1
|
Zheng C, Cui Y, Qin R, Si J, Xiao K, Li G, Lin Z, Hu Y, Sun C, Li J, Lu J. Association of Glymphatic System Dysfunction with Cardiac Injury and Cognitive Impairment in Heart Failure: A Multimodal MRI Study. Acad Radiol 2025:S1076-6332(25)00287-9. [PMID: 40210519 DOI: 10.1016/j.acra.2025.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/23/2025] [Accepted: 03/23/2025] [Indexed: 04/12/2025]
Abstract
RATIONALE AND OBJECTIVES Glymphatic dysfunction, a critical pathway to cognitive impairment, remains underexplored in heart failure (HF). This study investigated glymphatic dysfunction in patients with HF and the relationship between cardiac injury and cognitive performance. METHODS 46 HF patients and 39 age- and sex-matched healthy controls (HCs) underwent brain MR to assess glymphatic markers: choroid plexus (CP) volume, perivascular space (PVS) score, white matter fractional free water (FW), diffusivity along perivascular spaces (ALPS), blood-oxygen-level-dependent (BOLD) signals, and cerebrospinal fluid (CSF) coupling. Group differences were analyzed, and same-day cardiac MR in HF patients assessed cardiac injury markers. Correlation, regression, and mediation analyses explored associations between glymphatic markers, cardiac injury markers, and cognition. RESULTS Patients with HF exhibited significantly higher CP volume, PVS scores, and FW, alongside a lower mean ALPS index and BOLD-CSF coupling than HCs (all P<0.05). Montreal Cognitive Assessment (MoCA) score correlated positively with the mean ALPS index (r=0.479, Padjust=0.014) and inversely with basal ganglia PVS score (r=-0.462, Padjust=0.033) and BOLD-CSF coupling (r=-0.398, Padjust=0.043). Among cardiac MRI parameters, stroke volume (SV) and SV index (SVI) correlated significantly with the mean ALPS index (r=0.419, Padjust=0.020; r=0.448, Padjust=0.014). Mediation analysis showed that the mean ALPS index mediated the correlation between SV/SVI and MoCA scores. CONCLUSION Patients with HF exhibit glymphatic dysfunction, with the mean ALPS index closely correlated to cardiac function and cognition. Cardiac injury-related glymphatic dysfunction in patients with HF may link to cognitive impairment.
Collapse
Affiliation(s)
- Chong Zheng
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China (C.Z., Y.C., R.Q., G.L., J.L.); Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China (C.Z., Y.C., R.Q., G.L., J.L.)
| | - Yadong Cui
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China (C.Z., Y.C., R.Q., G.L., J.L.); Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China (C.Z., Y.C., R.Q., G.L., J.L.)
| | - Rui Qin
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China (C.Z., Y.C., R.Q., G.L., J.L.); Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China (C.Z., Y.C., R.Q., G.L., J.L.)
| | - Jin Si
- Department of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China (J.S., K.X., J.L.)
| | - Keling Xiao
- Department of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China (J.S., K.X., J.L.)
| | - Geng Li
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China (C.Z., Y.C., R.Q., G.L., J.L.); Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China (C.Z., Y.C., R.Q., G.L., J.L.)
| | - Zengping Lin
- Central Research Institute, United Imaging Healthcare, Shanghai, China (Z.L., Y.H., C.S.)
| | - Yujie Hu
- Central Research Institute, United Imaging Healthcare, Shanghai, China (Z.L., Y.H., C.S.)
| | - Chang Sun
- Central Research Institute, United Imaging Healthcare, Shanghai, China (Z.L., Y.H., C.S.)
| | - Jing Li
- Department of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China (J.S., K.X., J.L.)
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China (C.Z., Y.C., R.Q., G.L., J.L.); Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China (C.Z., Y.C., R.Q., G.L., J.L.).
| |
Collapse
|
2
|
Moussiopoulou J, Yakimov V, Roell L, Rauchmann BS, Toth H, Melcher J, Jäger I, Lutz I, Kallweit MS, Papazov B, Boudriot E, Seelos K, Dehsarvi A, Campana M, Raabe F, Maurus I, Löhrs L, Brendel M, Stöcklein S, Falkai P, Hasan A, Group CW, Franzmeier N, Keeser D, Wagner E. Higher blood-brain barrier leakage in schizophrenia-spectrum disorders: A comparative dynamic contrast-enhanced magnetic resonance imaging study with healthy controls. Brain Behav Immun 2025; 128:256-265. [PMID: 40194748 DOI: 10.1016/j.bbi.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/28/2025] [Accepted: 04/02/2025] [Indexed: 04/09/2025] Open
Abstract
BACKGROUND Blood-brain barrier (BBB) disruptions are presumed to be implicated in schizophrenia-spectrum disorders (SSDs). Previous studies focused on cerebrospinal fluid (CSF) markers, which are imprecise for detecting subtle BBB disruption. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) enables sensitive investigation of subtle BBB leakage in vivo, yet remains unexplored in SSD research. We hypothesized higher leakage in SSDs compared to healthy controls (HCs), indicating a clinical sub-phenotype. METHODS Forty-one people with SSDs and forty age- and sex-matched HCs were included in this cross-sectional study employing DCE-MRI, clinical characterization, cognitive assessment, blood and CSF analyses. The volume transfer constant Ktrans, calculated using the Patlak method to estimate the contrast agent transfer between blood and extravascular space, was compared between groups to detect differences in BBB leakage. RESULTS Individuals with SSDs showed higher BBB leakage compared to HCs in a widespread pattern, in brain regions typically affected in SSDs. No significant association was detected between leakage and measures of cognition, symptom severity, peripheral inflammation markers and albumin CSF/serum ratio. CONCLUSIONS This is the first study to date reporting BBB leakage in SSDs compared to HCs in multiple brain regions implicated in the disorder. These findings provide insights into disease mechanisms, highlighting the need for further investigation into the role of the BBB in SSDs.
Collapse
Affiliation(s)
- Joanna Moussiopoulou
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nußbaumstraße 7, 80336 Munich, Germany; DZPG (German Center for Mental Health), partner site München, Augsburg, Germany; Neuroimaging Core Unit Munich, LMU University Hospital, LMU Munich, Nußbaumstraße 7, 80336 Munich, Germany.
| | - Vladislav Yakimov
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nußbaumstraße 7, 80336 Munich, Germany; International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany; DZPG (German Center for Mental Health), partner site München, Augsburg, Germany
| | - Lukas Roell
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nußbaumstraße 7, 80336 Munich, Germany; DZPG (German Center for Mental Health), partner site München, Augsburg, Germany; Neuroimaging Core Unit Munich, LMU University Hospital, LMU Munich, Nußbaumstraße 7, 80336 Munich, Germany
| | - Boris-Stephan Rauchmann
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nußbaumstraße 7, 80336 Munich, Germany; Institute of Neuroradiology, LMU University Hospital, LMU Munich, Marchioninistr. 15 81377 Munich, Germany
| | - Hannah Toth
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nußbaumstraße 7, 80336 Munich, Germany
| | - Julian Melcher
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nußbaumstraße 7, 80336 Munich, Germany
| | - Iris Jäger
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nußbaumstraße 7, 80336 Munich, Germany
| | - Isabel Lutz
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nußbaumstraße 7, 80336 Munich, Germany
| | - Marcel S Kallweit
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nußbaumstraße 7, 80336 Munich, Germany
| | - Boris Papazov
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nußbaumstraße 7, 80336 Munich, Germany; Department of Radiology, LMU University Hospital, LMU Munich, Germany
| | - Emanuel Boudriot
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nußbaumstraße 7, 80336 Munich, Germany; Max Planck Institute of Psychiatry, Munich, Germany
| | - Klaus Seelos
- Institute of Neuroradiology, LMU University Hospital, LMU Munich, Marchioninistr. 15 81377 Munich, Germany
| | - Amir Dehsarvi
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich Germany
| | - Mattia Campana
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nußbaumstraße 7, 80336 Munich, Germany
| | - Florian Raabe
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nußbaumstraße 7, 80336 Munich, Germany; Max Planck Institute of Psychiatry, Munich, Germany
| | - Isabel Maurus
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nußbaumstraße 7, 80336 Munich, Germany; International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany
| | - Lisa Löhrs
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nußbaumstraße 7, 80336 Munich, Germany
| | - Matthias Brendel
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Germany; DZNE (German Center for Neurodegenerative Diseases) Munich, Munich, Germany
| | - Sophia Stöcklein
- Department of Radiology, LMU University Hospital, LMU Munich, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nußbaumstraße 7, 80336 Munich, Germany; Max Planck Institute of Psychiatry, Munich, Germany; DZPG (German Center for Mental Health), partner site München, Augsburg, Germany
| | - Alkomiet Hasan
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, University of Augsburg 86156 Augsburg, Germany; DZPG (German Center for Mental Health), partner site München, Augsburg, Germany
| | - Cdp Working Group
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nußbaumstraße 7, 80336 Munich, Germany; Max Planck Institute of Psychiatry, Munich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, University of Augsburg 86156 Augsburg, Germany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Evidence-based psychiatry and psychotherapy, Faculty of Medicine, University of Augsburg, Stenglinstrasse 2, 86156 Augsburg, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nußbaumstraße 7, 80336 Munich, Germany; Neuroimaging Core Unit Munich, LMU University Hospital, LMU Munich, Nußbaumstraße 7, 80336 Munich, Germany
| | - Elias Wagner
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nußbaumstraße 7, 80336 Munich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, University of Augsburg 86156 Augsburg, Germany; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Germany; Evidence-based psychiatry and psychotherapy, Faculty of Medicine, University of Augsburg, Stenglinstrasse 2, 86156 Augsburg, Germany
| |
Collapse
|
3
|
Maphis NM, Hulse J, Peabody J, Dadras S, Whelpley MJ, Kandath M, Wilson C, Hobson S, Thompson J, Poolsup S, Beckman D, Ott SP, Watanabe JW, Usachenko JL, Van Rompay KK, Morrison J, Selwyn R, Rosenberg G, Knoefel J, Chackerian B, Bhaskar K. Targeting of phosphorylated tau at threonine 181 by a Qβ virus-like particle vaccine is safe, highly immunogenic, and reduces disease severity in mice and rhesus macaques. Alzheimers Dement 2025; 21:e70101. [PMID: 40145301 PMCID: PMC11947757 DOI: 10.1002/alz.70101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/28/2025]
Abstract
INTRODUCTION Pathological accumulation of tau (pTau) contributes to various tauopathies, including Alzheimer's disease (AD), and correlates with cognitive decline. A rapid surge in tau-targeted approaches via anti-sense oligonucleotides, active/passive immunotherapies suggests that targeting p-Tau is a viable strategy against tauopathies. METHOD We describe a multi-species validation of our previously described Qß virus-like particle (VLP)-based vaccine technology targeting phosphorylated tau on threonine 181 (pT181-Qß). RESULTS Two vaccine doses of pT181-Qß, without any adjuvants, elicited robust antibody responses in two different mouse models of tauopathy (PS19 and hTau) and rhesus macaques. In mouse models, vaccination reduced AT180+ hyperphosphorylated, Sarkosyl insoluble, Gallyas silver positive tau, inflammasomes/neuroinflammation, and improved recognition memory and motor function without inducing adverse T-cell activation. Anti-pT181 antibodies are reactive to pTau in human AD brains, engage pT181+ tau in human brain lysates, and are central nervous system bioavailable. DISCUSSION Our results suggest the translational utility of pT181-Qß against tauopathies. HIGHLIGHTS Icosahedral display of phosphorylated tau at threonine 181 (pT181) Qß virus-like particle surface ("pT181-Qß" vaccine) induces a robust immune response in mice and in non-human primates (NHPs) pT181-Qß vaccination reduces pathological tau (pTau) and brain atrophy, and improves memory and motor function in PS19 and hTau mice. pT181-Qß vaccination-induced immunoglobulin Gs (IgGs) are safe, Th2 skewed (anti-inflammatory), specific to pTau in human AD brain, and efficiently engage pT181 in NHPs and human brain lysate. pT181+ tau in human plasma correlates with the neurofilament light in subjects with mild cognitive impairment (MCI)-suggesting the presence of pT181-Qß vaccine target in the early disease state.
Collapse
Affiliation(s)
- Nicole M. Maphis
- Department of Neuroscience1 University of New MexicoAlbuquerqueNew MexicoUSA
| | - Jonathan Hulse
- Department of Molecular Genetics and Microbiology1 University of New MexicoAlbuquerqueNew MexicoUSA
| | - Julianne Peabody
- Department of Molecular Genetics and Microbiology1 University of New MexicoAlbuquerqueNew MexicoUSA
| | - Somayeh Dadras
- Department of Molecular Genetics and Microbiology1 University of New MexicoAlbuquerqueNew MexicoUSA
| | - Madelin J Whelpley
- Department of Molecular Genetics and Microbiology1 University of New MexicoAlbuquerqueNew MexicoUSA
| | - Manas Kandath
- Department of Molecular Genetics and Microbiology1 University of New MexicoAlbuquerqueNew MexicoUSA
| | - Colin Wilson
- Department of Radiology1 University of New MexicoAlbuquerqueNew MexicoUSA
| | - Sasha Hobson
- Center for Memory and Aging1 University of New MexicoAlbuquerqueNew MexicoUSA
| | - Jeff Thompson
- Center for Memory and Aging1 University of New MexicoAlbuquerqueNew MexicoUSA
| | - Suttinee Poolsup
- Department of Molecular Genetics and Microbiology1 University of New MexicoAlbuquerqueNew MexicoUSA
| | - Danielle Beckman
- California National Primate Research CenterUniversity of CaliforniaDavisCaliforniaUSA
| | - Sean P Ott
- California National Primate Research CenterUniversity of CaliforniaDavisCaliforniaUSA
| | - Jennifer W. Watanabe
- California National Primate Research CenterUniversity of CaliforniaDavisCaliforniaUSA
| | - Jodie L. Usachenko
- California National Primate Research CenterUniversity of CaliforniaDavisCaliforniaUSA
| | - Koen K Van Rompay
- California National Primate Research CenterUniversity of CaliforniaDavisCaliforniaUSA
| | - John Morrison
- California National Primate Research CenterUniversity of CaliforniaDavisCaliforniaUSA
| | - Reed Selwyn
- Department of Radiology1 University of New MexicoAlbuquerqueNew MexicoUSA
| | - Gary Rosenberg
- Center for Memory and Aging1 University of New MexicoAlbuquerqueNew MexicoUSA
| | - Janice Knoefel
- Center for Memory and Aging1 University of New MexicoAlbuquerqueNew MexicoUSA
| | - Bryce Chackerian
- Department of Molecular Genetics and Microbiology1 University of New MexicoAlbuquerqueNew MexicoUSA
| | - Kiran Bhaskar
- Department of Molecular Genetics and Microbiology1 University of New MexicoAlbuquerqueNew MexicoUSA
| |
Collapse
|
4
|
French SR, Meyer BP, Arias JC, Levendovzsky SR, Weinkauf CC. Biomarkers of blood-brain barrier and neurovascular unit integrity in human cognitive impairment and dementia. Alzheimers Dement 2025; 21:e70104. [PMID: 40145342 PMCID: PMC11947770 DOI: 10.1002/alz.70104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/28/2025]
Abstract
Blood-brain barrier (BBB) dysfunction is recognized as an early step in the development of Alzheimer's disease and related dementias (ADRD). Biomarkers are needed to monitor BBB integrity over time, better understand the role of the BBB in neurodegeneration, potentially help define long-term ADRD risk, and monitor effects of therapeutics. In this review, we discuss the current biomarkers used to detect human BBB dysfunction in the context of cognitive decline and dementia. We also discuss promising candidate fluid biomarkers to detect BBB dysfunction in blood. HIGHLIGHTS: BBB permeability occurs during normal aging and is further exacerbated in ADRD. In this review, we discuss in vivo imaging and CSF biomarkers of BBB dysfunction currently used in the setting of aging and ADRD in humans. We also review promising candidate blood-based biomarkers that may represent BBB dysfunction.
Collapse
Affiliation(s)
- Scott R. French
- Division of Vascular SurgeryUniversity of ArizonaTucsonArizonaUSA
| | - Briana P. Meyer
- Department of Radiology, Integrated Brain Imaging CenterUniversity of Washington Medical CenterSeattleWashingtonUSA
| | - Juan C. Arias
- Division of Vascular SurgeryUniversity of ArizonaTucsonArizonaUSA
| | - Swati Rane Levendovzsky
- Department of Radiology, Integrated Brain Imaging CenterUniversity of Washington Medical CenterSeattleWashingtonUSA
| | | |
Collapse
|
5
|
Rhind SG, Shiu MY, Tenn C, Nakashima A, Jetly R, Sajja VSSS, Long JB, Vartanian O. Repetitive Low-Level Blast Exposure Alters Circulating Myeloperoxidase, Matrix Metalloproteinases, and Neurovascular Endothelial Molecules in Experienced Military Breachers. Int J Mol Sci 2025; 26:1808. [PMID: 40076437 PMCID: PMC11898641 DOI: 10.3390/ijms26051808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Repeated exposure to low-level blast overpressure, frequently experienced during explosive breaching and heavy weapons use in training and operations, is increasingly recognised as a serious risk to the neurological health of military personnel. Although research on the underlying pathobiological mechanisms in humans remains limited, this study investigated the effects of such exposure on circulating molecular biomarkers associated with inflammation, neurovascular damage, and endothelial injury. Blood samples from military breachers were analysed for myeloperoxidase (MPO), matrix metalloproteinases (MMPs), and junctional proteins indicative of blood-brain barrier (BBB) disruption and endothelial damage, including occludin (OCLN), zonula occludens-1 (ZO-1), aquaporin-4 (AQP4), and syndecan-1 (SD-1). The results revealed significantly elevated levels of MPO, MMP-3, MMP-9, and MMP-10 in breachers compared to unexposed controls, suggesting heightened inflammation, oxidative stress, and vascular injury. Increased levels of OCLN and SD-1 further indicated BBB disruption and endothelial glycocalyx degradation in breachers. These findings highlight the potential for chronic neurovascular unit damage/dysfunction from repeated blast exposure and underscore the importance of early targeted interventions-such as reducing oxidative stress, reinforcing BBB integrity, and managing inflammation-that could be essential in mitigating the risk of long-term neurological impairment associated with blast exposure.
Collapse
Affiliation(s)
- Shawn G. Rhind
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON M3K 2C9, USA; (M.Y.S.); (O.V.)
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2W6, Canada
| | - Maria Y. Shiu
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON M3K 2C9, USA; (M.Y.S.); (O.V.)
| | - Catherine Tenn
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB T1A 8K6, Canada;
| | - Ann Nakashima
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON M3K 2C9, USA; (M.Y.S.); (O.V.)
| | - Rakesh Jetly
- The Institute of Mental Health Research, University of Ottawa, Royal Ottawa Hospital, Ottawa, ON K1Z 7K4, Canada;
| | | | - Joseph B. Long
- Blast-Induced NeuroTrauma Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA (J.B.L.)
| | - Oshin Vartanian
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON M3K 2C9, USA; (M.Y.S.); (O.V.)
- Department of Psychology, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
6
|
Hu HY, Li HQ, Gong WK, Huang SY, Fu Y, Hu H, Dong Q, Cheng W, Tan L, Cui M, Yu JT. Microstructural white matter injury contributes to cognitive decline: Besides amyloid and tau. J Prev Alzheimers Dis 2025; 12:100037. [PMID: 39863331 DOI: 10.1016/j.tjpad.2024.100037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/27/2025]
Abstract
BACKGROUND Cognitive decline and the progression to Alzheimer's disease (AD) are traditionally associated with amyloid-beta (Aβ) and tau pathologies. This study aims to evaluate the relationships between microstructural white matter injury, cognitive decline and AD core biomarkers. METHODS We conducted a longitudinal study of 566 participants using peak width of skeletonized mean diffusivity (PSMD) to quantify microstructural white matter injury. The associations of PSMD with changes in cognitive functions, AD pathologies (Aβ, tau, and neurodegeneration), and volumes of AD-signature regions of interest (ROI) or hippocampus were estimated. The associations between PSMD and the incidences of clinical progression were also tested. Covariates included age, sex, education, apolipoprotein E4 status, smoking, and hypertension. RESULTS Higher PSMD was associated with greater cognitive decline (β=-0.012, P < 0.001 for Mini-Mental State Examination score; β<0, P < 0.05 for four cognitive domains) and a higher risk of clinical progression from normal cognition to mild cognitive impairment (MCI) or AD (Hazard ratio=2.11 [1.38-3.23], P < 0.001). These associations persisted independently of amyloid status. PSMD did not predict changes in Aβ or tau levels, but predicted changes in volumes of AD-signature ROI (β=-0.003, P < 0.001) or hippocampus (β=-0.002, P = 0.010). Besides, the whole-brain PSMD could predict cognitive decline better than regional PSMDs. CONCLUSIONS PSMD may be a valuable biomarker for predicting cognitive decline and clinical progression to MCI and AD, providing insights besides traditional Aβ and tau pathways. Further research could elucidate its role in clinical assessments and therapeutic strategies.
Collapse
Affiliation(s)
- He-Ying Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, PR China.
| | - Hong-Qi Li
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, PR China.
| | - Wei-Kang Gong
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, PR China.
| | - Shu-Yi Huang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, PR China.
| | - Yan Fu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, PR China.
| | - Hao Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, PR China.
| | - Qiang Dong
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, PR China.
| | - Wei Cheng
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, PR China.
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, PR China.
| | - Mei Cui
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, PR China.
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, PR China.
| |
Collapse
|
7
|
Nyúl-Tóth Á, Patai R, Csiszar A, Ungvari A, Gulej R, Mukli P, Yabluchanskiy A, Benyo Z, Sotonyi P, Prodan CI, Liotta EM, Toth P, Elahi F, Barsi P, Maurovich-Horvat P, Sorond FA, Tarantini S, Ungvari Z. Linking peripheral atherosclerosis to blood-brain barrier disruption: elucidating its role as a manifestation of cerebral small vessel disease in vascular cognitive impairment. GeroScience 2024; 46:6511-6536. [PMID: 38831182 PMCID: PMC11494622 DOI: 10.1007/s11357-024-01194-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024] Open
Abstract
Aging plays a pivotal role in the pathogenesis of cerebral small vessel disease (CSVD), contributing to the onset and progression of vascular cognitive impairment and dementia (VCID). In older adults, CSVD often leads to significant pathological outcomes, including blood-brain barrier (BBB) disruption, which in turn triggers neuroinflammation and white matter damage. This damage is frequently observed as white matter hyperintensities (WMHs) in neuroimaging studies. There is mounting evidence that older adults with atherosclerotic vascular diseases, such as peripheral artery disease, ischemic heart disease, and carotid artery stenosis, face a heightened risk of developing CSVD and VCID. This review explores the complex relationship between peripheral atherosclerosis, the pathogenesis of CSVD, and BBB disruption. It explores the continuum of vascular aging, emphasizing the shared pathomechanisms that underlie atherosclerosis in large arteries and BBB disruption in the cerebral microcirculation, exacerbating both CSVD and VCID. By reviewing current evidence, this paper discusses the impact of endothelial dysfunction, cellular senescence, inflammation, and oxidative stress on vascular and neurovascular health. This review aims to enhance understanding of these complex interactions and advocate for integrated approaches to manage vascular health, thereby mitigating the risk and progression of CSVD and VCID.
Collapse
Affiliation(s)
- Ádám Nyúl-Tóth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
| | - Roland Patai
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Anna Ungvari
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary.
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Department of Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
| | - Zoltan Benyo
- Institute of Translational Medicine, Semmelweis University, 1094, Budapest, Hungary
- Cerebrovascular and Neurocognitive Disorders Research Group, HUN-REN, Semmelweis University, 1094, Budapest, Hungary
| | - Peter Sotonyi
- Department of Vascular and Endovascular Surgery, Heart and Vascular Centre, Semmelweis University, 1122, Budapest, Hungary
| | - Calin I Prodan
- Veterans Affairs Medical Center, Oklahoma City, OK, USA
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Eric M Liotta
- Doctoral College/Department of Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
- Department of Neurology, Division of Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Peter Toth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
- Neurotrauma Research Group, Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- ELKH-PTE Clinical Neuroscience MR Research Group, University of Pecs, Pecs, Hungary
| | - Fanny Elahi
- Departments of Neurology and Neuroscience Ronald M. Loeb Center for Alzheimer's Disease Friedman Brain Institute Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Medical Center, Bronx, NY, USA
| | - Péter Barsi
- ELKH-SE Cardiovascular Imaging Research Group, Department of Radiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Pál Maurovich-Horvat
- ELKH-SE Cardiovascular Imaging Research Group, Department of Radiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Farzaneh A Sorond
- Department of Neurology, Division of Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Department of Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Department of Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
| |
Collapse
|
8
|
Zvenigorodsky V, Gruenbaum BF, Shelef I, Horev A, Azab AN, Oleshko A, Abu-Rabia M, Negev S, Zlotnik A, Melamed I, Boyko M. Evaluation of Blood-Brain Barrier Disruption Using Low- and High-Molecular-Weight Complexes in a Single Brain Sample in a Rat Traumatic Brain Injury Model: Comparison to an Established Magnetic Resonance Imaging Technique. Int J Mol Sci 2024; 25:11241. [PMID: 39457023 PMCID: PMC11508800 DOI: 10.3390/ijms252011241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Traumatic brain injury (TBI), a major cause of death and disability among young people, leads to significant public health and economic challenges. Despite its frequency, treatment options remain largely unsuitable. However, examination of the blood-brain barrier (BBB) can assist with understanding the mechanisms and dynamics of brain dysfunction, which affects TBI sufferers secondarily to the injury. Here, we present a rat model of TBI focused on two standard BBB assessment markers, high- and low-molecular-weight complexes, in order to understand BBB disruption. In addition, we tested a new technique to evaluate BBB disruption on a single brain set, comparing the new technique with neuroimaging. A total of 100 Sprague-Dawley rats were separated into the following five groups: naive rats (n = 20 rats), control rats with administration (n = 20 rats), and TBI rats (n = 60 rats). Rats were assessed at different time points after the injury to measure BBB disruption using low- and high-molecular-weight complexes. Neurological severity score was evaluated at baseline and at 24 h following TBI. During the neurological exam after TBI, the rats were scanned with magnetic resonance imaging and euthanized for assessment of the BBB permeability. We found that the two markers displayed different examples of BBB disruption in the same set of brain tissues over the period of a week. Our innovative protocol for assessing BBB permeability using high- and low-molecular-weight complexes markers in a single brain set showed appropriate results. Additionally, we determined the lower limit of sensitivity, therefore demonstrating the accuracy of this method.
Collapse
Affiliation(s)
- Vladislav Zvenigorodsky
- Department of Radiology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (V.Z.); (I.S.)
| | - Benjamin F. Gruenbaum
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Ilan Shelef
- Department of Radiology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (V.Z.); (I.S.)
| | - Anat Horev
- Department of Neurology, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel;
| | - Abed N. Azab
- Department of Nursing, Recanati School for Community Health Professions, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel;
| | - Anna Oleshko
- Department of Biology and Methods of Teaching Biology, A. S. Makarenko Sumy State Pedagogical University, 40002 Sumy, Ukraine;
| | - Mammduch Abu-Rabia
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (M.A.-R.); (S.N.); (A.Z.)
| | - Shahar Negev
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (M.A.-R.); (S.N.); (A.Z.)
| | - Alexander Zlotnik
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (M.A.-R.); (S.N.); (A.Z.)
| | - Israel Melamed
- Department of Neurosurgery, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel;
| | - Matthew Boyko
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (M.A.-R.); (S.N.); (A.Z.)
| |
Collapse
|
9
|
Lehikoinen J, Strandin T, Parantainen J, Nurmi K, Eklund KK, Rivera FJ, Vaheri A, Tienari PJ. Fibrinolysis associated proteins and lipopolysaccharide bioactivity in plasma and cerebrospinal fluid in multiple sclerosis. J Neuroimmunol 2024; 395:578432. [PMID: 39151321 DOI: 10.1016/j.jneuroim.2024.578432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/24/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
The coagulation cascade and fibrinolysis have links with neuroinflammation and increased activation of the coagulation system has been reported in MS patients. We quantified levels of D-dimer, tissue plasminogen activator (tPA), plasminogen activator inhibitor-1 (PAI-1) and the bioactivity of bacterial lipopolysaccharide (LPS) in cerebrospinal fluid (CSF) and plasma from newly diagnosed untreated MS patients and controls. These molecules showed multiple correlations with each other as well as with age, HLA-DRB1*15:01, body-mass-index and CSF IgG. Our results confirm previous findings of increased plasma PAI-1 and LPS in MS patients compared to controls indicating changes in platelet function and gut permeability in MS.
Collapse
Affiliation(s)
- Joonas Lehikoinen
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland; Department of Neurology, Neurocenter, Helsinki University Hospital, Helsinki, Finland.
| | - Tomas Strandin
- Department of Virology, Medicum, University of Helsinki, Helsinki, Finland
| | - Jukka Parantainen
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Katariina Nurmi
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Kari K Eklund
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland; Rheumatology, Helsinki University Hospital, Helsinki, Finland
| | - Francisco J Rivera
- Translational Regenerative Neurobiology Group (TReN), Molecular and Integrative Biosciences Research Programme (MIBS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Antti Vaheri
- Department of Virology, Medicum, University of Helsinki, Helsinki, Finland
| | - Pentti J Tienari
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland; Department of Neurology, Neurocenter, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
10
|
Gulej R, Nyúl-Tóth Á, Csik B, Patai R, Petersen B, Negri S, Chandragiri SS, Shanmugarama S, Mukli P, Yabluchanskiy A, Conley S, Huffman D, Tarantini S, Csiszar A, Ungvari Z. Young blood-mediated cerebromicrovascular rejuvenation through heterochronic parabiosis: enhancing blood-brain barrier integrity and capillarization in the aged mouse brain. GeroScience 2024; 46:4415-4442. [PMID: 38727872 PMCID: PMC11336025 DOI: 10.1007/s11357-024-01154-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/05/2024] [Indexed: 06/15/2024] Open
Abstract
Age-related cerebromicrovascular changes, including blood-brain barrier (BBB) disruption and microvascular rarefaction, play a significant role in the development of vascular cognitive impairment (VCI) and neurodegenerative diseases. Utilizing the unique model of heterochronic parabiosis, which involves surgically joining young and old animals, we investigated the influence of systemic factors on these vascular changes. Our study employed heterochronic parabiosis to explore the effects of young and aged systemic environments on cerebromicrovascular aging in mice. We evaluated microvascular density and BBB integrity in parabiotic pairs equipped with chronic cranial windows, using intravital two-photon imaging techniques. Our results indicate that short-term exposure to young systemic factors leads to both functional and structural rejuvenation of cerebral microcirculation. Notably, we observed a marked decrease in capillary density and an increase in BBB permeability to fluorescent tracers in the cortices of aged mice undergoing isochronic parabiosis (20-month-old C57BL/6 mice [A-(A)]; 6 weeks of parabiosis), compared to young isochronic parabionts (6-month-old, [Y-(Y)]). However, aged heterochronic parabionts (A-(Y)) exposed to young blood exhibited a significant increase in cortical capillary density and restoration of BBB integrity. In contrast, young mice exposed to old blood from aged parabionts (Y-(A)) rapidly developed cerebromicrovascular aging traits, evidenced by reduced capillary density and increased BBB permeability. These findings underscore the profound impact of systemic factors in regulating cerebromicrovascular aging. The rejuvenation observed in the endothelium, following exposure to young blood, suggests the existence of anti-geronic elements that counteract microvascular aging. Conversely, pro-geronic factors in aged blood appear to accelerate cerebromicrovascular aging. Further research is needed to assess whether the rejuvenating effects of young blood factors could extend to other age-related cerebromicrovascular pathologies, such as microvascular amyloid deposition and increased microvascular fragility.
Collapse
Affiliation(s)
- Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Boglarka Csik
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Roland Patai
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Benjamin Petersen
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sharon Negri
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Siva Sai Chandragiri
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Santny Shanmugarama
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Shannon Conley
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Derek Huffman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA.
| |
Collapse
|
11
|
Lin C, Zhao P, Sun G, Liu N, Ji J. SCG2 mediates blood-brain barrier dysfunction and schizophrenia-like behaviors after traumatic brain injury. FASEB J 2024; 38:e70016. [PMID: 39225388 DOI: 10.1096/fj.202401117r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/27/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Traumatic brain injury (TBI), which is characterized by acute neurological dysfunction, is also one of the most widely recognized environmental risk factors for various neurological and psychiatric disorders. However, the role of TBI in neurological perturbation and the mechanisms underlying these disorders remain unknown. We evaluated transcriptional changes in cells of the frontal cortex after TBI by exploiting single-cell RNA sequencing (scRNA-Seq). We adopted the gene expression omnibus and scRNA-Seq to identify the mediation by secretogranin II (SCG2) of TBI-induced schizophrenia. Astrocytes are a principal source of SCG2 in the frontal cortex after TBI. Our analysis indicated that SCG2-triggered disruption of the blood-brain barrier (BBB) via the CypA-MMP-9 signaling pathway. Furthermore, astrocytic SCG2 knockout in the frontal cortex reduced BBB damage, mitigated inflammation, and inhibited schizophrenia after TBI. In conclusion, we identified the SCG2-CypA-MMP-9 signaling pathway in reactive astrocytes as a key switch in the protection of the BBB and provided a novel therapeutic avenue for treating psychiatric disorders after TBI.
Collapse
Affiliation(s)
- Chao Lin
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Neurosurgery, Jiangsu Province Hospital, Nanjing, China
| | - Pengzhang Zhao
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Neurosurgery, Jiangsu Province Hospital, Nanjing, China
| | - Guangchi Sun
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Neurosurgery, Jiangsu Province Hospital, Nanjing, China
| | - Ning Liu
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Neurosurgery, Jiangsu Province Hospital, Nanjing, China
| | - Jing Ji
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Neurosurgery, Jiangsu Province Hospital, Nanjing, China
| |
Collapse
|
12
|
Li ZQ, Liu XX, Wang XF, Shen C, Cao F, Guan XM, Zhang Y, Liu JP. Synergistic impact of plasma albumin and cognitive function on all-cause mortality in Chinese older adults: a prospective cohort study. Front Nutr 2024; 11:1410196. [PMID: 39114122 PMCID: PMC11303755 DOI: 10.3389/fnut.2024.1410196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Background Hypoalbuminemia and cognitive impairment (CI) each independently increase the mortality risk in older adults. However, these two geriatric syndromes can occur simultaneously. In community-dwelling older adults, is the combination of hypoalbuminemia and CI linked to a higher mortality risk than either condition alone? Objective We aimed to investigate the association between plasma albumin, cognitive function, and their synergistic effect on mortality in Chinese community-dwelling older adults. Methods Data from the Chinese Longitudinal Healthy Longevity Survey (2012) included 1,858 participants aged ≥65. Baseline assessments comprised albumin levels and cognitive status. All-cause mortality was confirmed through 2014-2018 surveys. Cox proportional hazards models assessed associations, and restricted cubic splines explored albumin-mortality relationship. Results During a median follow-up of 48.85 months, 921 deaths. Albumin≥35 g/L vs < 35g/L [HR: 1.33 (95%CI, 1.10, 1.62)] and CI vs normal cognition [HR: 1.69 (95%CI, 1.43, 1.99)] independently predicted mortality. A dose-response relationship with mortality was observed for albumin quartiles (p < 0.001). Each SD increase in MMSE or albumin correlated with 22% and 15% lower mortality risk, respectively. Combined hypoproteinemia and CI increased the mortality risk by 155%, with a notably higher risk in males, those aged <85 years, and individuals living in rural areas. Interaction effects of albumin and CI on mortality were observed (p < 0.001). In the single CI group, older adults had a 61% increased risk of mortality in the hypoproteinaemia group compared with the albumin-normal group. Restricted cubic spline revealed a reverse J-shaped association, particularly for participants without CI. For individuals with CI, albumin levels were inversely associated with mortality risk. Conclusion Hypoproteinemia and CI, individually and combined, increased all-cause mortality risk in Chinese older adults, with stronger effects observed in males, younger older adults, and those living in rural areas. These findings emphasize the importance of targeted adjustments and early nutrition programs in health prevention and clinical care for older adults.
Collapse
Affiliation(s)
- Zhi-qiang Li
- Centre for Evidence-based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xin-xin Liu
- Centre for Evidence-based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xue-feng Wang
- Centre for Evidence-based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chen Shen
- Centre for Evidence-based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Feng Cao
- Centre for Evidence-based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xin-miao Guan
- Centre for Evidence-based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Zhang
- Centre for Evidence-based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jian-ping Liu
- Centre for Evidence-based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- The National Research Center in Complementary and Alternative Medicine (NAFKAM), Department of Community Medicine, Faculty of Health Science, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
13
|
Van Roy Z, Kielian T. Tumor necrosis factor regulates leukocyte recruitment but not bacterial persistence during Staphylococcus aureus craniotomy infection. J Neuroinflammation 2024; 21:179. [PMID: 39044282 PMCID: PMC11264501 DOI: 10.1186/s12974-024-03174-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/14/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Craniotomy is a common neurosurgery used to treat intracranial pathologies. Nearly 5% of the 14 million craniotomies performed worldwide each year become infected, most often with Staphylococcus aureus (S. aureus), which forms a biofilm on the surface of the resected bone segment to establish a chronic infection that is recalcitrant to antibiotics and immune-mediated clearance. Tumor necrosis factor (TNF), a prototypical proinflammatory cytokine, has been implicated in generating protective immunity to various infections. Although TNF is elevated during S. aureus craniotomy infection, its functional importance in regulating disease pathogenesis has not been explored. METHODS A mouse model of S. aureus craniotomy infection was used to investigate the functional importance of TNF signaling using TNF, TNFR1, and TNFR2 knockout (KO) mice by quantifying bacterial burden, immune infiltrates, inflammatory mediators, and transcriptional changes by RNA-seq. Complementary experiments examined neutrophil extracellular trap formation, leukocyte apoptosis, phagocytosis, and bactericidal activity. RESULTS TNF transiently regulated neutrophil and granulocytic myeloid-derived suppressor cell recruitment to the brain, subcutaneous galea, and bone flap as evident by significant reductions in both cell types between days 7 to 14 post-infection coinciding with significant decreases in several chemokines, which recovered to wild type levels by day 28. Despite these defects, bacterial burdens were similar in TNF KO and WT mice. RNA-seq revealed enhanced lymphotoxin-α (Lta) expression in TNF KO granulocytes. Since both TNF and LTα signal through TNFR1 and TNFR2, KO mice for each receptor were examined to assess potential redundancy; however, neither strain had any impact on S. aureus burden. In vitro studies revealed that TNF loss selectively altered macrophage responses to S. aureus since TNF KO macrophages displayed significant reductions in phagocytosis, apoptosis, IL-6 production, and bactericidal activity in response to live S. aureus, whereas granulocytes were not affected. CONCLUSION These findings implicate TNF in modulating granulocyte recruitment during acute craniotomy infection via secondary effects on chemokine production and identify macrophages as a key cellular target of TNF action. However, the lack of changes in bacterial burden in TNF KO animals suggests the involvement of additional signals that dictate S. aureus pathogenesis during craniotomy infection.
Collapse
Affiliation(s)
- Zachary Van Roy
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE, 68198-5900, USA
| | - Tammy Kielian
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE, 68198-5900, USA.
| |
Collapse
|
14
|
He H, Xu J, Peng Q, Li Y, Huang Y, Zhang YL, Li X. The application value of cerebrospinal fluid immunoglobulin in tuberculous meningitis. Microbiol Spectr 2024; 12:e0015724. [PMID: 38666897 PMCID: PMC11237685 DOI: 10.1128/spectrum.00157-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/17/2024] [Indexed: 06/06/2024] Open
Abstract
This article aims to study the value of cerebrospinal fluid (CSF) immunoglobulin in differential diagnosis, prediction, and prognosis of tuberculous meningitis (TBM). The clinical data of 65 patients with TBM in our hospital were collected, and 65 patients with cryptococcal meningitis (CM) were enrolled in 1:1 matching. Relevant data were collected for comparison. CSFs IgG [331.51 (164.85, 645.00) vs 129.00 (55.05, 251.00) ng/mL], IgM [22.38 (8.52, 40.18) vs 6.08 (2.19, 23.30) ng/mL], and IgA [64.11 (21.44, 115.48) vs 16.55 (4.76, 30.36) ng/mL] in the TBM group were higher than those in the CM group (P < 0.001). In the TBM group, after 24 weeks of treatment, the CSFs IgG, IgM, and IgA were significantly decreased, and the difference was statistically significant (P < 0.05). The predictive results of CSF immunoglobulin for TBM showed that IgG, IgM, and IgA all had some predictive value for TBM, and the combined predictive value of the three was the highest, with an area under the curve of 0.831 (95% CI: 0.774-0.881). Logistic regression analysis of CSF immunoglobulins and TBM prognosis showed that IgG [odds ratio (OR) = 4.796, 95% confidence interval (CI): 2.575-8.864], IgM (OR = 3.456, 95% CI: 2.757-5.754), and IgA (OR = 4.371, 95% CI: 2.731-5.856) were TBM risk factors for poor prognosis in patients. The levels of IgG, IgM, and IgA in CSF were positively correlated with the severity of cranial magnetic resonance imaging (MRI) in TBM patients (R2 = 0.542, F = 65.392, P < 0.05). CSFs IgG, IgM, and IgA can be used as a routine monitoring index for TBM patients, which has a certain reference value in differential diagnosis and efficacy evaluation. IMPORTANCE In clinical practice, physicians can determine the physical conditions of patients based on the levels of cerebrospinal fluids (CSFs) IgG, IgM, and IgA. Higher levels of CSFs IgG, IgM, and IgA suggest more possibility of tuberculous meningitis and worse prognosis and magnetic resonance imaging manifestations.
Collapse
Affiliation(s)
- Hua He
- Department of Infectious Disease, The Third People's Hospital of Kunming/Yunnan Clinical Medical Center for Infectious Diseases, Kunming, Yunnan, China
| | - Jun Xu
- Department of Infectious Disease, The Third People's Hospital of Kunming/Yunnan Clinical Medical Center for Infectious Diseases, Kunming, Yunnan, China
| | - Qin Peng
- Department of Infectious Disease, The Third People's Hospital of Kunming/Yunnan Clinical Medical Center for Infectious Diseases, Kunming, Yunnan, China
| | - Yang Li
- Department of Infectious Disease, The Third People's Hospital of Kunming/Yunnan Clinical Medical Center for Infectious Diseases, Kunming, Yunnan, China
| | - Ying Huang
- Department of Infectious Disease, The Third People's Hospital of Kunming/Yunnan Clinical Medical Center for Infectious Diseases, Kunming, Yunnan, China
| | - Yan-Ling Zhang
- Department of Infectious Disease, The Third People's Hospital of Kunming/Yunnan Clinical Medical Center for Infectious Diseases, Kunming, Yunnan, China
| | - Xiang Li
- Department of Radiology, The Third People's Hospital of Kunming/ Yunnan Clinical Medical Center for Infectious Diseases, Kunming, Yunnan, China
| |
Collapse
|
15
|
Xie L, Zhang Y, Hong H, Xu S, Cui L, Wang S, Li J, Liu L, Lin M, Luo X, Li K, Zeng Q, Zhang M, Zhang R, Huang P. Higher intracranial arterial pulsatility is associated with presumed imaging markers of the glymphatic system: An explorative study. Neuroimage 2024; 288:120524. [PMID: 38278428 DOI: 10.1016/j.neuroimage.2024.120524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND Arterial pulsation has been suggested as a key driver of paravascular cerebrospinal fluid flow, which is the foundation of glymphatic clearance. However, whether intracranial arterial pulsatility is associated with glymphatic markers in humans has not yet been studied. METHODS Seventy-three community participants were enrolled in the study. 4D phase-contrast magnetic resonance imaging (MRI) was used to quantify the hemodynamic parameters including flow pulsatility index (PIflow) and area pulsatility index (PIarea) from 13 major intracerebral arterial segments. Three presumed neuroimaging markers of the glymphatic system were measured: including dilation of perivascular space (PVS), diffusivity along the perivascular space (ALPS), and volume fraction of free water (FW) in white matter. We explored the relationships between PIarea, PIflow, and the presumed glymphatic markers, controlling for related covariates. RESULTS PIflow in the internal carotid artery (ICA) C2 segment (OR, 1.05; 95 % CI, 1.01-1.10, per 0.01 increase in PI) and C4 segment (OR, 1.05; 95 % CI, 1.01-1.09) was positively associated with the dilation of basal ganglia PVS, and PIflow in the ICA C4 segment (OR, 1.06, 95 % CI, 1.02-1.10) was correlated with the dilation of PVS in the white matter. ALPS was associated with PIflow in the basilar artery (β, -0.273, p, 0.046) and PIarea in the ICA C2 (β, -0.239, p, 0.041) and C7 segments (β, -0.238, p, 0.037). CONCLUSIONS Intracranial arterial pulsatility was associated with presumed neuroimaging markers of the glymphatic system, but the results were not consistent across different markers. Further studies are warranted to confirm these findings.
Collapse
Affiliation(s)
- Linyun Xie
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Yao Zhang
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Hui Hong
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Shan Xu
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Lei Cui
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Shuyue Wang
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Jixuan Li
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Lingyun Liu
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Miao Lin
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Xiao Luo
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Kaicheng Li
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Qingze Zeng
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Minming Zhang
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Ruiting Zhang
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Peiyu Huang
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China.
| |
Collapse
|
16
|
Chen S, Liang J, Chen D, Huang Q, Sun K, Zhong Y, Lin B, Kong J, Sun J, Gong C, Wang J, Gao Y, Zhang Q, Sun H. Cerebrospinal fluid metabolomic and proteomic characterization of neurologic post-acute sequelae of SARS-CoV-2 infection. Brain Behav Immun 2024; 115:209-222. [PMID: 37858739 DOI: 10.1016/j.bbi.2023.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/08/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023] Open
Abstract
The mechanism by which SARS-CoV-2 causes neurological post-acute sequelae of SARS-CoV-2 (neuro-PASC) remains unclear. Herein, we conducted proteomic and metabolomic analyses of cerebrospinal fluid (CSF) samples from 21 neuro-PASC patients, 45 healthy volunteers, and 26 inflammatory neurological diseases patients. Our data showed 69 differentially expressed metabolites and six differentially expressed proteins between neuro-PASC patients and healthy individuals. Elevated sphinganine and ST1A1, sphingolipid metabolism disorder, and attenuated inflammatory responses may contribute to the occurrence of neuro-PASC, whereas decreased levels of 7,8-dihydropterin and activation of steroid hormone biosynthesis may play a role in the repair process. Additionally, a biomarker cohort consisting of sphinganine, 7,8-dihydroneopterin, and ST1A1 was preliminarily demonstrated to have high value in diagnosing neuro-PASC. In summary, our study represents the first attempt to integrate the diagnostic benefits of CSF with the methodological advantages of multi-omics, thereby offering valuable insights into the pathogenesis of neuro-PASC and facilitating the work of neuroscientists in disclosing different neurological dimensions associated with COVID-19.
Collapse
Affiliation(s)
- Shilan Chen
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jianhao Liang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Dingqiang Chen
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Qiyuan Huang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Kaijian Sun
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yuxia Zhong
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Baojia Lin
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jingjing Kong
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jiaduo Sun
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Chengfang Gong
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jun Wang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Ya Gao
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Qingguo Zhang
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China.
| |
Collapse
|
17
|
Rowsthorn E, Pham W, Nazem-Zadeh MR, Law M, Pase MP, Harding IH. Imaging the neurovascular unit in health and neurodegeneration: a scoping review of interdependencies between MRI measures. Fluids Barriers CNS 2023; 20:97. [PMID: 38129925 PMCID: PMC10734164 DOI: 10.1186/s12987-023-00499-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
The neurovascular unit (NVU) is a complex structure that facilitates nutrient delivery and metabolic waste clearance, forms the blood-brain barrier (BBB), and supports fluid homeostasis in the brain. The integrity of NVU subcomponents can be measured in vivo using magnetic resonance imaging (MRI), including quantification of enlarged perivascular spaces (ePVS), BBB permeability, cerebral perfusion and extracellular free water. The breakdown of NVU subparts is individually associated with aging, pathology, and cognition. However, how these subcomponents interact as a system, and how interdependencies are impacted by pathology remains unclear. This systematic scoping review identified 26 studies that investigated the inter-relationships between multiple subcomponents of the NVU in nonclinical and neurodegenerative populations using MRI. A further 112 studies investigated associations between the NVU and white matter hyperintensities (WMH). We identify two putative clusters of NVU interdependencies: a 'vascular' cluster comprising BBB permeability, perfusion and basal ganglia ePVS; and a 'fluid' cluster comprising ePVS, free water and WMH. Emerging evidence suggests that subcomponent coupling within these clusters may be differentially related to aging, neurovascular injury or neurodegenerative pathology.
Collapse
Affiliation(s)
- Ella Rowsthorn
- Department of Neuroscience, Central Clinical School, Monash University, 99 Commercial Road, Melbourne, VIC, 3004, Australia
- Turner Institute for Brain and Mental Health & School of Psychological Sciences, Monash University, 18 Innovation Walk, Clayton, VIC, 3168, Australia
| | - William Pham
- Department of Neuroscience, Central Clinical School, Monash University, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Mohammad-Reza Nazem-Zadeh
- Department of Neuroscience, Central Clinical School, Monash University, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Meng Law
- Department of Neuroscience, Central Clinical School, Monash University, 99 Commercial Road, Melbourne, VIC, 3004, Australia
- Department of Radiology, Alfred Health, 99 Commercial Road, Melbourne, VIC, 3004, Australia
- Department of Electrical and Computer Systems Engineering, Monash University, 14 Alliance Lane, Clayton, VIC, 3168, Australia
| | - Matthew P Pase
- Turner Institute for Brain and Mental Health & School of Psychological Sciences, Monash University, 18 Innovation Walk, Clayton, VIC, 3168, Australia
- Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Ian H Harding
- Department of Neuroscience, Central Clinical School, Monash University, 99 Commercial Road, Melbourne, VIC, 3004, Australia.
- Monash Biomedical Imaging, Monash University, 762-772 Blackburn Road, Clayton, VIC, 3168, Australia.
| |
Collapse
|
18
|
Shi W, Jiang D, Rando H, Khanduja S, Lin Z, Hazel K, Pottanat G, Jones E, Xu C, Lin D, Yasar S, Cho SM, Lu H. Blood-brain barrier breakdown in COVID-19 ICU survivors: an MRI pilot study. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2023; 2:333-338. [PMID: 38058998 PMCID: PMC10696574 DOI: 10.1515/nipt-2023-0018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023]
Abstract
Objectives Coronavirus disease 2019 (COVID-19) results in severe inflammation at the acute stage. Chronic neuroinflammation and abnormal immunological response have been suggested to be the contributors to neuro-long-COVID, but direct evidence has been scarce. This study aims to determine the integrity of the blood-brain barrier (BBB) in COVID-19 intensive care unit (ICU) survivors using a novel MRI technique. Methods COVID-19 ICU survivors (n=7) and age and sex-matched control participants (n=17) were recruited from June 2021 to March 2023. None of the control participants were hospitalized due to COVID-19 infection. The COVID-19 ICU survivors were studied at 98.6 ± 14.9 days after their discharge from ICU. A non-invasive MRI technique was used to assess the BBB permeability to water molecules, in terms of permeability surface area-product (PS) in the units of mL/100 g/min. Results PS was significantly higher in COVID-19 ICU survivors (p=0.038) when compared to the controls, with values of 153.1 ± 20.9 mL/100 g/min and 132.5 ± 20.7 mL/100 g/min, respectively. In contrast, there were no significant differences in whole-brain cerebral blood flow (p=0.649) or brain volume (p=0.471) between the groups. Conclusions There is preliminary evidence of a chronic BBB breakdown in COVID-19 survivors who had a severe acute infection, suggesting a plausible contributor to neurological long-COVID symptoms.
Collapse
Affiliation(s)
- Wen Shi
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dengrong Jiang
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hannah Rando
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shivalika Khanduja
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zixuan Lin
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kaisha Hazel
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - George Pottanat
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ebony Jones
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cuimei Xu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Doris Lin
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sevil Yasar
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sung-Min Cho
- Department of Neurology, Neurosurgery, Surgery, Anesthesiology, and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hanzhang Lu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
| |
Collapse
|
19
|
Schmidt-Morgenroth I, Michaud P, Gasparini F, Avrameas A. Central and Peripheral Inflammation in Mild Cognitive Impairment in the Context of Alzheimer's Disease. Int J Mol Sci 2023; 24:10523. [PMID: 37445700 DOI: 10.3390/ijms241310523] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/05/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Mild cognitive impairment (MCI) is characterized by an abnormal decline in mental and cognitive function compared with normal cognitive aging. It is an underlying condition of Alzheimer's disease (AD), an irreversible neurodegenerative disease. In recent years, neuroinflammation has been investigated as a new leading target that contributes to MCI progression into AD. Understanding the mechanism underlying inflammatory processes involved in the early onset of the disease could help find a safe and effective way to diagnose and treat patients. In this article, we assessed over twenty different blood and cerebrospinal fluid (CSF) inflammatory biomarker concentrations with immunoassay methods in patients with MCI (mild cognitive impairment), non-impaired control (NIC), and serum healthy control (HC). We performed group comparisons and analyzed in-group correlations between the biomarkers. We included 107 participants (mean age: 64.7 ± 7.8, women: 58.9%). CSF osteopontin and YKL-40 were significantly increased in the MCI group, whereas serum C-reactive protein and interleukin-6 were significantly higher (p < 0.001) in the NIC group compared with the MCI and HC groups. Stronger correlations between interleukin-1β and inflammasome markers were observed in the serum of the MCI group. We confirmed specific inflammatory activation in the central nervous system and interleukin-1β pathway upregulation in the serum of the MCI cohort.
Collapse
Affiliation(s)
- Inès Schmidt-Morgenroth
- Novartis Institutes for Biomedical Research (NIBR), Translational Medicine, 4056 Basel, Switzerland
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, 63000 Clermont-Ferrand, France
| | - Philippe Michaud
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, 63000 Clermont-Ferrand, France
| | - Fabrizio Gasparini
- Novartis Institutes for Biomedical Research (NIBR), Translational Medicine, 4056 Basel, Switzerland
| | - Alexandre Avrameas
- Novartis Institutes for Biomedical Research (NIBR), Translational Medicine, 4056 Basel, Switzerland
| |
Collapse
|