-Ying Lian
- Department of Medical Care, School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yao-Huan Sun
- Department of Medical Care, School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mei-Bo Pan
- Department of Medical Care, School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Bin Wang
- Department of Medical Care, School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hui Wang
- Department of Medical Care, School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jun Hua
- Department of Neurology & Psychology, Shenzhen Traditional Chinese Medicine Hospital, Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yi-Chen Wang
- Department of Medical Care, School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qiu-Ling Wang
- Department of Medical Care, School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yin-Feng Dong
- Department of Pathology and Pathophysiology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
15
|
Wang XP, Guo W, Chen YF, Hong C, Ji J, Zhang XY, Dong YF, Sun XL. PD-1/PD-L1 axis is involved in the interaction between microglial polarization and glioma. Int Immunopharmacol 2024; 133:112074. [PMID: 38615383 DOI: 10.1016/j.intimp.2024.112074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
The tumor microenvironment plays a vital role in glioblastoma growth and invasion. PD-1 and PD-L1 modulate the immunity in the brain tumor microenvironment. However, the underlying mechanisms remain unclear. In the present study, in vivo and in vitro experiments were conducted to reveal the effects of PD-1/PD-L1 on the crosstalk between microglia and glioma. Results showed that glioma cells secreted PD-L1 to the peritumoral areas, particularly microglia containing highly expressed PD-1. In the early stages of glioma, microglia mainly polarized into the pro-inflammatory subtype (M1). Subsequently, the secreted PD-L1 accumulated and bound to PD-1 on microglia, facilitating their polarization toward the microglial anti-inflammatory (M2) subtype primarily via the STAT3 signaling pathway. The role of PD-1/PD-L1 in M2 polarization of microglia was partially due to PD-1/PD-L1 depletion or application of BMS-1166, a novel inhibitor of PD-1/PD-L1. Consistently, co-culturing with microglia promoted glioma cell growth and invasion, and blocking PD-1/PD-L1 significantly suppressed these processes. Our findings reveal that the PD-1/PD-L1 axis engages in the microglial M2 polarization in the glioma microenvironment and promotes tumor growth and invasion.
Collapse
Affiliation(s)
- Xi-Peng Wang
- Nanjing University of Chinese Medicine, Nanjing, China; Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Wei Guo
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Ye-Fan Chen
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Chen Hong
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Juan Ji
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Xi-Yue Zhang
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Yin-Feng Dong
- Nanjing University of Chinese Medicine, Nanjing, China.
| | - Xiu-Lan Sun
- Nanjing University of Chinese Medicine, Nanjing, China; Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
16
|
Li Y, Lu J, Zhang J, Gui W, Xie W. Molecular insights into enriched environments and behavioral improvements in autism: a systematic review and meta-analysis. Front Psychiatry 2024; 15:1328240. [PMID: 38362032 PMCID: PMC10867156 DOI: 10.3389/fpsyt.2024.1328240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/09/2024] [Indexed: 02/17/2024] Open
Abstract
Aims Autism is a multifaceted developmental disorder of the nervous system, that necessitates novel therapeutic approaches beyond traditional medications and psychosomatic therapy, such as appropriate sensory integration training. This systematic mapping review aims to synthesize existing knowledge on enriching environmental interventions as an alternative avenue for improving autism, guiding future research and practice. Method A comprehensive search using the terms ASD and Enriched Environment was conducted across PubMed, EMBASE, ISI, Cochrane, and OVID databases. Most of the literature included in this review was derived from animal model experiments, with a particular focus on assessing the effect of EE on autism-like behavior, along with related pathways and molecular mechanisms. Following extensive group discussion and screening, a total of 19 studies were included for analysis. Results Enriched environmental interventions exhibited the potential to induce both behavioral and biochemical changes, ameliorating autism-like behaviors in animal models. These improvements were attributed to the targeting of BDNF-related pathways, enhanced neurogenesis, and the regulation of glial inflammation. Conclusion This paper underscores the positive impact of enriched environmental interventions on autism through a review of existing literature. The findings contribute to a deeper understanding of the underlying brain mechanisms associated with this intervention.
Collapse
Affiliation(s)
- Yutong Li
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Jing Lu
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Jing Zhang
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wenxin Gui
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Weijie Xie
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Yan L, Han X, Zhang M, Kou H, Liu H, Cheng T. Melatonin exerts neuroprotective effects in mice with spinal cord injury by activating the Nrf2/Keap1 signaling pathway via the MT2 receptor. Exp Ther Med 2024; 27:37. [PMID: 38125360 PMCID: PMC10731399 DOI: 10.3892/etm.2023.12325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/21/2023] [Indexed: 12/23/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating event that often leads to severe disability, and effective treatments for SCI are currently limited. The present study investigated the potential effects and specific mechanisms of melatonin treatment in SCI. Mice were divided into Sham (Sham), Vehicle (Veh), Melatonin (Mel), and Melatonin + 4-phenyl-2-propionamidotetralin (4P-PDOT) (Mel + 4PP) groups based on randomized allocation. The expression of MT2 and the nuclear factor-erythroid 2-related factor 2 (Nrf2)/Keap1 signaling pathways were examined, along with oxidative stress indicators, inflammatory factors and GFAP-positive cells near the injury site. The polarization of microglial cells in different inflammatory microenvironments was also observed. Cell survival, motor function recovery and spinal cord tissue morphology were assessed using staining and Basso Mouse Scale scores. On day 7 after SCI, the results revealed that melatonin treatment increased MT2 protein expression and activated the Nrf2/Keap1 signaling pathway. It also reduced GFAP-positive cells, mitigated oxidative stress, and suppressed inflammatory responses around the injury site. Furthermore, melatonin treatment promoted the polarization of microglia toward the M2 type, increased the number of neutrophil-positive cells, and modulated the transcription of Bax and Bcl2 in the injured spinal cord. Melatonin treatment alleviated the severity of spinal injuries and facilitated functional recovery in mice with SCI. Notably, blocking MT2 with 4P-PDOT partially reversed the neuroprotective effects of melatonin in SCI, indicating that the activation of the MT2/Nrf2/Keap1 signaling pathway contributes to the neuroprotective properties of melatonin in SCI. The therapeutic and translational potentials of melatonin in SCI warrant further investigation.
Collapse
Affiliation(s)
- Liyan Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiaonan Han
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Mingkang Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Hongwei Kou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Hongjian Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Tian Cheng
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
18
|
Nie L, He J, Wang J, Wang R, Huang L, Jia L, Kim YT, Bhawal UK, Fan X, Zille M, Jiang C, Chen X, Wang J. Environmental Enrichment for Stroke and Traumatic Brain Injury: Mechanisms and Translational Implications. Compr Physiol 2023; 14:5291-5323. [PMID: 38158368 DOI: 10.1002/cphy.c230007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Acquired brain injuries, such as ischemic stroke, intracerebral hemorrhage (ICH), and traumatic brain injury (TBI), can cause severe neurologic damage and even death. Unfortunately, currently, there are no effective and safe treatments to reduce the high disability and mortality rates associated with these brain injuries. However, environmental enrichment (EE) is an emerging approach to treating and rehabilitating acquired brain injuries by promoting motor, sensory, and social stimulation. Multiple preclinical studies have shown that EE benefits functional recovery, including improved motor and cognitive function and psychological benefits mediated by complex protective signaling pathways. This article provides an overview of the enriched environment protocols used in animal models of ischemic stroke, ICH, and TBI, as well as relevant clinical studies, with a particular focus on ischemic stroke. Additionally, we explored studies of animals with stroke and TBI exposed to EE alone or in combination with multiple drugs and other rehabilitation modalities. Finally, we discuss the potential clinical applications of EE in future brain rehabilitation therapy and the molecular and cellular changes caused by EE in rodents with stroke or TBI. This article aims to advance preclinical and clinical research on EE rehabilitation therapy for acquired brain injury. © 2024 American Physiological Society. Compr Physiol 14:5291-5323, 2024.
Collapse
Affiliation(s)
- Luwei Nie
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinxin He
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
- Key Laboratory for Brain Science Research and Transformation in the Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Ruike Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Leo Huang
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Lin Jia
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yun Tai Kim
- Division of Functional Food Research, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
- Department of Food Biotechnology, Korea University of Science & Technology, Daejeon, Republic of Korea
| | - Ujjal K Bhawal
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, Japan
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Xiaochong Fan
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Marietta Zille
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xuemei Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jian Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|