1
|
Bourdillon AT. Computer Vision-Radiomics & Pathognomics. Otolaryngol Clin North Am 2024; 57:719-751. [PMID: 38910065 DOI: 10.1016/j.otc.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The role of computer vision in extracting radiographic (radiomics) and histopathologic (pathognomics) features is an extension of molecular biomarkers that have been foundational to our understanding across the spectrum of head and neck disorders. Especially within head and neck cancers, machine learning and deep learning applications have yielded advances in the characterization of tumor features, nodal features, and various outcomes. This review aims to overview the landscape of radiomic and pathognomic applications, informing future work to address gaps. Novel methodologies will be needed to potentially engineer ways of integrating multidimensional data inputs to examine disease features to guide prognosis comprehensively and ultimately clinical management.
Collapse
Affiliation(s)
- Alexandra T Bourdillon
- Department of Otolaryngology-Head & Neck Surgery, University of California-San Francisco, San Francisco, CA 94115, USA.
| |
Collapse
|
2
|
Tagliabue M, Ruju F, Mossinelli C, Gaeta A, Raimondi S, Volpe S, Zaffaroni M, Isaksson LJ, Garibaldi C, Cremonesi M, Rapino A, Chiocca S, Pietrobon G, Alterio D, Trisolini G, Morbini P, Rampinelli V, Grammatica A, Petralia G, Jereczek-Fossa BA, Preda L, Ravanelli M, Maroldi R, Piazza C, Benazzo M, Ansarin M. The prognostic role of MRI-based radiomics in tongue carcinoma: a multicentric validation study. LA RADIOLOGIA MEDICA 2024; 129:1369-1381. [PMID: 39096355 PMCID: PMC11379741 DOI: 10.1007/s11547-024-01859-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/17/2024] [Indexed: 08/05/2024]
Abstract
PURPOSE Radiomics is an emerging field that utilizes quantitative features extracted from medical images to predict clinically meaningful outcomes. Validating findings is crucial to assess radiomics applicability. We aimed to validate previously published magnetic resonance imaging (MRI) radiomics models to predict oncological outcomes in oral tongue squamous cell carcinoma (OTSCC). MATERIALS AND METHODS Retrospective multicentric study on OTSCC surgically treated from 2010 to 2019. All patients performed preoperative MRI, including contrast-enhanced T1-weighted (CE-T1), diffusion-weighted sequences and apparent diffusion coefficient map. We evaluated overall survival (OS), locoregional recurrence-free survival (LRRFS), cause-specific mortality (CSM). We elaborated different models based on clinical and radiomic data. C-indexes assessed the prediction accuracy of the models. RESULTS We collected 112 consecutive independent patients from three Italian Institutions to validate the previously published MRI radiomic models based on 79 different patients. The C-indexes for the hybrid clinical-radiomic models in the validation cohort were lower than those in the training cohort but remained > 0.5 in most cases. CE-T1 sequence provided the best fit to the models: the C-indexes obtained were 0.61, 0.59, 0.64 (pretreatment model) and 0.65, 0.69, 0.70 (posttreatment model) for OS, LRRFS and CSM, respectively. CONCLUSION Our clinical-radiomic models retain a potential to predict OS, LRRFS and CSM in heterogeneous cohorts across different centers. These findings encourage further research, aimed at overcoming current limitations, due to the variability of imaging acquisition, processing and tumor volume delineation.
Collapse
Affiliation(s)
- Marta Tagliabue
- Division of Otolaryngology and Head and Neck Surgery, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Francesca Ruju
- Division of Radiology, European Institute of Oncology IRCCS, Milan, Italy
| | - Chiara Mossinelli
- Division of Otolaryngology and Head and Neck Surgery, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy.
| | - Aurora Gaeta
- Department of Statistics and Quantitative Methods, University of Milan-Bicocca, Via Bicocca Degli Arcimboldi, Milan, Italy
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Sara Raimondi
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Stefania Volpe
- Division of Radiation Oncology, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Mattia Zaffaroni
- Division of Radiation Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Lars Johannes Isaksson
- Division of Radiation Oncology, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Cristina Garibaldi
- Unit of Radiation Research, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Marta Cremonesi
- Unit of Radiation Research, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Anna Rapino
- Postgraduate School of Radiodiagnostic, University of Milan, Milan, Italy
| | - Susanna Chiocca
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Giacomo Pietrobon
- Division of Otolaryngology and Head and Neck Surgery, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| | - Daniela Alterio
- Division of Radiation Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Giuseppe Trisolini
- Department of Otorhinolaryngology and Skull Base Microsurgery-Neurosciences, ASST Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | | | - Vittorio Rampinelli
- Unit of Otorhinolaryngology-Head and Neck Surgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, ASST Spedali Civili of Brescia, University of Brescia, 25123, Brescia, Italy
| | - Alberto Grammatica
- Unit of Otorhinolaryngology-Head and Neck Surgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, ASST Spedali Civili of Brescia, University of Brescia, 25123, Brescia, Italy
| | - Giuseppe Petralia
- Division of Radiology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Barbara Alicja Jereczek-Fossa
- Division of Radiation Oncology, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Lorenzo Preda
- Diagnostic Imaging and Radiotherapy Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
- Radiology Institute, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Marco Ravanelli
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, School of Medicine, Brescia, Italy
| | - Roberto Maroldi
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, School of Medicine, Brescia, Italy
| | - Cesare Piazza
- Unit of Otorhinolaryngology-Head and Neck Surgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, ASST Spedali Civili of Brescia, University of Brescia, 25123, Brescia, Italy
| | - Marco Benazzo
- Diagnostic Imaging and Radiotherapy Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
- Department of Otorhinolaryngology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Mohssen Ansarin
- Division of Otolaryngology and Head and Neck Surgery, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| |
Collapse
|
3
|
Li Y, van Rijn-Dekker MI, de Vette SPM, van der Schaaf A, van den Bosch L, Langendijk JA, van Dijk LV, Sijtsema NM. Late-xerostomia prediction model based on 18F-FDG PET image biomarkers of the main salivary glands. Radiother Oncol 2024; 196:110319. [PMID: 38702014 DOI: 10.1016/j.radonc.2024.110319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/13/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND AND PURPOSE Recently, a comprehensive xerostomia prediction model was published, based on baseline xerostomia, mean dose to parotid glands (PG) and submandibular glands (SMG). Previously, PET imaging biomarkers (IBMs) of PG were shown to improve xerostomia prediction. Therefore, this study aimed to explore the potential improvement of the additional PET-IBMs from both PG and SMG to the recent comprehensive xerostomia prediction model (i.e., the reference model). MATERIALS AND METHODS Totally, 540 head and neck cancer patients were split into training and validation cohorts. PET-IBMs from the PG and SMG, were selected using bootstrapped forward selection based on the reference model. The IBMs from both the PG and SMG with the highest selection frequency were added to the reference model, resulting in a PG-IBM model and a SMG-IBM model which were combined into a composite model. Model performance was assessed using the area under the curve (AUC). Likelihood ratio test compared the predictive performance between the reference model and models including IBMs. RESULTS The final selected PET-IBMs were 90th percentile of the PG SUV and total energy of the SMG SUV. The additional two PET-IBMs in the composite model improved the predictive performance of the reference model significantly. The AUC of the reference model and the composite model were 0.67 and 0.69 in the training cohort, and 0.71 and 0.73 in the validation cohort, respectively. CONCLUSION The composite model including two additional PET-IBMs from PG and SMG improved the predictive performance of the reference xerostomia model significantly, facilitating a more personalized prediction approach.
Collapse
Affiliation(s)
- Yan Li
- Department of Radiation Oncology, University Medical Centre Groningen, University of Groningen, The Netherlands.
| | - Maria Irene van Rijn-Dekker
- Department of Radiation Oncology, University Medical Centre Groningen, University of Groningen, The Netherlands
| | | | - Arjen van der Schaaf
- Department of Radiation Oncology, University Medical Centre Groningen, University of Groningen, The Netherlands
| | - Lisa van den Bosch
- Department of Radiation Oncology, University Medical Centre Groningen, University of Groningen, The Netherlands
| | | | - Lisanne Vania van Dijk
- Department of Radiation Oncology, University Medical Centre Groningen, University of Groningen, The Netherlands
| | - Nanna Maria Sijtsema
- Department of Radiation Oncology, University Medical Centre Groningen, University of Groningen, The Netherlands
| |
Collapse
|
4
|
Nikkuni Y, Nishiyama H, Hayashi T. Prediction of Histological Grade of Oral Squamous Cell Carcinoma Using Machine Learning Models Applied to 18F-FDG-PET Radiomics. Biomedicines 2024; 12:1411. [PMID: 39061984 PMCID: PMC11273837 DOI: 10.3390/biomedicines12071411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 07/28/2024] Open
Abstract
The histological grade of oral squamous cell carcinoma affects the prognosis. In the present study, we performed a radiomics analysis to extract features from 18F-FDG PET image data, created machine learning models from the features, and verified the accuracy of the prediction of the histological grade of oral squamous cell carcinoma. The subjects were 191 patients in whom an 18F-FDG-PET examination was performed preoperatively and a histopathological grade was confirmed after surgery, and their tumor sizes were sufficient for a radiomics analysis. These patients were split in a 70%/30% ratio for use as training data and testing data, respectively. We extracted 2993 radiomics features from the PET images of each patient. Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF), Naïve Bayes (NB), and K-Nearest Neighbor (KNN) machine learning models were created. The areas under the curve obtained from receiver operating characteristic curves for the prediction of the histological grade of oral squamous cell carcinoma were 0.72, 0.71, 0.84, 0.74, and 0.73 for LR, SVM, RF, NB, and KNN, respectively. We confirmed that a PET radiomics analysis is useful for the preoperative prediction of the histological grade of oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Yutaka Nikkuni
- Division of Oral and Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (H.N.); (T.H.)
| | | | | |
Collapse
|
5
|
Zhong NN, Wang HQ, Huang XY, Li ZZ, Cao LM, Huo FY, Liu B, Bu LL. Enhancing head and neck tumor management with artificial intelligence: Integration and perspectives. Semin Cancer Biol 2023; 95:52-74. [PMID: 37473825 DOI: 10.1016/j.semcancer.2023.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
Head and neck tumors (HNTs) constitute a multifaceted ensemble of pathologies that primarily involve regions such as the oral cavity, pharynx, and nasal cavity. The intricate anatomical structure of these regions poses considerable challenges to efficacious treatment strategies. Despite the availability of myriad treatment modalities, the overall therapeutic efficacy for HNTs continues to remain subdued. In recent years, the deployment of artificial intelligence (AI) in healthcare practices has garnered noteworthy attention. AI modalities, inclusive of machine learning (ML), neural networks (NNs), and deep learning (DL), when amalgamated into the holistic management of HNTs, promise to augment the precision, safety, and efficacy of treatment regimens. The integration of AI within HNT management is intricately intertwined with domains such as medical imaging, bioinformatics, and medical robotics. This article intends to scrutinize the cutting-edge advancements and prospective applications of AI in the realm of HNTs, elucidating AI's indispensable role in prevention, diagnosis, treatment, prognostication, research, and inter-sectoral integration. The overarching objective is to stimulate scholarly discourse and invigorate insights among medical practitioners and researchers to propel further exploration, thereby facilitating superior therapeutic alternatives for patients.
Collapse
Affiliation(s)
- Nian-Nian Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Han-Qi Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Xin-Yue Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Lei-Ming Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Fang-Yi Huo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
6
|
Qi M, Xia Z, Zhang F, Sha Y, Ren J. Development and validation of apparent diffusion coefficient histogram-based nomogram for predicting malignant transformation of sinonasal inverted papilloma. Dentomaxillofac Radiol 2023; 52:20220301. [PMID: 36799877 PMCID: PMC10461262 DOI: 10.1259/dmfr.20220301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/04/2023] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
OBJECTIVES To develop and validate a nomogram based on whole-tumour histograms of apparent diffusion coefficient (ADC) maps for predicting malignant transformation (MT) in sinonasal inverted papilloma (IP). METHODS This retrospective study included 209 sinonasal IPs with and without MT, which were assigned into a primary cohort (n = 140) and a validation cohort (n = 69). Eight ADC histogram features were extracted from the whole-tumour region of interest. Morphological MRI features and ADC histogram parameters were compared between the two groups (with and without MT). Stepwise logistic regression was used to identify independent predictors and to construct models. The predictive performances of variables and models were assessed using the area under the curve (AUC). The optimal model was presented as a nomogram, and its calibration was assessed. RESULTS Four morphological features and seven ADC histogram parameters showed significant differences between the two groups in both cohorts (all p < 0.05). Maximum diameter, loss of convoluted cerebriform pattern, ADC10th and ADCSkewness were identified as independent predictors to construct the nomogram. The nomogram showed significantly better performance than the morphological model in both the primary (AUC, 0.96 vs 0.88; p = 0.006) and validation (AUC, 0.96 vs 0.88; p = 0.015) cohorts. The nomogram showed good calibration in both cohorts. Decision curve analysis demonstrated that the nomogram is clinically useful. CONCLUSIONS The developed nomogram, which incorporates morphological MRI features and ADC histogram parameters, can be conveniently used to facilitate the pre-operative prediction of MT in IPs.
Collapse
Affiliation(s)
- Meng Qi
- Department of Radiology, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Zhipeng Xia
- Department of Radiology, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Fang Zhang
- Department of Radiology, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Yan Sha
- Department of Radiology, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Jiliang Ren
- Department of Radiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Geng Y, Hong R, Cheng Y, Zhang F, Sha Y, Song Y. Whole-tumor histogram analysis of apparent diffusion coefficient maps with machine learning algorithms for predicting histologic grade of sinonasal squamous cell carcinoma: a preliminary study. Eur Arch Otorhinolaryngol 2023; 280:4131-4140. [PMID: 37160465 DOI: 10.1007/s00405-023-07989-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/18/2023] [Indexed: 05/11/2023]
Abstract
PURPOSE Accurate histologic grade assessment is helpful for clinical decision making and prognostic assessment of sinonasal squamous cell carcinoma (SNSCC). This research aimed to explore whether whole-tumor histogram analysis of apparent diffusion coefficient (ADC) maps with machine learning algorithms can predict histologic grade of SNSCC. METHODS One hundred and forty-seven patients with pathologically diagnosed SNSCC formed this retrospective study. Sixty-six patients were low-grade (grade I/II) and eighty-one patients were high-grade (grade III). Eighteen histogram features were obtained from quantitative ADC maps. Additionally, the mean ADC value and clinical features were analyzed for comparison with histogram features. Machine learning algorithms were applied to build the best diagnostic model for predicting histological grade. The receiver operating characteristic (ROC) curve was used to evaluate the performance of each model prediction, and the area under the ROC curve (AUC) were analyzed. RESULTS The histogram model based on three features (10th Percentile, Mean, and 90th Percentile) with support vector machine (SVM) classifier demonstrated excellent diagnostic performance, with an AUC of 0.947 on the testing dataset. The AUC of the histogram model was similar to that of the mean ADC value model (0.947 vs 0.957; P = 0.7029). The poor diagnostic performance of the clinical model (AUC = 0.692) was improved by the combined model incorporating histogram features or mean ADC value (P < 0.05). CONCLUSION ADC histogram analysis improved the projection of SNSCC histologic grade, compared with clinical model. The complex histogram model had comparable but not better performance than mean ADC value model.
Collapse
Affiliation(s)
- Yue Geng
- Department of Radiology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
| | - Rujian Hong
- Department of Radiology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
| | - Yushu Cheng
- Department of Radiology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
| | - Fang Zhang
- Department of Radiology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
| | - Yan Sha
- Department of Radiology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China.
| | - Yang Song
- Scientific Marketing, Siemens Healthineers, Shanghai, 200336, China
| |
Collapse
|
8
|
Corti A, De Cecco L, Cavalieri S, Lenoci D, Pistore F, Calareso G, Mattavelli D, de Graaf P, Leemans CR, Brakenhoff RH, Ravanelli M, Poli T, Licitra L, Corino V, Mainardi L. MRI-based radiomic prognostic signature for locally advanced oral cavity squamous cell carcinoma: development, testing and comparison with genomic prognostic signatures. Biomark Res 2023; 11:69. [PMID: 37455307 DOI: 10.1186/s40364-023-00494-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/03/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND . At present, the prognostic prediction in advanced oral cavity squamous cell carcinoma (OCSCC) is based on the tumor-node-metastasis (TNM) staging system, and the most used imaging modality in these patients is magnetic resonance image (MRI). With the aim to improve the prediction, we developed an MRI-based radiomic signature as a prognostic marker for overall survival (OS) in OCSCC patients and compared it with published gene expression signatures for prognosis of OS in head and neck cancer patients, replicated herein on our OCSCC dataset. METHODS For each patient, 1072 radiomic features were extracted from T1 and T2-weighted MRI (T1w and T2w). Features selection was performed, and an optimal set of five of them was used to fit a Cox proportional hazard regression model for OS. The radiomic signature was developed on a multi-centric locally advanced OCSCC retrospective dataset (n = 123) and validated on a prospective cohort (n = 108). RESULTS The performance of the signature was evaluated in terms of C-index (0.68 (IQR 0.66-0.70)), hazard ratio (HR 2.64 (95% CI 1.62-4.31)), and high/low risk group stratification (log-rank p < 0.001, Kaplan-Meier curves). When tested on a multi-centric prospective cohort (n = 108), the signature had a C-index of 0.62 (IQR 0.58-0.64) and outperformed the clinical and pathologic TNM stage and six out of seven gene expression prognostic signatures. In addition, the significant difference of the radiomic signature between stages III and IVa/b in patients receiving surgery suggests a potential association of MRI features with the pathologic stage. CONCLUSIONS Overall, the present study suggests that MRI signatures, containing non-invasive and cost-effective remarkable information, could be exploited as prognostic tools.
Collapse
Affiliation(s)
- Anna Corti
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.
| | - Loris De Cecco
- Integrated Biology of Rare Tumors, Department of Research, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Stefano Cavalieri
- Head and Neck Medical Oncology Department, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli studi di Milano, Milan, Italy
| | - Deborah Lenoci
- Integrated Biology of Rare Tumors, Department of Research, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Federico Pistore
- Head and Neck Medical Oncology Department, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Giuseppina Calareso
- Radiology Department, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Davide Mattavelli
- Unit of Otorhinolaryngology-Head and Neck Surgery, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, ASST Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| | - Pim de Graaf
- Amsterdam UMC location Vrije Universiteit, Radiology and Nuclear Medicine, de Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - C René Leemans
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit, Otolaryngology-Head and Neck Surgery, de Boelelaan 1117, Amsterdam, The Netherlands
| | - Ruud H Brakenhoff
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit, Otolaryngology-Head and Neck Surgery, de Boelelaan 1117, Amsterdam, The Netherlands
| | - Marco Ravanelli
- Unit of Radiology, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, ASST Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| | - Tito Poli
- Maxillo-Facial Surgery Division, Head and Neck Department, University Hospital of Parma, Parma, Italy
| | - Lisa Licitra
- Head and Neck Medical Oncology Department, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli studi di Milano, Milan, Italy
| | - Valentina Corino
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
- Cardiotech Lab, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Luca Mainardi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
9
|
Mossinelli C, Tagliabue M, Ruju F, Cammarata G, Volpe S, Raimondi S, Zaffaroni M, Isaksson JL, Garibaldi C, Cremonesi M, Corso F, Gaeta A, Emili I, Zorzi S, Alterio D, Marvaso G, Pepa M, De Fiori E, Maffini F, Preda L, Benazzo M, Jereczek-Fossa BA, Ansarin M. The role of radiomics in tongue cancer: A new tool for prognosis prediction. Head Neck 2023; 45:849-861. [PMID: 36779382 DOI: 10.1002/hed.27299] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/08/2022] [Accepted: 12/27/2022] [Indexed: 02/14/2023] Open
Abstract
BACKGROUND Radiomics represents an emerging field of precision-medicine. Its application in head and neck is still at the beginning. METHODS Retrospective study about magnetic resonance imaging (MRI) based radiomics in oral tongue squamous cell carcinoma (OTSCC) surgically treated (2010-2019; 79 patients). All preoperative MRIs include different sequences (T1, T2, DWI, ADC). Tumor volume was manually segmented and exported to radiomic-software, to perform feature extraction. Statistically significant variables were included in multivariable analysis and related to survival endpoints. Predictive models were elaborated (clinical, radiomic, clinical-radiomic models) and compared using C-index. RESULTS In almost all clinical-radiomic models radiomic-score maintained statistical significance. In all cases C-index was higher in clinical-radiomic models than in clinical ones. ADC provided the best fit to the models (C-index 0.98, 0.86, 0.84 in loco-regional recurrence, cause-specific mortality, overall survival, respectively). CONCLUSION MRI-based radiomics in OTSCC represents a promising noninvasive method of precision medicine, improving prognosis prediction before surgery.
Collapse
Affiliation(s)
- Chiara Mossinelli
- Department of Otorhinolaryngology and Head and Neck Surgery, European Institute of Oncology, IRCCS, Milan, Italy
| | - Marta Tagliabue
- Department of Otorhinolaryngology and Head and Neck Surgery, European Institute of Oncology, IRCCS, Milan, Italy.,Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Francesca Ruju
- Division of Radiology, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - Giulio Cammarata
- Department of Experimental Oncology, IEO European Institute of Experimental Oncology IRCCS, Milan, Italy
| | - Stefania Volpe
- Division of Radiation Oncology, European Institute of Oncology, IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Sara Raimondi
- Department of Experimental Oncology, IEO European Institute of Experimental Oncology IRCCS, Milan, Italy
| | - Mattia Zaffaroni
- Division of Radiation Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| | | | - Cristina Garibaldi
- Unit of Radiation Research, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Marta Cremonesi
- Unit of Radiation Research, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Federica Corso
- Department of Experimental Oncology, IEO European Institute of Experimental Oncology IRCCS, Milan, Italy.,Department of Mathematics (DMAT), Politecnico di Milano, Milan, Italy.,Centre for Health Data Science (CHDS), Human Techonopole
| | - Aurora Gaeta
- Department of Experimental Oncology, IEO European Institute of Experimental Oncology IRCCS, Milan, Italy
| | - Ilaria Emili
- Division of Radiology, IEO, European Institute of Oncology, IRCCS, Milan, Italy.,ASST Centro Specialistico Ortopedico Traumatologico G. Pini/C.T.O, Milan, Italy
| | - Stefano Zorzi
- Department of Otorhinolaryngology and Head and Neck Surgery, European Institute of Oncology, IRCCS, Milan, Italy
| | - Daniela Alterio
- Division of Radiation Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Giulia Marvaso
- Division of Radiation Oncology, European Institute of Oncology, IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Matteo Pepa
- Division of Radiation Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Elvio De Fiori
- Division of Radiology, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - Fausto Maffini
- Division of Pathology, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - Lorenzo Preda
- Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy.,Division of Radiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Marco Benazzo
- Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy.,Department of Otorhinolaryngology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Barbara Alicja Jereczek-Fossa
- Division of Radiation Oncology, European Institute of Oncology, IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Mohssen Ansarin
- Department of Otorhinolaryngology and Head and Neck Surgery, European Institute of Oncology, IRCCS, Milan, Italy
| |
Collapse
|
10
|
Lee H, Kim H, Choi YS, Pyo HR, Ahn MJ, Choi JY. Prognostic Significance of Pseudotime from Texture Parameters of FDG PET/CT in Locally Advanced Non-Small-Cell Lung Cancer with Tri-Modality Therapy. Cancers (Basel) 2022; 14:cancers14153809. [PMID: 35954472 PMCID: PMC9367384 DOI: 10.3390/cancers14153809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Although texture parameters of F-18 fluorodeoxyglucose positron emission tomography/computed tomography images were known to associate tumor biology and clinical features, the types and implications of parameters are too various and complicated. To overcome the limitation of texture parameter, we attempted to produce a new simplified parameter from texture parameters of F-18 fluorodeoxyglucose positron emission tomography/computed tomography images in lung cancer patients using pseudotime analysis. Pseudotime analysis is a recently developed method to explore changes in cell or tissue characteristics based on transcriptomic expression. It is the first study to apply pseudotime analysis into radiomics dataset other than transcriptomics data. Herein, we demonstrated that pseudotime can be successfully estimated from texture parameters. In the aspect of prognostic prediction, pseudotime was an independent prognostic factor for overall survival in contrast to conventional parameters such as metabolic tumor volume and total lesion glycolysis. This study showed possibility of integrating various texture parameters into single parameter which reflects disease progression status. Pseudotime, as a concrete value of disease progression, is expected to be used in clinical field to evaluate disease and predict prognosis. Abstract Texture analysis provides image parameters from F-18 fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT). Although some parameters are associated with tumor biology and clinical features, the types and implications of these parameters are complicated. We applied pseudotime analysis, which has recently been used to estimate changes in individual sample characteristics, to texture parameters from FDG PET/CT images of locally advanced non-small-cell lung cancer (NSCLC) patients undergoing neoadjuvant concurrent chemoradiation therapy (CCRT) followed by surgery. Our subjects were 303 NSCLC patients who underwent pretherapeutic FDG PET/CT and tri-modality therapy. Texture parameters of the primary tumor were calculated from FDG PET/CT images acquired before neoadjuvant CCRT. Pseudotime analysis was performed using the PhenoPath tool. Clinicopathologic features including survival data were collected and survival analysis was performed to compare the prognostic significances of pseudotime parameters with those of conventional PET parameters. Pseudotime was successfully estimated from texture parameters. Normalized co-occurrence homogeneity, normalized co-occurrence inverse difference moment, and black–white symmetry showed positive correlations with pseudotime, short run emphasis, normalized co-occurrence dissimilarity, and short zone emphasis negative correlation. The maximum standardized uptake value (SUV) and mean SUV were not associated with overall survival. Pseudotime, metabolic tumor volume (MTV), and total lesion glycolysis (TLG) showed significant associations with overall survival. In contrast to MTV and TLG, pseudotime was an independent prognostic factor for overall survival. Various metabolic texture parameters can be integrated into a single parameter using pseudotime analysis. Pseudotime of the primary tumor, estimated from FDG PET/CT images, better predicts overall survival in locally advanced NSCLC patients treated with tri-modality therapy than conventional PET parameters.
Collapse
Affiliation(s)
- Hyunjong Lee
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
| | - Hojoong Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
| | - Yong Soo Choi
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
| | - Hong Ryul Pyo
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
| | - Myung-Ju Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
| | - Joon Young Choi
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
- Correspondence: ; Tel.: +82-2-3410-2648; Fax: +82-2-3410-2639
| |
Collapse
|
11
|
Apparent Diffusion Coefficient-Based Radiomic Nomogram in Sinonasal Squamous Cell Carcinoma: A Preliminary Study on Histological Grade Evaluation. J Comput Assist Tomogr 2022; 46:823-829. [PMID: 35675693 DOI: 10.1097/rct.0000000000001329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE The aim of the study was to develop and validate a nomogram model combining radiomic features and clinical characteristics to preoperatively differentiate between low- and high-grade sinonasal squamous cell carcinomas. MATERIAL AND METHODS A total of 174 patients who underwent diffusion-weighted imaging were included in this study. The patients were allocated to the training and testing cohorts randomly at a ratio of 6:4. The least absolute shrinkage and selection operator regression was applied for feature selection and radiomic signature (radscore) construction. Multivariable logistic regression analysis was applied to identify independent predictors. The performance of the model was evaluated using the area under the receiver operating characteristic curve (AUC), the calibration curve, decision curve analysis, and the clinical impact curve. RESULTS The radscore included 9 selected radiomic features. The radscore and clinical stage were independent predictors. The nomogram showed better performance (training cohort: AUC, 0.92; 95% confidence interval, 0.85-0.96; testing cohort: AUC, 0.91; 95% CI, 0.82-0.97) than either the radscore or the clinical stage in both the training and test cohorts (P < 0.050). The nomogram demonstrated good calibration and clinical usefulness. CONCLUSIONS The apparent diffusion coefficient-based radiomic nomogram model could be useful in differentiating between low- and high-grade sinonasal squamous cell carcinomas.
Collapse
|
12
|
Shen H, Huang Y, Yuan X, Liu D, Tu C, Wang Y, Li X, Wang X, Chen Q, Zhang J. Using quantitative parameters derived from pretreatment dual-energy computed tomography to predict histopathologic features in head and neck squamous cell carcinoma. Quant Imaging Med Surg 2022; 12:1243-1256. [PMID: 35111620 DOI: 10.21037/qims-21-650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/16/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) patients with a high tumor grade, lymphovascular invasion (LVI), or perineural invasion (PNI) tend to demonstrate a poor prognosis in clinical series. Thus, the identification of histopathological features, including tumor grade, LVI, and PNI, before treatment could be used to stratify the prognosis of patients with HNSCC. This study aimed to assess whether quantitative parameters derived from pretreatment dual-energy computed tomography (DECT) can predict the histopathological features of patients with HNSCC. METHODS In this study, 72 consecutive patients with pathologically confirmed HNSCC were enrolled and underwent dual-phase (noncontrast-enhanced phase and contrast-enhanced phase) DECT examinations. Normalized iodine concentration (NIC), the slope of the spectral Hounsfield unit curve (λHU), and normalized effective atomic number (NZeff) were calculated. The attenuation values on 40-140 keV noise-optimized virtual monoenergetic images [VMIs (+)] in the contrast-enhanced phase were recorded. The diagnostic performance of the quantitative parameters for predicting histopathological features, including tumor grade, LVI, and PNI, was assessed by receiver operating characteristic curves. RESULTS The NIC, λHU, NZeff, and attenuation value on the VMIs (+) at 40 keV (A40) in the grade III group, LVI-positive group, and PNI-positive group were significantly higher than those in the grade I and II groups, the LVI-negative group, and the PNI-negative group (all P values <0.05). A multivariate logistic regression model combining these 4 quantitative parameters improved the diagnostic performance of the model in predicting tumor grade, LVI, and PNI (areas under the curve: 0.969, 0.944, and 0.931, respectively). CONCLUSIONS Quantitative parameters derived from pretreatment DECT, including NIC, λHU, NZeff, and A4,0 were found to be imaging markers for predicting the histopathological characteristics of HNSCC. Combining all these characteristics improved the predictive performance of the model.
Collapse
Affiliation(s)
- Hesong Shen
- Department of Radiology, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing, China
| | - Yuanying Huang
- Department of Oncology and Hematology, Chongqing General Hospital, University of the Chinese Academy of Sciences, Chongqing, China
| | - Xiaoqian Yuan
- Department of Radiology, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing, China
| | - Daihong Liu
- Department of Radiology, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing, China
| | - Chunrong Tu
- Department of Radiology, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing, China
| | - Yu Wang
- Department of Radiology, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing, China
| | - Xiaoqin Li
- Department of Radiology, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing, China
| | - Xiaoxia Wang
- Department of Radiology, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing, China
| | - Qiuzhi Chen
- Department of Radiology, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing, China
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing, China
| |
Collapse
|
13
|
George MM, Tolley NS. AIM in Otolaryngology and Head and Neck Surgery. Artif Intell Med 2022. [DOI: 10.1007/978-3-030-64573-1_198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
14
|
Abstract
Artificial intelligence (AI) algorithms, particularly deep learning, have developed to the point that they can be applied in image recognition tasks. The use of AI in medical imaging can guide radiologists to more accurate image interpretation and diagnosis in radiology. The software will provide data that we cannot extract from the images. The rapid development in computational capabilities supports the wide applications of AI in a range of cancers. Among those are its widespread applications in head and neck cancer.
Collapse
|
15
|
Histogram analysis of diffusion-weighted imaging and dynamic contrast-enhanced MRI for predicting occult lymph node metastasis in early-stage oral tongue squamous cell carcinoma. Eur Radiol 2021; 32:2739-2747. [PMID: 34642806 DOI: 10.1007/s00330-021-08310-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES To investigate the feasibility of whole-tumor histogram analysis of diffusion-weighted imaging (DWI) and dynamic contrast-enhanced (DCE) MRI for predicting occult lymph node metastasis (LNM) in early-stage oral tongue squamous cell cancer (OTSCC). MATERIALS AND METHODS This retrospective study included 55 early-stage OTSCC (cT1-2N0M0) patients; 34 with pathological LNM and 21 without. Eight whole-tumor histogram features were extracted from quantitative apparent diffusion coefficient (ADC) maps and two semi-quantitative DCE parametric maps (wash-in and wash-out). The clinicopathological factors and histogram features were compared between the two groups. Stepwise logistic regression was used to identify independent predictors. Receiver operating characteristic curves were generated to assess the performances of significant variables and a combined model for predicting occult LNM. RESULTS MRI-determined depth of invasion and ADCentropy was significantly higher in the LNM group, with respective areas under the curve (AUCs) of 0.67 and 0.69, and accuracies of 0.73 and 0.73. ADC10th. ADCuniformity and wash-inskewness were significantly lower in the LNM group, with respective AUCs of 0.68, 0.71, and 0.69, and accuracies of 0.65, 0.71, and 0.64. Histogram features from wash-out maps were not significantly associated with cervical node status. In the logistic regression analysis, ADC10th, ADCuniformity, and wash-inskewness were independent predictors. The combined model yielded the best predictive performance, with an AUC of 0.87 and an accuracy of 0.82. CONCLUSIONS Whole-tumor histogram analysis of ADC and wash-in maps is a feasible tool for preoperative evaluation of cervical node status in early-stage OTSCC. KEY POINTS • Histogram analysis of parametric maps from DWI and DCE-MRI may assist the prediction of occult LNM in early-stage OTSCC. • ADC10th, ADCuniformity, and wash-inskewness were independent predictors. • The combined model exhibited good predictive performance, with an accuracy of 0.82.
Collapse
|
16
|
Bruixola G, Remacha E, Jiménez-Pastor A, Dualde D, Viala A, Montón JV, Ibarrola-Villava M, Alberich-Bayarri Á, Cervantes A. Radiomics and radiogenomics in head and neck squamous cell carcinoma: Potential contribution to patient management and challenges. Cancer Treat Rev 2021; 99:102263. [PMID: 34343892 DOI: 10.1016/j.ctrv.2021.102263] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/06/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022]
Abstract
The application of imaging biomarkers in oncology is still in its infancy, but with the expansion of radiomics and radiogenomics a revolution is expected in this field. This may be of special interest in head and neck cancer, since it can promote precision medicine and personalization of treatment by overcoming several intrinsic obstacles in this pathology. Our goal is to provide the medical oncologist with the basis to approach these disciplines and appreciate their main uses in clinical research and clinical practice in the medium term. Aligned with this objective we analyzed the most relevant studies in the field, also highlighting novel opportunities and current challenges.
Collapse
Affiliation(s)
- Gema Bruixola
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain
| | - Elena Remacha
- Quantitative Imaging Biomarkers in Medicine (QUIBIM SL), Valencia, Spain
| | - Ana Jiménez-Pastor
- Quantitative Imaging Biomarkers in Medicine (QUIBIM SL), Valencia, Spain
| | - Delfina Dualde
- Department of Radiology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain
| | - Alba Viala
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain
| | - Jose Vicente Montón
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain
| | - Maider Ibarrola-Villava
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Andrés Cervantes
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
17
|
Wang X, Li BB. Deep Learning in Head and Neck Tumor Multiomics Diagnosis and Analysis: Review of the Literature. Front Genet 2021; 12:624820. [PMID: 33643386 PMCID: PMC7902873 DOI: 10.3389/fgene.2021.624820] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/07/2021] [Indexed: 12/24/2022] Open
Abstract
Head and neck tumors are the sixth most common neoplasms. Multiomics integrates multiple dimensions of clinical, pathologic, radiological, and biological data and has the potential for tumor diagnosis and analysis. Deep learning (DL), a type of artificial intelligence (AI), is applied in medical image analysis. Among the DL techniques, the convolution neural network (CNN) is used for image segmentation, detection, and classification and in computer-aided diagnosis. Here, we reviewed multiomics image analysis of head and neck tumors using CNN and other DL neural networks. We also evaluated its application in early tumor detection, classification, prognosis/metastasis prediction, and the signing out of the reports. Finally, we highlighted the challenges and potential of these techniques.
Collapse
Affiliation(s)
- Xi Wang
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences, Beijing, China
| | - Bin-bin Li
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
18
|
Peng Z, Wang Y, Wang Y, Jiang S, Fan R, Zhang H, Jiang W. Application of radiomics and machine learning in head and neck cancers. Int J Biol Sci 2021; 17:475-486. [PMID: 33613106 PMCID: PMC7893590 DOI: 10.7150/ijbs.55716] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
With the continuous development of medical image informatics technology, more and more high-throughput quantitative data could be extracted from digital medical images, which has resulted in a new kind of omics-Radiomics. In recent years, in addition to genomics, proteomics and metabolomics, radiomic has attracted the interest of more and more researchers. Compared to other omics, radiomics can be perfectly integrated with clinical data, even with the pathology and molecular biomarker, so that the study can be closer to the clinical reality and more revealing of the tumor development. Mass data will also be generated in this process. Machine learning, due to its own characteristics, has a unique advantage in processing massive radiomic data. By analyzing mass amounts of data with strong clinical relevance, people can construct models that more accurately reflect tumor development and progression, thereby providing the possibility of personalized and sequential treatment of patients. As one of the cancer types whose treatment and diagnosis rely on imaging examination, radiomics has a very broad application prospect in head and neck cancers (HNC). Until now, there have been some notable results in HNC. In this review, we will introduce the concepts and workflow of radiomics and machine learning and their current applications in head and neck cancers, as well as the directions and applications of artificial intelligence in the treatment and diagnosis of HNC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Weihong Jiang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China
| |
Collapse
|
19
|
George MM, Tolley NS. AIM in Otolaryngology and Head & Neck Surgery. Artif Intell Med 2021. [DOI: 10.1007/978-3-030-58080-3_198-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|