1
|
Wang L, Lu J, Wang H, He L, Dou Z, Zhao W, Yang S, Liu D, Yang L. Radiofrequency ablation of the sinuvertebral nerve for patients with discogenic low back pain following lumbar interbody fusion: a case series study. Front Neurol 2025; 16:1539971. [PMID: 40330247 PMCID: PMC12053273 DOI: 10.3389/fneur.2025.1539971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/01/2025] [Indexed: 05/08/2025] Open
Abstract
Background This study aimed to investigate the clinical value of radiofrequency ablation (RFA) of the sinuvertebral nerve (SVN) in the treatment of discogenic low back pain (DLBP) following lumbar interbody fusion. Methods A total of 12 patients who underwent RFA of the SVN for DLBP after lumbar interbody fusion at the Pain Department of Xuanwu Hospital of Capital Medical University from February 2023 to August 2023 were included in this retrospective study. Results In total, 12 patients with DLBP were included. The preoperative visual analog scale (VAS) score was 7.00(6.00, 7.75), while the postoperative VAS score at 1 day, 1 month, and 3 months was 1.00 (1.00, 1.00). This represented a statistically significant improvement compared to the preoperative period (all p = 0.002). The preoperative Pittsburgh Sleep Quality Index (PSQI) score was 14.42 ± 1.83, and the postoperative PSQI scores at 1 month and 3 months were 4.75 ± 1.06 and 2.17 ± 1.11, respectively (all p < 0.001). Conclusion RFA of the SVN provides satisfactory short-term clinical results in patients with DLBP following lumbar interbody fusion. It appears to be an effective treatment for patients with DLBP who have poor outcomes after open lumbar spine surgery.
Collapse
Affiliation(s)
- Lijie Wang
- Department of Pain Management, Chengdu Second People's Hospital, Chengdu, China
| | - Jie Lu
- Department of Pain Management, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hongyan Wang
- Department of Pain Management, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liangliang He
- Department of Pain Management, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhi Dou
- Department of Pain Management, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenxing Zhao
- Department of Pain Management, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Song Yang
- Department of Pain Management, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Dong Liu
- Department of Pain Management, Chengdu Second People's Hospital, Chengdu, China
| | - Liqiang Yang
- Department of Pain Management, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Medina-Serra R, López-Abradelo P, Belda E, Riding-Medina H, Laredo FG, Marwood R, Mortera V, Redondo JI. Multivariable Analysis of the Association Between Lumbar and Lumbosacral MRI-Diagnosed Spinal Pathologies and Pain in Dogs. Animals (Basel) 2025; 15:761. [PMID: 40076044 PMCID: PMC11898813 DOI: 10.3390/ani15050761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/24/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Lumbar and lumbosacral pain in dogs often involves multiple concurrent spinal pathologies, complicating the identification of primary pain generators. This study assessed the associations between MRI-diagnosed spinal pathologies and pain to provide clinically relevant insights for their diagnosis and management. MRI scans and clinical records of 518 client-owned dogs were retrospectively reviewed, documenting demographic data, pain status, and MRI findings. Multivariable logistic regression models evaluated the associations between spinal pathologies and pain, adjusting for age and weight. The intervertebral disc (IVD) extrusion was the primary pathology associated with lumbar pain, while radiculopathy had the strongest association with lumbosacral pain. Additional lumbosacral pathologies, including foraminal stenosis, IVD bulging, and IVD protrusion, were also significantly associated with pain. However, some dogs with MRI-diagnosed abnormalities showed no pain, whereas others with pain had no detectable MRI pathology, underscoring the need to interpret imaging within the clinical context. Pain responses observed during physical examination often overlapped between spinal and hip conditions, complicating diagnostic accuracy. These findings emphasise the importance of integrating imaging, clinical assessment, and targeted diagnostic techniques to improve pain localisation and treatment decisions, providing veterinarians with valuable data to refine the management of lumbar and lumbosacral pain in dogs.
Collapse
Affiliation(s)
- Roger Medina-Serra
- Anaesthesia and Pain Management, North Downs Specialist Referrals, Bletchingley RH1 4QP, UK;
- Escuela Internacional de Doctorado de la Universidad de Murcia, Programa en Ciencias Veterinarias, Universidad de Murcia, 30100 Murcia, Spain
| | - Patricia López-Abradelo
- Anaesthesia and Pain Management, North Downs Specialist Referrals, Bletchingley RH1 4QP, UK;
| | - Eliseo Belda
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad de Murcia, 30100 Murcia, Spain;
- Hospital Veterinario Universidad de Murcia, 30100 Murcia, Spain
| | - Holly Riding-Medina
- Diagnostic Imaging, North Downs Specialist Referrals, Bletchingley RH1 4QP, UK;
| | - Francisco G. Laredo
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad de Murcia, 30100 Murcia, Spain;
- Hospital Veterinario Universidad de Murcia, 30100 Murcia, Spain
| | - Rachel Marwood
- Diagnostic Imaging, CityU Veterinary Medical Centre, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Verónica Mortera
- Neurology and Neurosurgery, North Downs Specialist Referrals, Bletchingley RH1 4QP, UK;
| | - José I. Redondo
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, 46115 Valencia, Spain;
| |
Collapse
|
3
|
Chiu AP, Lesnak J, Gabriel K, Price TJ, Arendt-Nielsen L, Bobos P, Curatolo M. Human molecular mechanisms of discogenic low back pain: A scoping review. THE JOURNAL OF PAIN 2025; 27:104693. [PMID: 39374801 PMCID: PMC11807758 DOI: 10.1016/j.jpain.2024.104693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
The limited understanding of the mechanisms underlying human discogenic low back pain (DLBP) has hampered the development of effective treatments. While there is much research on disc degeneration, the association between degeneration and pain is weak. Therefore, there is an urgent need to identify pain-inducing molecular mechanism to facilitate the development of mechanism-specific therapeutics. This scoping review aims to determine the current knowledge of molecular mechanisms associated with human DLBP. A systematic search on CENTRAL, CINAHL, Citation searching, ClinicalTrials.gov, Embase, Google Scholar, MEDLINE, PsycINFO, PubMed, Scopus, Web of Science, and World Health Organization was performed. Studies with human DLBP as diagnosed by discography or imaging that analyzed human disc tissues and reported pain-related outcomes were included, and those on predominant radicular pain were excluded. The search returned 6012 studies. Most studies did not collect pain-related outcomes. Those that included pain assessment relied on self-report of pain intensity and disability. Six studies qualified for data extraction and synthesis. The main molecular mechanisms associated with DLBP were the expressions of nociceptive neuropeptides and cytokines, particularly TNF-αdue to its strong association with pain outcomes. Activation of NF-κB signaling pathway, alterations in adrenoceptor expressions, and increase in reactive oxygen species (ROS) were also associated with DLBP through regulation of pro-inflammatory factors and pain-related neuropeptides. Current evidence converges to TNF-α, NF-κB signaling, and ROS-induced pro-inflammation. Major weaknesses in the current literature are the focus on degeneration without pain phenotyping, and lack of association of molecular findings with pain outcomes. PERSPECTIVE: This scoping review identified TNF-α, NF-κB signaling, and ROS-induced pro-inflammation as relevant mechanisms of human discogenic low back pain. Major weaknesses in the current literature are the focus on degeneration without pain phenotyping, and lack of association of molecular findings with pain outcomes.
Collapse
Affiliation(s)
- Abby P Chiu
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, WA, USA; Clinical Learning, Evidence And Research (CLEAR) Center for Musculoskeletal Research, University of Washington, Seattle, WA, USA
| | - Joseph Lesnak
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, USA
| | - Katherin Gabriel
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, USA
| | - Theodor J Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, USA
| | - Lars Arendt-Nielsen
- Center for Neuroplasticity and Pain (CNAP), SMI, Medical School, Aalborg University, Denmark; Department of Gastroenterology & Hepatology, Mech-Sense, Clinical Institute, Aalborg University Hospital, Aalborg, Denmark; Steno Diabetes Center North Denmark, Clinical Institute, Aalborg University Hospital, Aalborg, Denmark
| | - Pavlos Bobos
- School of Physical Therapy, Western University, London, Ontario, Canada; Department of Epidemiology and Biostatistics, Western University, London, Ontario, Canada
| | - Michele Curatolo
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, WA, USA; Clinical Learning, Evidence And Research (CLEAR) Center for Musculoskeletal Research, University of Washington, Seattle, WA, USA.
| |
Collapse
|
4
|
Zàaba NF, Ogaili RH, Ahmad F, Mohd Isa IL. Neuroinflammation and nociception in intervertebral disc degeneration: a review of precision medicine perspective. Spine J 2025:S1529-9430(25)00008-7. [PMID: 39814205 DOI: 10.1016/j.spinee.2024.12.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/20/2024] [Accepted: 12/30/2024] [Indexed: 01/18/2025]
Abstract
Intervertebral disc (IVD) degeneration is a major cause of low back pain (LBP), which results in disability worldwide. However, the pathogenesis of IVD degeneration mediating LBP remains unclear. Current conservative treatments and surgical interventions are both to relieve the symptoms and minimise pain; nevertheless, they are unable to reverse the degeneration. Previous studies have shown that inflammation and nociception markers are important indicators of pain mechanisms in IVD degeneration underlying LBP. As such, multiomics profiling allows the discovery of these target markers to understand the key pathological mechanisms mediating IVD degeneration underpinnings of LBP. This article provides insights into a precision medicine approach for identifying and understanding the pathophysiology of IVD degeneration associated with LPB based on the severity of the disease from early and mild to severe degenerative stages. Molecular profiling of key markers in degenerative IVDs based on patient stratification at early, mild, and severe stages will contribute to the identification of target markers associated with signalling pathways in mediating neuroinflammation, innervation, and nociception underlying painful IVD degeneration. This approach will offer an understanding of establishing personalised clinical strategies tailored to the severity of IVD degeneration for the treatment of LBP.
Collapse
Affiliation(s)
- Nurul Fariha Zàaba
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras 56000, Kuala Lumpur, Malaysia; CÚRAM Research Ireland Centre for Medical Devices, School of Medicine, University of Galway, Galway H91 W2TY, Ireland
| | - Raed H Ogaili
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras 56000, Kuala Lumpur, Malaysia
| | - Fairus Ahmad
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras 56000, Kuala Lumpur, Malaysia
| | - Isma Liza Mohd Isa
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras 56000, Kuala Lumpur, Malaysia; CÚRAM Research Ireland Centre for Medical Devices, School of Medicine, University of Galway, Galway H91 W2TY, Ireland.
| |
Collapse
|
5
|
Taylor W, Erwin WM. Intervertebral Disc Degeneration and Regeneration: New Molecular Mechanisms and Therapeutics: Obstacles and Potential Breakthrough Technologies. Cells 2024; 13:2103. [PMID: 39768194 PMCID: PMC11674193 DOI: 10.3390/cells13242103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Pain and disability secondary to degenerative disc disease continue to burden the healthcare system, creating an urgent need for effective, disease-modifying therapies. Contemporary research has identified potential therapies that include protein-, cellular- and/or matrix-related approaches; however, none have yet achieved a meaningful clinical impact. The tissue-specific realities of the intervertebral disc create considerable therapeutic challenges due to the disc's location, compartmentalization, hypovascularization and delicate physiological environment. Furthermore, the imaging modalities currently used in practice are largely unable to accurately identify sources of pain ostensibly discogenic in origin. These obstacles are considerable; however, recent research has begun to shed light on possible breakthrough technologies. Such breakthroughs include revolutionary imaging to better identify tissue sources of pain. Furthermore, novel molecular therapies have been shown to be able to mediate the progression of degenerative disc disease in some large animal studies, and even provide some insight into suppressing the development of tissue sources of discogenic pain. These potential breakthrough technologies have yet to be translated for clinical use.
Collapse
Affiliation(s)
- William Taylor
- Department of Surgery, Division of Neurosurgery, University of California at San Diego, 9350 Campus Point Dr., La Jolla, CA 92037, USA;
| | - William Mark Erwin
- Department of Surgery, Divisions of Orthopaedic and Neurosurgery, University of Toronto, 661 University Ave., Suite 13-1387, Toronto, ON M5G 0B7, Canada
| |
Collapse
|
6
|
Trone MAR, Stover JD, Almarza A, Bowles RD. pH: A major player in degenerative intervertebral disks. JOR Spine 2024; 7:e70025. [PMID: 39703199 PMCID: PMC11655178 DOI: 10.1002/jsp2.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/04/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024] Open
Abstract
Chronic lower back pain is the leading cause of disability worldwide, generating a socioeconomic cost of over $100 billion annually in the United States. Among the prominent causes of low back pain (LBP) is degeneration of the intervertebral disk (IVD), a condition known as degenerative disk disease (DDD). Despite the prevalence of DDD and multiple studies demonstrating its relationship with LBP, the mechanisms by which it contributes to pain remain unknown. Previous studies have identified potential causes for this pain, such as extracellular matrix (ECM) breakdown, changes in biomechanics, and pro-inflammatory signals. Possible pain treatments targeting these factors have been developed but with limited effects. However, low pH in DDD is a potential pain generator whose role has largely been unexplored and underappreciated. This review highlights hyperacidity's effects on the IVD, such as catabolism of disk cells and ECM, neoinnervation, altered mechanical signaling, and expression of pro-inflammatory cytokines and ion channels. This review aims to discuss what is known about the contributions of acidity to DDD pain, identify the knowledge gaps on this topic, and propose what research can be conducted to fill these gaps. We must better understand the underlying mechanisms of DDD and the interaction between hyperacidity and nociception to develop better therapeutics for this disease.
Collapse
Affiliation(s)
| | - Joshua D. Stover
- Department of Biomedical EngineeringUniversity of UtahSalt Lake CityUtahUSA
- Department of Oral and Craniofacial SciencesUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Alejandro Almarza
- Department of Oral and Craniofacial SciencesUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Robert D. Bowles
- Department of Biomedical EngineeringUniversity of UtahSalt Lake CityUtahUSA
- Department of OrthopaedicsUniversity of UtahSalt Lake CityUtahUSA
| |
Collapse
|
7
|
Yang L, He L, Hu H, Li W, Yang Y, Zhao H, Wang J, Yu X. Does the high-intensity zone of lumbar intervertebral disc at magnetic resonance imaging have diagnostic value for discogenic low back pain? A meta-analysis. BMC Musculoskelet Disord 2024; 25:869. [PMID: 39478451 PMCID: PMC11523764 DOI: 10.1186/s12891-024-07981-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/18/2024] [Indexed: 11/03/2024] Open
Abstract
OBJECTIVE The correlation between high-intensity zone (HIZ) of lumbar disc magnetic resonance imaging (MRI) and discogenic low back pain (DLBP) is currently controversial, this study aimed to systematically evaluate the correlation between HIZ of lumbar disc MRI and positive discography, as well as its diagnostic value for DLBP. METHOD Databases were searched to include research literature on high intensity zone (HIZ) related to discography and DLBP diagnosis. HIZ is a separate small, confined area of high signal located at the posterior border of the annulus fibrosus on MRI T2-weighted images of the lumbar spine, which is separated from the nucleus pulposus but has a higher signal than the nucleus pulposus. Studies on the correlation of HIZ with discography and DLBP diagnosis were searched in the Pubmed, EMBASE, Cochrane Central, Science Direct, China Knowledge Network, Wanfang Database, and China Biomedical Literature Databases, Scopus from January 1992 to June 2024. The outcomes were diagnostic values of HIZ for DLBP. The risk assessment was performed by Deeks' funnel methods in the Stata 17.0 software after 2 investigators independently screened the literature, extracted information and evaluated the risk of bias of the included studies. RESULTS A total of 25 studies including 5889 patients were included. meta-analysis showed that the sensitivity of HIZ for the diagnosis of DLBP was (0.49, 95% CI [0.37,0.61]) and specificity was (0.89, 95% CI [0.85,0.93]); the positive likelihood ratio was (4.52, 95% CI [3.28,6.25]) and the negative likelihood ratio was (0.58, 95% CI [0.46,0.71]). The diagnostic ratio was (7.87, 95% CI [5.05,12.26]). CONCLUSION The available evidence suggests that HIZ has acceptable sensitivity and high specificity in the diagnosis of DLBP. Due to the limitation of the number and quality of included studies, the above conclusions need to be validated by more high-quality studies.
Collapse
Affiliation(s)
- Lei Yang
- Department of Acupuncture and Moxibustion, Dongzhimen Hospital, Beijing University of Chinese Medicine, No. 5 Haiyun Warehouse, Dongcheng District, Beijing, 100700, China
| | - Long He
- Department of Rehabilitation, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Hai Hu
- Huguosi Hospital of Traditional Chinese Medicine, Beijing university of Chinese Medicine, Beijing, 100035, China
| | - Wenhao Li
- Department of Orthopedics III, Dongzhimen Hospital, Beijing University of Chinese Medicine, No. 5 Haiyun Warehouse, Dongcheng District, Beijing, 100700, China
| | - Yongdong Yang
- Department of Orthopedics III, Dongzhimen Hospital, Beijing University of Chinese Medicine, No. 5 Haiyun Warehouse, Dongcheng District, Beijing, 100700, China
| | - He Zhao
- Department of Orthopedics III, Dongzhimen Hospital, Beijing University of Chinese Medicine, No. 5 Haiyun Warehouse, Dongcheng District, Beijing, 100700, China
| | - Jun Wang
- Department of Acupuncture and Moxibustion, Dongzhimen Hospital, Beijing University of Chinese Medicine, No. 5 Haiyun Warehouse, Dongcheng District, Beijing, 100700, China.
| | - Xing Yu
- Department of Orthopedics III, Dongzhimen Hospital, Beijing University of Chinese Medicine, No. 5 Haiyun Warehouse, Dongcheng District, Beijing, 100700, China.
| |
Collapse
|
8
|
Yang W, Li K, Pan Q, Huang W, Xiao Y, Lin H, Liu S, Chen X, Lv X, Feng S, Shao Z, Qing X, Peng Y. An Engineered Bionic Nanoparticle Sponge as a Cytokine Trap and Reactive Oxygen Species Scavenger to Relieve Disc Degeneration and Discogenic Pain. ACS NANO 2024; 18:3053-3072. [PMID: 38237054 PMCID: PMC10832058 DOI: 10.1021/acsnano.3c08097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024]
Abstract
The progressive worsening of disc degeneration and related nonspecific back pain are prominent clinical issues that cause a tremendous economic burden. Activation of reactive oxygen species (ROS) related inflammation is a primary pathophysiologic change in degenerative disc lesions. This pathological state is associated with M1 macrophages, apoptosis of nucleus pulposus cells (NPC), and the ingrowth of pain-related sensory nerves. To address the pathological issues of disc degeneration and discogenic pain, we developed MnO2@TMNP, a nanomaterial that encapsulated MnO2 nanoparticles with a TrkA-overexpressed macrophage cell membrane (TMNP). Consequently, this engineered nanomaterial showed high efficiency in binding various inflammatory factors and nerve growth factors, which inhibited inflammation-induced NPC apoptosis, matrix degradation, and nerve ingrowth. Furthermore, the macrophage cell membrane provided specific targeting to macrophages for the delivery of MnO2 nanoparticles. MnO2 nanoparticles in macrophages effectively scavenged intracellular ROS and prevented M1 polarization. Supportively, we found that MnO2@TMNP prevented disc inflammation and promoted matrix regeneration, leading to downregulated disc degenerative grades in the rat injured disc model. Both mechanical and thermal hyperalgesia were alleviated by MnO2@TMNP, which was attributed to the reduced calcitonin gene-related peptide (CGRP) and substance P expression in the dorsal root ganglion and the downregulated Glial Fibrillary Acidic Protein (GFAP) and Fos Proto-Oncogene (c-FOS) signaling in the spinal cord. We confirmed that the MnO2@TMNP nanomaterial alleviated the inflammatory immune microenvironment of intervertebral discs and the progression of disc degeneration, resulting in relieved discogenic pain.
Collapse
Affiliation(s)
- Wenbo Yang
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People’s Republic of China
| | - Kanglu Li
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People’s Republic of China
| | - Qing Pan
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People’s Republic of China
| | - Wei Huang
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People’s Republic of China
| | - Yan Xiao
- Department
of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People’s Republic of China
| | - Hui Lin
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People’s Republic of China
| | - Sheng Liu
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People’s Republic of China
| | - Xuanzuo Chen
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People’s Republic of China
| | - Xiao Lv
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People’s Republic of China
| | - Shiqing Feng
- The
Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, People’s Republic
of China
- Department
of Orthopaedics, Tianjin Medical University General Hospital, Tianjin
Medical University, International Science and Technology Cooperation
Base of Spinal Cord Injury, Tianjin Key
Laboratory of Spine and Spinal Cord, Tianjin 300052, People’s Republic of China
- Department
of Orthopaedics, Qilu Hospital of Shandong University, Shandong University
Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo
College of Medicine, Shandong University, Jinan, Shandong 250012, People’s
Republic of China
| | - Zengwu Shao
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People’s Republic of China
| | - Xiangcheng Qing
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People’s Republic of China
| | - Yizhong Peng
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People’s Republic of China
| |
Collapse
|
9
|
Miller S, Caragea M, Carson D, McFarland MM, Teramoto M, Cushman DM, Cooper AN, Burnham T, McCormick ZL, Conger A. The effectiveness of intradiscal corticosteroid injection for the treatment of chronic discovertebral low back pain: a systematic review. PAIN MEDICINE (MALDEN, MASS.) 2024; 25:33-46. [PMID: 37740319 PMCID: PMC11494378 DOI: 10.1093/pm/pnad127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/03/2023] [Accepted: 08/21/2023] [Indexed: 09/24/2023]
Abstract
OBJECTIVE Determine the effectiveness of intradiscal corticosteroid injection (IDCI) for the treatment of discovertebral low back pain. DESIGN Systematic review. POPULATION Adults with chronic low back pain attributed to disc or vertebral end plate pain, as evidenced by positive provocation discography or Modic 1 or 2 changes on magnetic resonance imaging. INTERVENTION Fluoroscopically guided or computed tomography-guided IDCI. COMPARISON Sham/placebo procedure including intradiscal saline, anesthetic, discography alone, or other active treatment. OUTCOMES Reduction in chronic low back pain reported on a visual analog scale or numeric rating scale and reduction in disability reported by a validated scale such as the Oswestry Disability Index. METHODS Four reviewers independently assessed articles published before January 31, 2023, in Medline, Embase, CENTRAL, and CINAHL. The quality of evidence was evaluated with the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) framework. The risk of bias in randomized trials was evaluated with the Cochrane Risk of Bias tool (version 2). RESULTS Of the 7806 unique records screened, 6 randomized controlled trials featuring 603 total participants ultimately met the inclusion criteria. In multiple randomized controlled trials, IDCI was found to reduce pain and disability for 1-6 months in those with Modic 1 and 2 changes but not in those selected by provocation discography. CONCLUSION According to GRADE, there is low-quality evidence that IDCI reduces pain and disability for up to 6 months in individuals with chronic discovertebral low back pain as evidenced by Modic 1 and 2 changes but not in individuals selected by provocation discography. STUDY REGISTRATION PROSPERO (CRD42021287421).
Collapse
Affiliation(s)
- Scott Miller
- Department of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, UT 84108, United States
| | - Marc Caragea
- Department of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, UT 84108, United States
| | - Dan Carson
- Department of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, UT 84108, United States
| | - Mary M McFarland
- Eccles Health Sciences Library, University of Utah, Salt Lake City, UT 84112, United States
| | - Masaru Teramoto
- Department of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, UT 84108, United States
| | - Daniel M Cushman
- Department of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, UT 84108, United States
| | - Amanda N Cooper
- Department of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, UT 84108, United States
| | - Taylor Burnham
- Department of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, UT 84108, United States
| | - Zachary L McCormick
- Department of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, UT 84108, United States
| | - Aaron Conger
- Department of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, UT 84108, United States
| |
Collapse
|
10
|
Knab J, Rawson B, Harris D. Platelet Lysate. ESSENTIALS OF REGENERATIVE MEDICINE IN INTERVENTIONAL PAIN MANAGEMENT 2024:133-152. [DOI: 10.1007/978-3-031-50357-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
11
|
Jha R, Bernstock JD, Chalif JI, Hoffman SE, Gupta S, Guo H, Lu Y. Updates on Pathophysiology of Discogenic Back Pain. J Clin Med 2023; 12:6907. [PMID: 37959372 PMCID: PMC10647359 DOI: 10.3390/jcm12216907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Discogenic back pain, a subset of chronic back pain, is caused by intervertebral disc (IVD) degeneration, and imparts a notable socioeconomic health burden on the population. However, degeneration by itself does not necessarily imply discogenic pain. In this review, we highlight the existing literature on the pathophysiology of discogenic back pain, focusing on the biomechanical and biochemical steps that lead to pain in the setting of IVD degeneration. Though the pathophysiology is incompletely characterized, the current evidence favors a framework where degeneration leads to IVD inflammation, and subsequent immune milieu recruitment. Chronic inflammation serves as a basis of penetrating neovascularization and neoinnervation into the IVD. Hence, nociceptive sensitization emerges, which manifests as discogenic back pain. Recent studies also highlight the complimentary roles of low virulence infections and central nervous system (CNS) metabolic state alteration. Targeted therapies that seek to disrupt inflammation, angiogenesis, and neurogenic pathways are being investigated. Regenerative therapy in the form of gene therapy and cell-based therapy are also being explored.
Collapse
Affiliation(s)
- Rohan Jha
- Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Joshua I. Chalif
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Samantha E. Hoffman
- Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Saksham Gupta
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Hong Guo
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Yi Lu
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
12
|
Huang J, Lian SL, Han JH, Lu ZC, Ding Y. Pure platelet-rich plasma promotes semaphorin-3A expression: a novel insight to ameliorate intervertebral disk degeneration in vitro. J Orthop Surg Res 2023; 18:789. [PMID: 37864189 PMCID: PMC10588088 DOI: 10.1186/s13018-023-04290-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/15/2023] [Indexed: 10/22/2023] Open
Abstract
INTRODUCTION Intervertebral disk degeneration (IVDD) can be effectively treated using platelet-rich plasma (PRP). While the exact process is fully understood, it is believed that using pure PRP (P-PRP) without leukocytes is a better option for preventing IVDD. Semaphorin-3A (Sema3A), an inhibitor of angiogenesis and innervation, is essential for preserving IVDD's homeostasis. Whether PRP prevents IVDD by modifying Sema3A has yet to receive much research. This work aims to clarify how P-PRP affects Sema3A when IVDD develops in vitro. METHODS Nucleus pulposus cells (NPCs) isolated from 8-week-old male Sprague-Dawley rats were exposed to 10 ng/ml IL-1β and then treated with P-PRP or leukocyte platelet-rich plasma (L-PRP) in vitro, followed by measuring cell proliferation, apoptosis and microstructures, inflammatory gene and Sema3A expression, as well as anabolic and catabolic protein expression by immunostaining, quantitative real-time polymerase chain reaction (qPCR), western blot, and enzyme-linked immunosorbent assay (ELISA). RESULTS In comparison with L-PRP, P-PRP had a higher concentration of growth factors but a lower concentration of inflammatory substances. P-PRP increased the proliferation of NPCs, while IL-1 relieved the amount of apoptosis due to its intervention. Anabolic genes, aggrecan, and collagen II had higher expression levels. MMP-3 and ADAMTS-4, two catabolic or inflammatory genes, showed lower expression levels. Sema3A activity was enhanced after P-PRP injection, whereas CD31 and NF200 expression levels were suppressed. CONCLUSIONS P-PRP enhanced the performance of NPCs in IVDD by modifying the NF-κB signaling pathway and encouraging Sema3A expression, which may offer new therapy options for IVDD. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE The findings provide a new therapeutic target for the treatment of IVDD and show a novel light on the probable mechanism of PRP and the function of Sema3A in the progression of IVDD.
Collapse
Affiliation(s)
- Jie Huang
- Orthopedics of TCM Senior Department, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
- Department of Orthopedics, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Shi-Lin Lian
- Orthopedics of TCM Senior Department, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Jia-Heng Han
- Orthopedics of TCM Senior Department, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
- Department of Orthopedics, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Zheng-Cao Lu
- Orthopedics of TCM Senior Department, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
- Department of Orthopedics, School of Medicine, Jinzhou Medical University, Jinzhou, 121001, China
| | - Yu Ding
- Orthopedics of TCM Senior Department, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China.
- Department of Orthopedics, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
13
|
Peng Y, Chen X, Rao Z, Wu W, Zuo H, Chen K, Li K, Lin H, Liu S, Xiao Y, Wang B, Quan D, Qing X, Bai Y, Shao Z. Multifunctional annulus fibrosus matrix prevents disc-related pain via inhibiting neuroinflammation and sensitization. Acta Biomater 2023; 170:288-302. [PMID: 37598791 DOI: 10.1016/j.actbio.2023.08.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/25/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Chronic low back pain mainly attributed to intervertebral disc (IVD) degeneration. Endogenous damage-associated molecular patterns (DAMPs) in the injured IVD, particularly mitochondria-derived nucleic acid molecules (CpG DNA), play a primary role in the inflammatory responses in macrophages. M1-type macrophages form a chronic inflammatory microenvironment by releasing pro-inflammatory factors and nerve growth factor (NGF) that induce nerve growth into the inner annulus fibrosus, resulting in persistent hyperalgesia. We fabricated an amphiphilic polycarbonate that naturally forms cationic nanoparticles (cNP) in aqueous solutions, with the hydrophobic core loaded with TrkA-IN-1, an antagonist against the NGF receptor (TrkA). The drug delivery nanoparticles were denoted as TI-cNP. TrkA-IN-1 and TI-cNP were added to the decellularized annulus fibrosus matrix (DAF) hydrogel to form hybrid hydrogels, denoted as TI-DAF and TI-cNP-DAF, respectively. As a result, TrkA-IN-1 showed a delayed release profile both in TI-DAF and TI-cNP-DAF. Each mole of cNP could bind approximately 3 mol of CpG DNA to inhibit inflammation. cNP-DAF and TI-cNP-DAF significantly inhibited the M1 phenotype induced by CpG DNA. TI-DAF and TI-cNP-DAF reduced neurite branching and axon length, and inhibited the expression of neurogenic mediators (CGRP and substance P) in the presence of NGF. Besides, TI-cNP-DAF relieved mechanical hyperalgesia, reduced CGRP and substance P expression in the dorsal root ganglion, and downregulated GFAP and c-FOS signaling in the spinal cord in the rat disc herniation model. Summarily, TI-cNP-DAF, a novel composite IVD hydrogel, efficiently mediated the inflammatory environment, inhibited nerve ingrowth and sensitization, and could be clinically applied for treating discogenic pain. STATEMENT OF SIGNIFICANCE: Discogenic lower back pain, related to intervertebral disc degeneration (IDD), imposes a tremendous health and economic burden globally. M1-type macrophages release pro-inflammatory factors and nerve growth factor (NGF) that induce nerve growth into the inner annulus fibrosus, resulting in persistent hyperalgesia and discogenic pain. Reconstructing matrix integrity and modulating the inflammatory microenvironment are promising strategies for preventing the ingrowth and activation of neurites. The TI-cNP-DAF hydrogel recovers tissue integrity, alleviates inflammation, and delivers the TrkA antagonist to inhibit the activity of NGF, thus restraining hyperinnervation and nociceptive input. Due to its simple production process, injectability, and acellular strategy, the hydrogel is operable and holds great potential for treating discogenic lower back pain.
Collapse
Affiliation(s)
- Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xuanzuo Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zilong Rao
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510127, China
| | - Wei Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huiying Zuo
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510127, China
| | - Kaibin Chen
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510127, China
| | - Kanglu Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hui Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Sheng Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan Xiao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - BaiChuan Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Daping Quan
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510127, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Ying Bai
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510127, China.
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
14
|
Diwan AD, Melrose J. Intervertebral disc degeneration and how it leads to low back pain. JOR Spine 2023; 6:e1231. [PMID: 36994466 PMCID: PMC10041390 DOI: 10.1002/jsp2.1231] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 09/23/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this review was to evaluate data generated by animal models of intervertebral disc (IVD) degeneration published in the last decade and show how this has made invaluable contributions to the identification of molecular events occurring in and contributing to pain generation. IVD degeneration and associated spinal pain is a complex multifactorial process, its complexity poses difficulties in the selection of the most appropriate therapeutic target to focus on of many potential candidates in the formulation of strategies to alleviate pain perception and to effect disc repair and regeneration and the prevention of associated neuropathic and nociceptive pain. Nerve ingrowth and increased numbers of nociceptors and mechanoreceptors in the degenerate IVD are mechanically stimulated in the biomechanically incompetent abnormally loaded degenerate IVD leading to increased generation of low back pain. Maintenance of a healthy IVD is, thus, an important preventative measure that warrants further investigation to preclude the generation of low back pain. Recent studies with growth and differentiation factor 6 in IVD puncture and multi-level IVD degeneration models and a rat xenograft radiculopathy pain model have shown it has considerable potential in the prevention of further deterioration in degenerate IVDs, has regenerative properties that promote recovery of normal IVD architectural functional organization and inhibits the generation of inflammatory mediators that lead to disc degeneration and the generation of low back pain. Human clinical trials are warranted and eagerly anticipated with this compound to assess its efficacy in the treatment of IVD degeneration and the prevention of the generation of low back pain.
Collapse
Affiliation(s)
- Ashish D. Diwan
- Spine Service, Department of Orthopaedic Surgery, St. George & Sutherland Clinical SchoolUniversity of New South WalesSydneyNew South WalesAustralia
| | - James Melrose
- Raymond Purves Bone and Joint Research LaboratoryKolling Institute, Sydney University Faculty of Medicine and Health, Northern Sydney Area Health District, Royal North Shore HospitalSydneyNew South WalesAustralia
- Graduate School of Biomedical EngineeringThe University of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
15
|
Song XX, Jin LY, Li Q, Li XF, Luo Y. Estrogen receptor β/substance P signaling in spinal cord mediates antinociceptive effect in a mouse model of discogenic low back pain. Front Cell Neurosci 2023; 16:1071012. [PMID: 36756381 PMCID: PMC9899865 DOI: 10.3389/fncel.2022.1071012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/29/2022] [Indexed: 01/24/2023] Open
Abstract
Introduction Discogenic low back pain (DLBP) is the most commonly described form of back pain. Our previous studies indicated that estrogen-dependent DLBP mechanism was mediated by estrogen receptors (ERs) in the intervertebral disc (IVD) tissue, and the IVD degeneration degree is accompanied by downregulation of ERs, particularly ERβ. However, the neuropathological mechanisms underlying ERs modulation of DLBP are still not well understood. In this study, we investigated the antinociceptive effects of selective ERβ agonists on DLBP-related behavior by regulating substance P in spinal cord and dorsal root ganglia. Methods Two weeks after ovariectomies, 18-week-old female mice were randomly separated into four groups: control group; DLBP sham surgery plus vehicle group; DLBP plus vehicle group; DLBP plus ERβ-specific agonist diarylpropionitrile (DPN) group. Behavioral data was collected including behavioral measures of axial back pain (grip force and tail suspension tests) and radiating hypersensitivity (mechanical sensitivity and cold sensitivity test). Dual label scanning confocal immunofluorescence microscopy was used to observe spatial colocalization of ERβ and substance P in spinal cord. Substance P changes in spinal cord and dorsal root ganglia were measured by immunohistochemistry and real-time PCR. Results ERβ activation could improve both axial and radiating behavioral disorders of DLBP. DPN facilitated the decrease of the amount of time in immobility 1 week after agonist administration. At the time point of 3 weeks, DPN group spent significantly less time in immobility than the vehicle group. In the grip strength tests, starting from postoperative week 1-week 3, DPN injection DLBP mice showed more resistance to stretch than the vehicle injection DLBP mice. Significant differences of cold withdrawal latency time were observed between the DLBP plus DPN injection and DLBP vehicle injection groups at 2- and 3-week injection time point. DPN significantly reversed the paw withdrawal threshold of DLBP mice at the time point of 1, 2, and 3 weeks. Substance P colocalized with ERβ in spinal dorsal horn, mainly in laminae I and II, a connection site of pain transmission. Substance P levels in dorsal horn and dorsal root ganglia of DLBP group were distinctly increased compared with that of control and DLBP sham group. DPN therapy could decrease substance P content in the dorsal horn and the dorsal root ganglia of DLBP mice compared with that of vehicle-treated DLBP mice. Discussion Activation of ERβ is antinociceptive in the DLBP model by controlling substance P in spinal cord and dorsal root ganglia, which might provide a therapeutic target to manage DLBP in the clinic.
Collapse
Affiliation(s)
- Xiao-Xing Song
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin-Yu Jin
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Li
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin-Feng Li
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Xin-Feng Li,
| | - Yan Luo
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Yan Luo,
| |
Collapse
|
16
|
Velnar T, Gradisnik L. Endplate role in the degenerative disc disease: A brief review. World J Clin Cases 2023; 11:17-29. [PMID: 36687189 PMCID: PMC9846967 DOI: 10.12998/wjcc.v11.i1.17] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/19/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
The degenerative disease of the intervertebral disc is nowadays an important health problem, which has still not been understood and solved adequately. The vertebral endplate is regarded as one of the vital elements in the structure of the intervertebral disc. Its constituent cells, the chondrocytes in the endplate, may also be involved in the process of the intervertebral disc degeneration and their role is central both under physiological and pathological conditions. They main functions include a role in homeostasis of the extracellular environment of the intervertebral disc, metabolic support and nutrition of the discal nucleus and annulus beneath and the preservation of the extracellular matrix. Therefore, it is understandable that the cells in the endplate have been in the centre of research from several viewpoints, such as development, degeneration and growth, reparation and remodelling, as well as treatment strategies. In this article, we briefly review the importance of vertebral endplate, which are often overlooked, in the intervertebral disc degeneration.
Collapse
Affiliation(s)
- Tomaz Velnar
- Department of Neurosurgery, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia
- Alma Mater Europaea Maribor, Maribor 2000, Slovenia
| | - Lidija Gradisnik
- Alma Mater Europaea Maribor, Maribor 2000, Slovenia
- Institute of Biomedical Sciences, University of Maribor, University of Maribor, Maribor 2000, Slovenia
| |
Collapse
|
17
|
Wang H, Zhu J, Xia Y, Li Y, Fu C. Application of platelet-rich plasma in spinal surgery. Front Endocrinol (Lausanne) 2023; 14:1138255. [PMID: 37008931 PMCID: PMC10057539 DOI: 10.3389/fendo.2023.1138255] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
With the aging of the population and changes in lifestyle, the incidence of spine-related diseases is increasing, which has become a major global public health problem; this results in a huge economic burden on the family and society. Spinal diseases and complications can lead to loss of motor, sensory, and autonomic functions. Therefore, it is necessary to identify effective treatment strategies. Currently, the treatment of spine-related diseases includes conservative, surgical, and minimally invasive interventional therapies. However, these treatment methods have several drawbacks such as drug tolerance and dependence, adjacent spondylosis, secondary surgery, infection, nerve injury, dural rupture, nonunion, and pseudoarthrosis. Further, it is more challenging to promote the regeneration of the interstitial disc and restore its biomechanical properties. Therefore, clinicians urgently need to identify methods that can limit disease progression or cure diseases at the etiological level. Platelet-rich plasma (PRP), a platelet-rich form of plasma extracted from venous blood, is a blood-derived product. Alpha granules contain a large number of cytokines, such as platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), epidermal growth factor, platelet factor 4 (PF-4), insulin-like growth factor-1 (IGF-1), and transforming growth factor-β (TGF-β). These growth factors allow stem cell proliferation and angiogenesis, promote bone regeneration, improve the local microenvironment, and enhance tissue regeneration capacity and functional recovery. This review describes the application of PRP in the treatment of spine-related diseases and discusses the clinical application of PRP in spinal surgery.
Collapse
|
18
|
Zhang J, Sun T, Zhang W, Yang M, Li Z. Autologous cultured adipose derived mesenchymal stem cells combined with hyaluronic acid hydrogel in the treatment of discogenic low back pain: a study protocol for a phase II randomised controlled trial. BMJ Open 2022; 12:e063925. [PMID: 36283750 PMCID: PMC9608519 DOI: 10.1136/bmjopen-2022-063925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Discogenic low back pain (DLBP) is a common disease, and its occurrence is closely related to intervertebral disc (IVD) degeneration. At present, none of the traditional treatment methods can repair the degenerated IVD. The emergence of stem cell therapy makes it possible to repair and regenerate IVD tissue, among which adipose derived mesenchymal stem cells (ADMSCs) transplantation therapy has become a hot spot of current research. Therefore, this trial aimed to investigate the safety and efficacy of using autologous cultured ADMSCs combined with hyaluronic acid (HA) hydrogel in the treatment of DLBP. METHODS AND ANALYSIS This study is a randomised, dose-escalation, placebo-controlled, double-blind, single-centre, phase II clinical trial to evaluate the efficacy and safety of autologous cultured ADMSCs combined with HA hydrogel in the treatment of patients with DLBP. The 100 eligible patients will be randomly divided into three experimental groups with different doses and one placebo control group in a ratio of 1:1:1:1. All patients will undergo liposuction to obtain ADMSCs, followed by autologous cultured ADMSC mixtures or placebo transplantation after 3 weeks. The patients will be followed up to 24 months after the transplant. The primary end point of this trial is the Visual Analogue Scale. Secondary end points include the Oswestry Disability Index, Japanese Orthopaedic Association Scores, the Mos 36-item short form, the Modic classification, Pfirrmann grade, height and segment range of motion of the IVD, vital signs (temperature, pulse, respiration, blood pressure), blood routine, liver and kidney function, immunological examination, urinalysis and treatment emergent adverse events. ETHICS AND DISSEMINATION The study protocol has been approved by the Ethics Committee of the First Affiliated Hospital of Dalian Medical University and registered in the Chinese Clinical Trial Registry. Dissemination of the results will be presented at a conference and in peer-reviewed publications. TRIAL REGISTRATION NUMBER ChiCTR2200058291.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Dalian, China
| | - Tianze Sun
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Dalian, China
| | - Wentao Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Dalian, China
| | - Ming Yang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Dalian, China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Dalian, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, China
| |
Collapse
|
19
|
Zhang J, Li Q, Du Y, Yan Z, Chen L, Wang L. Efficacy Analysis of Percutaneous Endoscopic Spinal Surgery for Young Patients with Discogenic Low Back Pain. J Pain Res 2022; 15:665-674. [PMID: 35264884 PMCID: PMC8901256 DOI: 10.2147/jpr.s351296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/24/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To evaluate the application value of percutaneous endoscopic spinal surgery for young patients with discogenic low back pain (DLBP) and to judge its clinical efficacy. Methods We retrospectively analyzed young patients with single-segment discogenic lumbago from July 2018 to June 2020 in our department who underwent percutaneous endoscopic surgery according to the inclusion and exclusion criteria. We finally enrolled 20 patients. The follow-up time was 6–30 months. In all patients, we recorded the visual analog scale (VAS) score for waist pain and the Oswestry Disability Index (ODI) preoperatively, immediately postoperatively and at the last follow-up. We used the modified MacNab criteria to assess the curative effect at the last follow-up. Results All 20 patients underwent successful operations without complications. No recurrence was observed during follow-up. The VAS score of low back pain was 5.05±1.19 points before surgery, 1.50±051 points immediately after surgery, and 1.10±0.72 points at the last follow-up (P < 0.05 preoperative vs both postoperative). At the last follow-up, the VAS scores of all 20 patients were ≤2, and 4 patients had no pain. The ODI was 46.66±7.03% before surgery, 9.78±4.05% immediately after surgery, and 4.11±3.18% at the last (P < 0.05, preoperative vs both postoperative). According to the evaluation under the modified MacNab standard, the good–excellent rate of clinical efficacy at the last follow-up was 95%. Conclusion Percutaneous endoscopic spinal surgery can significantly improve the symptoms and dysfunction of young patients with DLBP and has little effect on the biomechanical stability of the lumbar spine. This surgery has great clinical application value.
Collapse
Affiliation(s)
- Jianan Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Qichang Li
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Yu Du
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Zhengjian Yan
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Liang Chen
- Department of Musculoskeletal Tumor, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, 400030, People’s Republic of China
| | - Liyuan Wang
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
- Correspondence: Liyuan Wang, Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China, Tel +89-13648380803, Email
| |
Collapse
|
20
|
The Effect of Cutibacterium acnes Infection on Nerve Penetration in the Annulus Fibrosus of Lumbar Intervertebral Discs via Suppressing Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9120674. [PMID: 35265268 PMCID: PMC8898795 DOI: 10.1155/2022/9120674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/14/2022] [Accepted: 01/29/2022] [Indexed: 11/18/2022]
Abstract
Modic changes (MCs) and low back pain are highly correlated and an economic burden to the society. Previous studies have shown that Cutibacterium acnes (C. acnes) infection can lead to MCs. The purpose of this study was to clarify whether and how C. acnes contributes to oxidative stress and nerve growth that potentially leads to low back pain. Neurons from the hippocampus or dorsal root ganglion (DRG) of Sprague-Dawley (SD) rats were cocultured with annulus fibrosus cells (AFCs) with or without the presence of the C. acnes supernatant in vitro. Cell viability, neurite length, oxidative stress, and neuro-related gene expression were examined. Furthermore, samples from the patients with MCs and SD rat model of MCs were used to validate the nerve growth results. Neurons from both the hippocampus and DRG showed neurites when cocultured with AFCs in the environment with/without the C. acnes supernatant. The average neurite length was significantly longer when exposed to the C. acnes supernatant in the hippocampal neuron (217.1 ± 90.0 μm versus 150.1 ± 68.1 μm in the control group) and in the DRG neuron (229.1 ± 91.3 μm versus 149.2 ± 64.8 μm in the control group). Hippocampal neurons showed upregulated expression levels of NeuN, Map2, and Psd95, while upregulation was only seen in Tuj-1 in DRG neurons. Suppressed oxidative stress could be observed using axon growth symbols. Degenerated disc structures and abnormal bone remodelling were found in animal models and clinical samples of MCs, with astrocytes, microglia, and neurons in the disc. Therefore, C. acnes infection was found to cause back pain in the presence of MCs by promoting nerve penetration into the annulus fibrosus by suppressing oxidative stress.
Collapse
|
21
|
Schneider BJ, Hunt C, Conger A, Qu W, Maus TP, Vorobeychik Y, Cheng J, Duszynski B, McCormick ZL. The effectiveness of intradiscal biologic treatments for discogenic low back pain: a systematic review. Spine J 2022; 22:226-237. [PMID: 34352363 DOI: 10.1016/j.spinee.2021.07.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT There are limited treatments for discogenic low back pain. Intradiscal injections of biologic agents such as platelet-rich plasma (PRP) or stem cells (SC) are theorized to have regenerative properties and have gained increasing interest as a possible treatment, but the evidence supporting their use in clinical practice is not yet well-defined. PURPOSE Determine the effectiveness of intradiscal biologics for treating discogenic low back pain. STUDY DESIGN PRISMA-compliant systematic review. PATIENT SAMPLE Patients with discogenic low back pain confirmed by provocation discography or clinical and imaging findings consistent with discogenic pain. OUTCOME MEASURES The primary outcome was the proportion of individuals with ≥50% pain relief after intradiscal biologic injection at 6 months. Secondary outcomes included ≥2-point pain score reduction on NRS; patient satisfaction; functional improvement; decreased use of other health care, including analgesics and surgery; and structural disc changes on MRI. METHODS Comprehensive literature search performed in 2018 and updated in 2020. Interventions included were biologic therapies including mesenchymal stem cells, platelet rich plasma, microfragmented fat, amniotic membrane-based injectates, and autologous conditioned serum. Any other treatment (sham or active) was considered for comparative studies. Studies were independently reviewed. RESULTS The literature search yielded 3,063 results, 37 studies were identified for full-text review, and 12 met established inclusion criteria for review. The quality of evidence on effectiveness of intradiscal biologics was very low. A single randomized controlled trial evaluating platelet-rich plasma reported positive outcomes but had significant methodological flaws. A single trial that evaluated mesenchymal stem cells was negative. Success rates for platelet-rich plasma injectate in aggregate were 54.8% (95% Confidence Interval: 40%-70%). For mesenchymal stem cells, the aggregate success rate at six months was 53.5% (95% Confidence Interval: 38.6%-68.4%), though using worst-case analysis this decreased to 40.7% (95% Confidence Interval: 28.1%-53.2%). Similarly, ≥30% functional improvement was achieved in 74.3% (95% Confidence Interval: 59.8%-88.7%) at six months but using worst-case analysis, this decreased to 44.1% (95% Confidence Interval: 28.1%-53.2%). CONCLUSION Limited observational data support the use of intradiscal biologic agents for the treatment of discogenic low back pain. According to the Grades of Recommendation, Assessment, Development and Evaluation System, the evidence supporting use of intradiscal mesenchymal stem cells and platelet-rich plasma is very low quality.
Collapse
Affiliation(s)
- Byron J Schneider
- Department of Physical Medicine and Rehabilitation, Vanderbilt University, Nashville, TN, USA.
| | - Christine Hunt
- Department of Anesthesiology & Perioperative Medicine, Division of Pain Medicine, Mayo Clinic, Rochester, MN, USA
| | - Aaron Conger
- Division of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, UT, USA
| | - Wenchun Qu
- Department of Pain Medicine, Center of Regenerative Medicine, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Timothy P Maus
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Yakov Vorobeychik
- Penn State Health, Milton S. Hershey Medical Center, Department of Anesthesiology and Perioperative Medicine, Department of Neurology, Hershey, PA, USA
| | - Jianguo Cheng
- Departments of Pain Management and Neurosciences, Cleveland Clinic, Cleveland, OH, USA
| | | | - Zachary L McCormick
- Division of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
22
|
Exercise attenuates low back pain and alters epigenetic regulation in intervertebral discs in a mouse model. Spine J 2021; 21:1938-1949. [PMID: 34116218 DOI: 10.1016/j.spinee.2021.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/23/2021] [Accepted: 06/01/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Chronic low back pain (LBP) is a multifactorial disorder with complex underlying mechanisms, including associations with intervertebral disc (IVD) degeneration in some individuals. It has been demonstrated that epigenetic processes are involved in the pathology of IVD degeneration. Epigenetics refers to several mechanisms, including DNA methylation, that have the ability to change gene expression without inducing any change in the underlying DNA sequence. DNA methylation can alter the entire state of a tissue for an extended period of time and thus could potentially be harnessed for long-term pain relief. Lifestyle factors, such as physical activity, have a strong influence on epigenetic regulation. Exercise is a commonly prescribed treatment for chronic LBP, and sex-specific epigenetic adaptations in response to endurance exercise have been reported. However, whether exercise interventions that attenuate LBP are associated with epigenetic alterations in degenerating IVDs has not been evaluated. PURPOSE We hypothesize that the therapeutic efficacy of physical activity is mediated, at least in part, at the epigenetic level. The purpose of this study was to use the SPARC-null mouse model of LBP associated with IVD degeneration to clarify (1) if IVD degeneration is associated with altered expression of epigenetic regulatory genes in the IVDs, (2) if epigenetic regulatory machinery is sensitive to therapeutic environmental intervention, and (3) if there are sex-specific differences in (1) and/or (2). STUDY DESIGN Eight-month-old male and female SPARC-null and age-matched control (WT) mice (n=108) were assigned to exercise (n=56) or sedentary (n=52) groups. Deletion of SPARC is associated with progressive IVD degeneration and behavioral signs of LBP. The exercise group received a circular plastic home cage running wheel on which they could run freely. The sedentary group received an identical wheel secured in place to prevent rotation. After 6 months, the results obtained in each group were compared. METHODS After 6 months of exercise, LBP-related behavioral indices were determined, and global DNA methylation (5-methylcytosine) and epigenetic regulatory gene mRNA expression in IVDs were assessed. This project was supported by the Canadian Institutes for Health Research. The authors have no conflicts of interest. RESULTS Lumbar IVDs from WT sedentary and SPARC-null sedentary mice had similar levels of global DNA methylation (%5-mC) and comparable mRNA expression of epigenetic regulatory genes (Dnmt1,3a,b, Mecp2, Mbd2a,b, Tet1-3) in both sexes. Exercise attenuated LBP-related behaviors, decreased global DNA methylation in both WT (p<.05) and SPARC-null mice (p<.01) and reduced mRNA expression of Mecp2 in SPARC-null mice (p<.05). Sex-specific effects of exercise on expression of mRNA were also observed. CONCLUSIONS Exercise alleviates LBP in a mouse model. This may be mediated, in part, by changes in the epigenetic regulatory machinery in degenerating IVDs. Epigenetic alterations due to a lifestyle change could have a long-lasting therapeutic impact by changing tissue homeostasis in IVDs. CLINICAL SIGNIFICANCE This study confirmed the therapeutic benefits of exercise on LBP and suggests that exercise results in sex-specific alterations in epigenetic regulation in IVDs. Elucidating the effects of exercise on epigenetic regulation may enable the discovery of novel gene targets or new strategies to improve the treatment of chronic LBP.
Collapse
|
23
|
Yang S, Boudier-Revéret M, Chang MC. Use of Pulsed Radiofrequency for the Treatment of Discogenic Back Pain: A Narrative Review. Pain Pract 2021; 21:594-601. [PMID: 33296544 DOI: 10.1111/papr.12978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Low-back pain (LBP) is one of the most frequently reported symptoms of patients who visit pain clinics, and a significant proportion of them have discogenic pain. Pulsed radiofrequency (PRF) stimulation is an effective treatment for various types of pain. PURPOSE We reviewed articles which investigated the effectiveness of intradiscal PRF for controlling discogenic LBP. METHODS AND MATERIALS We searched PubMed for papers published prior to August 7, 2020, in which intradiscal PRF was used for treating discogenic LBP. The key search phrase was (intradiscal PRF) for identifying potentially relevant articles. We included articles in which intradiscal PRF was used for controlling LBP. Review articles were excluded. RESULTS Nine publications were included in this review. Except for one study, all other studies showed positive therapeutic outcomes after treating discogenic LBP using intradiscal PRF. However, the quality of these studies was not high. CONCLUSIONS This review showed that intradiscal PRF appears to be a helpful treatment method for patients with discogenic LBP. Our review provides insights into the degree of evidence of the therapeutic effects of intradiscal PRF for alleviating discogenic LBP. For confirmation of the effectiveness of intradiscal PRF on discogenic LBP, more high-quality studies are necessary.
Collapse
Affiliation(s)
- Seoyon Yang
- Department of Rehabilitation Medicine, Ewha Woman's University Seoul Hospital, Ewha Woman's University School of Medicine, Seoul, Korea
| | - Mathieu Boudier-Revéret
- Department of Physical Medicine and Rehabilitation, Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Min Cheol Chang
- Department of Rehabilitation Medicine, College of Medicine, Yeungnam University, Daegu, Korea
| |
Collapse
|
24
|
Stover JD, Lawrence B, Bowles RD. Degenerative IVD conditioned media and acidic pH sensitize sensory neurons to cyclic tensile strain. J Orthop Res 2021; 39:1192-1203. [PMID: 32255531 PMCID: PMC9265139 DOI: 10.1002/jor.24682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/27/2020] [Accepted: 03/19/2020] [Indexed: 02/04/2023]
Abstract
Low back pain is among the leading causes of disability worldwide. The degenerative intervertebral disc (IVD) environment contains pathologically high levels of inflammatory cytokines and acidic pH hypothesized to contribute to back pain by sensitizing nociceptive neurons to stimuli that would not be painful in healthy patients. We hypothesized that the degenerative IVD environment drives discogenic pain by sensitizing nociceptive neurons to mechanical loading. To test this hypothesis, we developed an in vitro model that facilitated the investigation of interactions between the degenerative IVD environment, nociceptive neurons innervating the IVD and mechanical loading of the disc; and, the identification of the underlying mechanism of degenerative IVD induced nociceptive neuron sensitization. In our model, rat dorsal root ganglia (DRG) neurons were seeding onto bovine annulus fibrosus tissue, exposed to degenerative IVD conditioned media and/or acidic pH, and subjected to cyclic tensile strain (1 Hz; 1%-6% strain) during measurement of DRG sensory neuron activity via calcium imaging. Using this model, we demonstrated that both degenerative IVD conditioned media and degenerative IVD acidic pH levels induced elevated nociceptive neuron activation in response to physiologic levels of mechanical strain. In addition, interleukin 6 (IL-6) was demonstrated to mediate degenerative IVD conditioned media induced elevated nociceptive neuron activation. These results demonstrate IL-6 mediates degenerative IVD induced neuron sensitization to mechanical loading and further establishes IL-6 as a potential therapeutic target for the treatment of discogenic pain. Data further suggests the degenerative IVD environment contains multiple neuron sensitization pathways (IL-6, pH) that may contribute to discogenic pain.
Collapse
Affiliation(s)
- Joshua D. Stover
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah
| | - Brandon Lawrence
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah
| | - Robby D. Bowles
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah,Department of Orthopaedics, University of Utah, Salt Lake City, Utah
| |
Collapse
|
25
|
Zheng K, Du D. Recent advances of hydrogel-based biomaterials for intervertebral disc tissue treatment: A literature review. J Tissue Eng Regen Med 2021; 15:299-321. [PMID: 33660950 DOI: 10.1002/term.3172] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022]
Abstract
Low back pain is an increasingly prevalent symptom mainly associated with intervertebral disc (IVD) degeneration. It is highly correlated with aging, as the nucleus pulposus (NP) dehydrates and annulus fibrosus fissure formatting, which finally results in the IVD herniation and related clinical symptoms. Hydrogels have been drawing increasing attention as the ideal candidates for IVD degeneration because of their unique properties such as biocompatibility, highly tunable mechanical properties, and especially the water absorption and retention ability resembling the normal NP tissue. Numerous innovative hydrogel polymers have been generated in the most recent years. This review article will first briefly describe the anatomy and pathophysiology of IVDs and current therapies with their limitations. Following that, the article introduces the hydrogel materials in the classification of their origins. Next, it reviews the recent hydrogel polymers explored for IVD regeneration and analyses what efforts have been made to overcome the existing limitations. Finally, the challenges and prospects of hydrogel-based treatments for IVD tissue are also discussed. We believe that these novel hydrogel-based strategies may shed light on new possibilities in IVD degeneration disease.
Collapse
Affiliation(s)
- Kaiwen Zheng
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Dajiang Du
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
26
|
Lyu FJ, Cui H, Pan H, MC Cheung K, Cao X, Iatridis JC, Zheng Z. Painful intervertebral disc degeneration and inflammation: from laboratory evidence to clinical interventions. Bone Res 2021; 9:7. [PMID: 33514693 PMCID: PMC7846842 DOI: 10.1038/s41413-020-00125-x] [Citation(s) in RCA: 264] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Low back pain (LBP), as a leading cause of disability, is a common musculoskeletal disorder that results in major social and economic burdens. Recent research has identified inflammation and related signaling pathways as important factors in the onset and progression of disc degeneration, a significant contributor to LBP. Inflammatory mediators also play an indispensable role in discogenic LBP. The suppression of LBP is a primary goal of clinical practice but has not received enough attention in disc research studies. Here, an overview of the advances in inflammation-related pain in disc degeneration is provided, with a discussion on the role of inflammation in IVD degeneration and pain induction. Puncture models, mechanical models, and spontaneous models as the main animal models to study painful disc degeneration are discussed, and the underlying signaling pathways are summarized. Furthermore, potential drug candidates, either under laboratory investigation or undergoing clinical trials, to suppress discogenic LBP by eliminating inflammation are explored. We hope to attract more research interest to address inflammation and pain in IDD and contribute to promoting more translational research.
Collapse
Affiliation(s)
- Feng-Juan Lyu
- grid.79703.3a0000 0004 1764 3838School of Medicine, South China University of Technology, Guangzhou, China
| | - Haowen Cui
- grid.12981.330000 0001 2360 039XDepartment of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hehai Pan
- grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China ,grid.12981.330000 0001 2360 039XBreast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kenneth MC Cheung
- grid.194645.b0000000121742757Department of Orthopedics & Traumatology, The University of Hong Kong, Hong Kong, SAR China
| | - Xu Cao
- grid.21107.350000 0001 2171 9311Department of Orthopedic Surgery, Johns Hopkins University, Baltimore, MD USA
| | - James C. Iatridis
- grid.59734.3c0000 0001 0670 2351Leni and Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Zhaomin Zheng
- grid.12981.330000 0001 2360 039XDepartment of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China ,grid.12981.330000 0001 2360 039XPain Research Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
27
|
Rosker ZM, Rosker J, Sarabon N. Impairments of Postural Balance in Surgically Treated Lumbar Disc Herniation Patients. J Appl Biomech 2020; 36:228-234. [PMID: 32570214 DOI: 10.1123/jab.2019-0341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 03/23/2020] [Accepted: 04/15/2020] [Indexed: 11/18/2022]
Abstract
Reports on body sway control following microdiscectomy lack reports on side-specific balance deficits as well as the effects of trunk balance control deficits on body sway during upright stances. About 3 weeks post microdiscectomy, the body sway of 27 patients and 25 controls was measured while standing in an upright quiet stance with feet positioned parallel on an unstable support surface, a tandem stance with the involved leg positioned in front or at the back, a single-leg stance with both legs, and sitting on an unstable surface. Velocity, average amplitude, and frequency-direction-specific parameters were analyzed from the center of pressure movement, measured by the force plate. Statistically significant differences between the 2 groups were observed for the medial-lateral body sway frequency in parallel stance on a stable and unstable support surface and for the sitting balance task in medial-lateral body sway parameters. Medium to high correlations were observed between body sway during sitting and the parallel stance, as well as between the tandem and single-legged stances. Following microdiscectomy, deficits in postural balance were side specific, as expected by the nature of the pathology. In addition, the results of this study confirmed the connection between proximal balance control deficits and balance during upright quiet balance tasks.
Collapse
Affiliation(s)
| | | | - Nejc Sarabon
- University of Primorska
- Science to Practice (S2P)
| |
Collapse
|
28
|
Schwarz-Nemec U, Friedrich KM, Prayer D, Trattnig S, Schwarz FK, Weber M, Bettelheim D, Grohs JG, Nemec SF. Lumbar Intervertebral Disc Degeneration as a Common Incidental Finding in Young Pregnant Women as Observed on Prenatal Magnetic Resonance Imaging. J Womens Health (Larchmt) 2020; 29:713-720. [PMID: 31934808 DOI: 10.1089/jwh.2019.7964] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Obstetric imaging, subserving fetal evaluation, may yield incidental maternal findings. Based on prenatal magnetic resonance (MR) imaging, this study aims to investigate incidental intervertebral disc degeneration and displacement in young, pregnant women. Methods: This retrospective study included the sagittal 1.5 Tesla, T2-weighted lumbar spine images of 943 pregnant Central Europeans (age range, 18-47 years), who initially had undergone MR imaging because of sonographically suspected fetal abnormalities. Qualitatively, 4715 lumbar intervertebral discs were evaluated for degeneration using a modified Pfirrmann MR classification (nondegenerated, low-grade, moderate, and high-grade degeneration), as well as for displacement. In addition to descriptive statistics, an ordinal regression analysis was performed to analyze the relationship between degeneration and the women's age, and body weight. Results: With regard to the highest degree of degeneration in each woman, 578 (61.3%) showed low-grade, 211 (22.4%) moderate, and 154 (16.3%) high-grade degeneration, and no woman had entirely nondegenerated discs. For the span from 18 to 47 years of age, moderate and high-grade degeneration increased from 6.7% to 36.7% and from 13.3% to 22.4%, respectively. Of 943 women, 57 (6%) had disc displacements, of which 97% were in conjunction with high-grade degeneration. There was a statistically significant relationship (p < 0.001) between degeneration and age, and between degeneration and body weight. Conclusions: In young pregnant women, lumbar intervertebral disc degeneration is a ubiquitous, incidental finding, increasing from the late second decade of life onward, which may be part of physiological aging, as opposed to a small percentage of incidental disc displacements.
Collapse
Affiliation(s)
- Ursula Schwarz-Nemec
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Klaus M Friedrich
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Daniela Prayer
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Siegfried Trattnig
- MR Center of Excellence, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Felix K Schwarz
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Michael Weber
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Dieter Bettelheim
- Division of Obstetrics and Fetomaternal Medicine, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Josef G Grohs
- Department of Orthopaedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Stefan F Nemec
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
29
|
Zhao L, Manchikanti L, Kaye AD, Abd-Elsayed A. Treatment of Discogenic Low Back Pain: Current Treatment Strategies and Future Options—a Literature Review. Curr Pain Headache Rep 2019; 23:86. [DOI: 10.1007/s11916-019-0821-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Miscusi M, Serrao M, Conte C, Ippolito G, Marinozzi F, Bini F, Troise S, Forcato S, Trungu S, Ramieri A, Pierelli F, Raco A. Spatial and temporal characteristics of the spine muscles activation during walking in patients with lumbar instability due to degenerative lumbar disk disease: Evaluation in pre-surgical setting. Hum Mov Sci 2019; 66:371-382. [PMID: 31153034 DOI: 10.1016/j.humov.2019.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 02/07/2023]
Abstract
Our purpose was to investigate the spatial and temporal profile of the paraspinal muscle activation during gait in a group of 13 patients with lumbar instability (LI) in a pre-surgical setting compared to the results with those from both 13 healthy controls (HC) and a sample of 7 patients with failed back surgery syndrome (FBSS), which represents a chronic untreatable condition, in which the spine muscles function is expected to be widely impaired. Spatiotemporal gait parameters, trunk kinematics, and muscle activation were measured through a motion analysis system integrated with a surface EMG device. The bilateral paraspinal muscles (longissimus) at L3-L4, L4-L5, and L5-S1 levels and lumbar iliocostalis muscles were evaluated. Statistical analysis revealed significant differences between groups in the step length, step width, and trunk bending and rotation. As regard the EMG analysis, significant differences were found in the cross-correlation, full-width percentage and center of activation values between groups, for all muscles investigated. Patients with LI, showed preserved trunk movements compared to HC but a series of EMG abnormalities of the spinal muscles, in terms of left-right symmetry, top-down synchronization, and spatiotemporal activation and modulation compared to the HC group. In patients with LI some of such EMG abnormalities regarded mainly the segment involved by the instability and were strictly correlated to the pain perception. Conversely, in patients with FBSS the EMG abnormalities regarded all the spinal muscles, irrespective to the segment involved, and were correlated to the disease's severity. Furthermore, patients with FBSS showed reduced lateral bending and rotation of the trunk and a reduced gait performance and balance. Our methodological approach to analyze the functional status of patients with LI due to spine disease with surgical indications, even in more complex conditions such as deformities, could allow to evaluate the biomechanics of the spine in the preoperative conditions and, in the future, to verify whether and which surgical procedure may either preserve or improve the spine muscle function during gait.
Collapse
Affiliation(s)
- Massimo Miscusi
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza, University of Rome, Italy; Department of NESMOS, Sapienza University, Rome, Italy
| | - Mariano Serrao
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza, University of Rome, Italy; Movement Analysis LAB, Policlinico Italia, Rome, Italy.
| | | | - Giorgio Ippolito
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza, University of Rome, Italy
| | - Franco Marinozzi
- Department of Mechanical and Aerospace Engineering, Mechanical & Thermal Measurement Lab, University of Rome Sapienza, Rome, Italy
| | - Fabiano Bini
- Department of Mechanical and Aerospace Engineering, Mechanical & Thermal Measurement Lab, University of Rome Sapienza, Rome, Italy
| | - Stefania Troise
- Department of Mechanical and Aerospace Engineering, Mechanical & Thermal Measurement Lab, University of Rome Sapienza, Rome, Italy
| | | | | | | | - Francesco Pierelli
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza, University of Rome, Italy; IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Antonino Raco
- Department of NESMOS, Sapienza University, Rome, Italy
| |
Collapse
|