1
|
Praveen Kumar PK, Sundar H, Balakrishnan K, Subramaniam S, Ramachandran H, Kevin M, Michael Gromiha M. The Role of HSP90 and TRAP1 Targets on Treatment in Hepatocellular Carcinoma. Mol Biotechnol 2025; 67:1367-1381. [PMID: 38684604 DOI: 10.1007/s12033-024-01151-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/18/2024] [Indexed: 05/02/2024]
Abstract
Hepatocellular Carcinoma (HCC) is the predominant form of liver cancer and arises due to dysregulation of the cell cycle control machinery. Heat Shock Protein 90 (HSP90) and mitochondrial HSP90, also referred to as TRAP1 are important critical chaperone target receptors for early diagnosis and targeting HCC. Both HSP90 and TRAP1 expression was found to be higher in HCC patients. Hence, the importance of HSP90 and TRAP1 inhibitors mechanism and mitochondrial targeted delivery of those inhibitors function is widely studied. This review also focuses on importance of protein-protein interactions of HSP90 and TRAP1 targets and association of its interacting proteins in various pathways of HCC. To further elucidate the mechanism, systems biology approaches and computational biology approach studies are well explored in the association of inhibition of herbal plant molecules with HSP90 and its mitochondrial type in HCC.
Collapse
Affiliation(s)
- P K Praveen Kumar
- Department of Biotechnology, Sri Venkateswara College of Engineering, Pennalur, Sriperumbudur Tk, Tamil Nadu, 602117, India.
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India.
| | - Harini Sundar
- Department of Biotechnology, Sri Venkateswara College of Engineering, Pennalur, Sriperumbudur Tk, Tamil Nadu, 602117, India
| | - Kamalavarshini Balakrishnan
- Department of Biotechnology, Sri Venkateswara College of Engineering, Pennalur, Sriperumbudur Tk, Tamil Nadu, 602117, India
| | - Sakthivel Subramaniam
- Department of Biotechnology, Sri Venkateswara College of Engineering, Pennalur, Sriperumbudur Tk, Tamil Nadu, 602117, India
| | - Hemalatha Ramachandran
- Department of Biotechnology, Sri Venkateswara College of Engineering, Pennalur, Sriperumbudur Tk, Tamil Nadu, 602117, India
| | - M Kevin
- Department of Biotechnology, Sri Venkateswara College of Engineering, Pennalur, Sriperumbudur Tk, Tamil Nadu, 602117, India
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
2
|
Liang EY, Huang MH, Chen YT, Zhang PW, Shen Y, Tu XX, Chen WY, Wang Y, Yan J, Wang HY, Ke PF, Huang XZ. Tanshinone IIA modulates cancer cell morphology and movement via Rho GTPases-mediated actin cytoskeleton remodeling. Toxicol Appl Pharmacol 2024; 483:116839. [PMID: 38290667 DOI: 10.1016/j.taap.2024.116839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/04/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
Actin filaments form unique structures with robust actin bundles and cytoskeletal networks affixed to the extracellular matrix and interact with neighboring cells, which are crucial structures for cancer cells to acquire a motile phenotype. This study aims to investigate a novel antitumor mechanism by which Tanshinone IIA (Tan IIA) modulates the morphology and migration of liver cancer cells via actin cytoskeleton regulation. 97H and Huh7 exhibited numerous tentacle-like protrusions that interacted with neighboring cells. Following treatment with Tan IIA, 97H and Huh7 showed a complete absence of cytoplasmic protrusion and adherens junctions, thereby effectively impeding their migration capability. The fluorescence staining of F-actin and microtubules indicated that these tentacle-like protrusions and cell-cell networks were actin-based structures that led to morphological changes after Tan IIA treatment by retracting and reorganizing beneath the membrane. Tan IIA can reverse the actin depolymerization and cell morphology alterations induced by latrunculin A. Tan IIA down-regulated actin and Rho GTPases expression significantly, as opposed to inducing Rho signaling activation. Preventing the activity of proteasomes and lysosomes had no discernible impact on the modifications in cellular structure and protein expression induced by Tan IIA. However, as demonstrated by the puromycin labeling technique, the newly synthesized proteins were significantly inhibited by Tan IIA. In conclusion, Tan IIA can induce dramatic actin cytoskeleton remodeling by inhibiting the protein synthesis of actin and Rho GTPases, resulting in the suppression of tumor growth and migration. Targeting the actin cytoskeleton of Tan IIA is a promising strategy for HCC treatment.
Collapse
Affiliation(s)
- En-Yu Liang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meng-He Huang
- Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Nanhai, China
| | - Ying-Ting Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng-Wei Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan Shen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Xin Tu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei-Ye Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jun Yan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hong-Yu Wang
- Department of Interventional Therapy, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Pei-Feng Ke
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xian-Zhang Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
3
|
Mao D, Wang H, Guo H, Che X, Chen M, Li X, Liu Y, Huo J, Chen Y. Tanshinone IIA normalized hepatocellular carcinoma vessels and enhanced PD-1 inhibitor efficacy by inhibiting ELTD1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155191. [PMID: 38000104 DOI: 10.1016/j.phymed.2023.155191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/01/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND Hepatocellular carcinoma responds poorly to immune checkpoint inhibitors, such as PD-1 inhibitors, primarily due to the low infiltration capacity of TILs in the TME. Abnormal vasculature is an important factor which limiting the infiltration of TILs. According to recent research, targeting ELTD1 expression may improve TILs delivery to reverse immunosuppression and boost tumor responses to immunotherapy. Research has demonstrated that Tanshinone IIA (TSA) improves blood vessel normalization, but the precise mechanism is yet unknown. PURPOSE The purpose of this study is to investigate the molecular processes for TSA's pro-vascular normalization of HCC in vitro and in vivo. METHODS We established a mouse H22-luc in situ liver tumor model to evaluate the role of TSA vascular normalization and the immunosuppressive microenvironment. The role of ELTD1 in vascular and immune crosstalk was evaluated by bioinformatic analysis of the TCGA database. By creating a transwell co-culture cell model, the effects of TSA on enhancing tumor endothelial cell activities and ELTD1 intervention were evaluated. RESULTS We investigated the effect of Tanshinone IIA (TSA), a major component of Salvia miltiorrhiza Bge., on the normalization of vasculature in situ HCC models. Our results demonstrated that TSA elicited vascular normalization in a hepatocellular carcinoma model in situ. In addition, the combination of TSA with anti-PD-1 significantly inhibited tumor development due to increased infiltration of immune cells in the tumor. Mechanistically, we demonstrated that TSA improved the immunosuppressive microenvironment by inhibiting tumor growth by suppressing ELTD1 expression, inhibiting downstream JAK1 and JAK2, promoting the expression of ZO-1, occlaudin, Claudin 5, and Col IV, and promoting vascular integrity and perfusion in situ. CONCLUSIONS This study reveals a new mechanism between TSA and ELTD1 for vascular normalization, suggesting that therapeutic or pharmacological intervention with ELTD1 may enhance the efficacy of PD-1 inhibitors in HCC.
Collapse
Affiliation(s)
- Dengxuan Mao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Hong Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Hong Guo
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Xiaoyu Che
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Miaoying Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Xia Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Yuping Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China; Jiangsu Clinical Innovation Center of Digestive Cancer of Traditional Chinese Medicine Jiangsu Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing, China.
| | - Jiege Huo
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China; Jiangsu Clinical Innovation Center of Digestive Cancer of Traditional Chinese Medicine Jiangsu Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing, China.
| | - Yan Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China; Jiangsu Clinical Innovation Center of Digestive Cancer of Traditional Chinese Medicine Jiangsu Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing, China.
| |
Collapse
|
4
|
Chen CT, Chen CF, Lin TY, Hua WJ, Hua K, Tsai CY, Hsu CH. Traditional Chinese medicine Kuan-Sin-Yin decoction inhibits cell mobility via downregulation of CCL2, CEACAM1 and PIK3R3 in hepatocellular carcinoma cells. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116834. [PMID: 37355084 DOI: 10.1016/j.jep.2023.116834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/10/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kuan-Sin-Yin (KSY) is a traditional Chinese medical decoction, designed based on the classic Si-Jun-Zi-Tang decoction and used clinically to improve the synergic effects of energy promotion, liver function and cancer related symptom and quality of life. However, the anti-hepatocellular carcinoma (HCC) function of KSY is unclear. AIM OF THE STUDY This study aimed to investigate the anti-mobility activity of KSY on HCC cells and elucidate its molecular mechanism. MATERIALS AND METHODS Two malignancy hepatocellular carcinoma cells, Mahlavu and SK-Hep-1, were used for the test of cell proliferation via alarm blue assay. The wound healing and Transwell assays were used to determine the anti-mobility activity of KSY in HCC cells. Cell morphology was analyzed via confocal microscopy. The genomic profile of KSY-treated HCC cells was analyzed by microarray. The potential signaling pathways and bio-functions of KSY-mediated genes were analyzed by ingenuity pathway analysis (IPA). Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to detect the messenger RNA (mRNA) level of indicated gene. RESULTS KSY did not affect cell viability of HCC cells but significantly inhibited cell migration and invasion in those HCC Mahlavu and SK-Hep-1 cells. In parallel, KSY induced changes in morphology of HCC cells via re-modulating actin cytoskeleton. KSY upregulated 1270 genes but reduced 1534 genes in Mahlavu cells. KSY regulated various gene networks which controlled cell migration, invasion and movement. Specifically, KSY reduced expression of chemokine (C-C motif) ligand 2 (CCL2), which is correlated to cell mobility, and concomitantly downregulated mRNA levels of phosphoinositide-3-kinase regulatory subunit 3 (PIK3R3) and CEA cell adhesion molecule 1 (CEACAM1). CONCLUSION These findings indicated that regulation of CCL2-mediated PIK3R3 and CEACAM1 may be involved in KSY inhibited cell mobility. Moreover, KSY may be a potential a Chinese decoction for reducing cell mobility.
Collapse
Affiliation(s)
- Chueh-Tan Chen
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Chian-Feng Chen
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Tung-Yi Lin
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Program in Molecular Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Wei-Jyun Hua
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Program in Molecular Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Kate Hua
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Ching-Yao Tsai
- Department of Ophthalmology, Taipei City Hospital, Taipei, Taiwan; Institute of Public Health, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Business Administration, Fu Jen Catholic University, New Taipei, Taiwan; General Education Center, University of Taipei, Taipei, Taiwan.
| | - Chung-Hua Hsu
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Chinese Medicine, Taipei City Hospital, Linsen, Chinese Medicine, and Kunming Branch, Taipei, Taiwan.
| |
Collapse
|
5
|
Li H, Hu P, Zou Y, Yuan L, Xu Y, Zhang X, Luo X, Zhang Z. Tanshinone IIA and hepatocellular carcinoma: A potential therapeutic drug. Front Oncol 2023; 13:1071415. [PMID: 36798821 PMCID: PMC9928209 DOI: 10.3389/fonc.2023.1071415] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/04/2023] [Indexed: 02/04/2023] Open
Abstract
Because of its high prevalence and poor long-term clinical treatment effect, liver disease is regarded as a major public health problem around the world. Among them, viral hepatitis, fatty liver, cirrhosis, non-alcoholic fatty liver disease (NAFLD), and autoimmune liver disease are common causes and inducements of liver injury, and play an important role in the occurrence and development of hepatocellular carcinoma (HCC). Tanshinone IIA (TsIIA) is a fat soluble polyphenol of Salvia miltiorrhiza that is extracted from Salvia miltiorrhiza. Because of its strong biological activity (anti-inflammatory, antioxidant), it is widely used in Asia to treat cardiovascular and liver diseases. In addition, TsIIA has shown significant anti-HCC activity in previous studies. It not only has significant anti proliferation and pro apoptotic properties. It can also play an anti-cancer role by mediating a variety of signal pathways, including phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/rapamycin (mTOR), mitogen-activated protein kinase (MAPK), and nuclear factor kappa-B (NF-κB). This review not only reviews the existing evidence and molecular mechanism of TsIIA's anti-HCC effect but also reviews the liver-protective effect of TsIIA and its impact on liver fibrosis, NAFLD, and other risk factors for liver cancer. In addition, we also conducted network pharmacological analysis on TsIIA and HCC to further screen and explore the possible targets of TsIIA against hepatocellular carcinoma. It is expected to provide a theoretical basis for the development of anti-HCC-related drugs based on TsIIA.
Collapse
Affiliation(s)
- Hu Li
- Emergency Department, Affiliated Hospital of Binzhou Medical College, Binzhou, China
| | - Pengbo Hu
- Emergency Department, Affiliated Hospital of Binzhou Medical College, Binzhou, China,Institute of Medical Science of Binzhou Medical University, Yantai, China
| | - Yajun Zou
- Emergency Department, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lijuan Yuan
- Emergency Department, Affiliated Hospital of Binzhou Medical College, Binzhou, China
| | - Yucheng Xu
- Emergency Department, Affiliated Hospital of Binzhou Medical College, Binzhou, China
| | - Xiaohui Zhang
- Emergency Department, Affiliated Hospital of Binzhou Medical College, Binzhou, China
| | - Xiaoyan Luo
- Emergency Department, Affiliated Hospital of Binzhou Medical College, Binzhou, China
| | - Zhiqiang Zhang
- Emergency Department, Affiliated Hospital of Binzhou Medical College, Binzhou, China,Institute of Medical Science of Binzhou Medical University, Yantai, China,*Correspondence: Zhiqiang Zhang,
| |
Collapse
|
6
|
Lu M, Lan X, Wu X, Fang X, Zhang Y, Luo H, Gao W, Wu D. Salvia miltiorrhiza in cancer: Potential role in regulating MicroRNAs and epigenetic enzymes. Front Pharmacol 2022; 13:1008222. [PMID: 36172186 PMCID: PMC9512245 DOI: 10.3389/fphar.2022.1008222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
MicroRNAs are small non-coding RNAs that play important roles in gene regulation by influencing the translation and longevity of various target mRNAs and the expression of various target genes as well as by modifying histones and DNA methylation of promoter sites. Consequently, when dysregulated, microRNAs are involved in the development and progression of a variety of diseases, including cancer, by affecting cell growth, proliferation, differentiation, migration, and apoptosis. Preparations from the dried root and rhizome of Salvia miltiorrhiza Bge (Lamiaceae), also known as red sage or danshen, are widely used for treating cardiovascular diseases. Accumulating data suggest that certain bioactive constituents of this plant, particularly tanshinones, have broad antitumor effects by interfering with microRNAs and epigenetic enzymes. This paper reviews the evidence for the antineoplastic activities of S. miltiorrhiza constituents by causing or promoting cell cycle arrest, apoptosis, autophagy, epithelial-mesenchymal transition, angiogenesis, and epigenetic changes to provide an outlook on their future roles in the treatment of cancer, both alone and in combination with other modalities.
Collapse
Affiliation(s)
- Meng Lu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xintian Lan
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xi Wu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaoxue Fang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Yegang Zhang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Haoming Luo
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Wenyi Gao
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Wenyi Gao, ; Donglu Wu,
| | - Donglu Wu
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
- School of Clinical Medical, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Wenyi Gao, ; Donglu Wu,
| |
Collapse
|
7
|
Irtegun Kandemir S, Fidan HS, Yener I, Mete N, Ertas A, Topcu G, Kolak U. Investigation of cytotoxic and apoptotic effects of 63 compounds obtained from Salvia species: Promising anticancer agents. J Food Biochem 2022; 46:e14226. [PMID: 35608363 DOI: 10.1111/jfbc.14226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/24/2022] [Accepted: 04/08/2022] [Indexed: 12/22/2022]
Abstract
Since ancient time, Salvia L. species have been commonly used to treat colds, bronchitis, tuberculosis, heart diseases, and menstrual and digestive disorders in traditional medicine all around the world. They have been also used as tea and spice. Studies indicated that diterpenes and triterpenes isolated from Salvia species possess various pharmacological and biological effects such as anti-inflammatory, antiviral, cytotoxic, antioxidant, and hepatotoxic activities. Flavones were also shown to have antimicrobial, antioxidant, and cytotoxic potentials. Salvia extracts also exhibit anti-Alzheimer, antiseptic, cardiovascular, antihypertensive, and antituberculous effects. To investigate the effects of 63 secondary metabolites from Salvia species on cell viability and apoptosis, Salvia secondary metabolites including 25 phenolics, 4 fatty acids, 19 abietane diterpenoids, 12 triterpenoids, and three steroids were examined on healthy cell line (PDF), breast cancer (MCF-7), and colon cancer (HT-29) cell lines using MTT method. In addition, the effects of rosmarinic acid, 6,7-dehydroroyleanone, acetyl royleanone, ferruginol, carnosic acid, carnosol, cryptotanshinone, β-sitosterol, and ursolic acid on pro-apoptotic Bax and antiapoptotic Bcl-2 protein expression levels were investigated by Western Blot method. PRACTICAL APPLICATIONS: Phenolic compounds (apigenin, chrysin, and luteolin) and diterpenes (especially dihydrotanshinone I, carnosic acid, and carnosol), and almost all of the triterpenes exhibited high toxic effects on healthy cell line. Cytotoxic effects of cryptotanshinone, 12-hydroxy abieta-1,3,5(10),8,11,13-hexaene, 12-demethylmulticauline, 6,7-dehydroroyleanone, acetyl royleanone, ferruginol, ursolic acid, and 3-acetyl lupeol were relatively higher than their toxic effects. Acetyl royleanone, 6,7-dehydroroyleanone, carnosic acid, and cryptotanshinone were found to have anticancer potential based on their modulating effects on the expression levels of Bax and Bcl-2 proteins which play important roles in the regulation of apoptosis. The results of the present study showed that acetyl royleanone, cryptotanshinone, 6,7-dehydroroyleanone, carnosic acid, and cryptotanshinone have potential to be used in the pharmaceutical industry.
Collapse
Affiliation(s)
- Sevgi Irtegun Kandemir
- Department of Medical Biology, Faculty of Medicine, Dicle University, Diyarbakir, Turkey.,Cancer Research Center, Dicle University, Diyarbakir, Turkey
| | - Hilal Saruhan Fidan
- Department of Biochemistry, Faculty of Pharmacy, Dicle University, Diyarbakir, Turkey
| | - Ismail Yener
- Department of Analytical Chemistry, Faculty of Pharmacy, Dicle University, Diyarbakir, Turkey
| | - Nuriye Mete
- Department of Medicinal Biochemistry, Faculty of Medicine, Dicle University, Diyarbakir, Turkey
| | - Abdulselam Ertas
- Cancer Research Center, Dicle University, Diyarbakir, Turkey.,Department of Analytical Chemistry, Faculty of Pharmacy, Dicle University, Diyarbakir, Turkey
| | - Gulactı Topcu
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
| | - Ufuk Kolak
- Department of General and Analytical Chemistry, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| |
Collapse
|
8
|
Sun Z, Dong J, Song L, Li F, Wu X, Qiu Z, Wu D. Network Pharmacology Validation of Therapeutic Mechanisms of Tanshinone IIA in Colorectal Cancer. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211004271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Curative therapies with fewer adverse effects are required for cancer treatment. Medicinal plants represent a promising source of novel therapeutic candidates. We employed network pharmacology to predict potential molecular mechanisms of salvia root-derived tanshinone IIA (Tan IIA) in the treatment of colorectal cancer (CRC), followed by empirical validation. The Traditional Chinese Medicine System Pharmacology (TCMSP), DrugBank, and GeneCards databases were queried to identify overlapping Tan IIA (therapeutic)- and CRC (disease)-relevant protein targets. Cytoscape and STRING were used to generate component-target and protein-protein interaction (PPI) networks, respectively, and topology analysis identified highly connected nodes within the latter. Target proteins were subjected to gene ontology (GO)-based biological process annotation using DAVID, and to biological pathway enrichment analysis using the Kyoto encyclopedia and genome (KEGG) database. Enriched biological processes included cell cycling and proliferation, and enriched KEGG pathways included neuroactive ligand-receptor interaction, PI3K-Akt, and cancer. Network pharmacology results predicted that Tan IIA impacts multiple targets and pathways, but that its therapeutic effect is predominantly attributable to cell cycle regulation, inhibition of cell proliferation, and induction of apoptosis. Investigation of the in vitro impact of Tan IIA on proliferation, viability, and cell cycling of 2 hoursuman CRC cell lines (SW480 and SW620), using the CCK-8 method and flow cytometry, demonstrated that Tan IIA significantly inhibits cell proliferation via inducing cell cycle arrest in the G2/M phase. Network pharmacology-predicted hypotheses were thus empirically validated, providing a basis for in-depth study of the therapeutic mechanisms of Tan IIA in the context of CRC.
Collapse
Affiliation(s)
- Zhiyuan Sun
- School of Pharmacy, Changchun University of Chinese Medicine, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Jinxiang Dong
- School of Pharmacy, Changchun University of Chinese Medicine, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Lijie Song
- Jilin Academy of Traditional Chinese Medicine, Changchun, China
| | - Fuqiang Li
- Jilin Academy of Traditional Chinese Medicine, Changchun, China
| | - Xue Wu
- Jilin University First Hospital, Changchun, China
| | - Zhidong Qiu
- School of Pharmacy, Changchun University of Chinese Medicine, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Donglu Wu
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
- School of Clinical Medical, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
9
|
Jiang T, Zhu AS, Yang CQ, Xu CY, Yang DQ, Lou ZH, Zhang GJ. Cytochrome P450 2A6 is associated with macrophage polarization and is a potential biomarker for hepatocellular carcinoma. FEBS Open Bio 2021; 11:670-683. [PMID: 33455085 PMCID: PMC7931228 DOI: 10.1002/2211-5463.13089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/29/2020] [Accepted: 01/14/2021] [Indexed: 01/06/2023] Open
Abstract
Cytochrome P450 2A6 (CYP2A6) is an important metabolic enzyme and is involved in the progression of hepatocellular carcinoma (HCC). However, its specific function and the mechanism of modulation remain to be elucidated. In this study, we found that CYP2A6 is dramatically downregulated in HCC. CYP2A6 expression is closely associated with pathological grading, histologic grade, hepatitis, vascular metastasis, liver inflammation, and worse prognosis. Reduced expression of CYP2A6 contributes to alternative activation of macrophage polarization and impairs macrophage maturation and phagocytosis. Mechanistically, CYP2A6 participates in arachidonic acid metabolism, initiates 20‐hydroxyeicosatetraenoic acid (HETE) generation, and inhibits epoxyeicosatrienoic acid (EET) generation. Disruption of the equilibrium between 20‐HETE and EETs can induce macrophage polarization, thereby modulating antitumor immunity.
Collapse
Affiliation(s)
- Tao Jiang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ai-Song Zhu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chu-Qi Yang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chu-Yun Xu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Dan-Qian Yang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhao-Huan Lou
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guang-Ji Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
10
|
Ping Z, Jun X, Yan W, Jun Z. Anti-cancer properties of specific Chinese herbal medicines for hepatocellular carcinoma treatment. Eur J Integr Med 2020:101215. [PMID: 33042292 PMCID: PMC7532350 DOI: 10.1016/j.eujim.2020.101215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 11/30/2022]
Abstract
AIMS This essay explores the anti-cancer activity of specific Chinese herbal medicines to clarify how effective Chinese herbal medicine is used for handling hepatocellular carcinoma. METHODS Literature form publica domain were studied and an analysis of anti-cancer activity of specific Chinese herbal medicines is presented in this review. RESULTS Hepatocellular carcinoma is one of the most dangerous malignant tumors in the world. The operative diagnosis of liver cancer remains a significant challenge. Although surgery tissue resection is encouraging, a high risk of recurrence and metastasis, illustrating disease-related mortality is desperately required to enhance postoperative preventive and therapeutic clinical procedures. The almost only effective clinical intervention seems to be developing advanced targeted therapies such as sorafenib for hepatocellular carcinoma patients, but there is little research in this field. Because their preventative/therapeutic properties strengthen Chinese herbal medicinal compounds, they are deemed relevant to the treatment of hepatocellular carcinoma. Conclusion: Chinese herbal medicine derivates provide multifaceted, orientated and orchestrated therapy, making it an ideal candidate for inhibiting hepatocellular tumor production and metastasis.
Collapse
Affiliation(s)
- Zang Ping
- Pharmacy, Qingdao Island Central Hospital
| | - Xue Jun
- Department of Pharmacy, Huangdao district Chinese Medicine Hospital, Qingdao
| | - Wang Yan
- Qingdao West Coast New Area Health Comprehensive Administrative Law Enforcement Brigade
| | - Zhang Jun
- Department of Pharmacy, Huangdao district Chinese Medicine Hospital, Qingdao
| |
Collapse
|
11
|
Liao X, Bu Y, Jia Q. Traditional Chinese medicine as supportive care for the management of liver cancer: Past, present, and future. Genes Dis 2020; 7:370-379. [PMID: 32884991 PMCID: PMC7452431 DOI: 10.1016/j.gendis.2019.10.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 12/24/2022] Open
Abstract
Liver cancer is the sixth most commonly diagnosed cancer and the fourth leading cause of cancer death worldwide. Western medicine and therapies are the primary treatment strategies of hepatocellular carcinoma (HCC), but the general prognosis for HCC patients is still dismal. Under these circumstances, HCC prevention is particularly important. Traditional Chinese medicine (TCM) encompasses a wealth of documented therapeutic resources, and "preventative treatment" is the principle of TCM. In China, TCM has been used for HCC prevention for thousands of years, and has also been demonstrated to be effective for the treatment of HCC in modern China. However, the TCM theory for prevention and treatment of HCC is more widely accepted in China than abroad. In this review, we first summarize the herbs and ancient formulas with therapeutic effects on HCC. We also review the research status of TCM in modern medicine as well as the current obstacles in its development. Finally, we discuss the future of TCM in the context of precision and integrated medicine. After reviewing the literature, we believe that TCM, through ancient development, is an advanced method of cancer treatment with positive curative effects, despite its surrounding controversy. Furthermore, precise analyses and systematic research methods provides novel approaches to modernize TCM for the future.
Collapse
Affiliation(s)
- Xia Liao
- Department of Nutrition, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yang Bu
- Department of Hepatobiliary Surgery, General Hospital, Ningxia Medical University, Yinchuan, 750001, China
| | - Qingan Jia
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
12
|
Pharmacological basis of tanshinone and new insights into tanshinone as a multitarget natural product for multifaceted diseases. Biomed Pharmacother 2020; 130:110599. [PMID: 33236719 DOI: 10.1016/j.biopha.2020.110599] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/18/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
Drug development has long included the systematic exploration of various resources. Among these, natural products are one of the most important resources from which novel agents are developed due to the multiple pharmacologic effects of these natural products on diseases. Tanshinone, a representative natural product, is the main compound extracted from the dried root and rhizome of Salvia miltiorrhiza Bge. Research on tanshinone began in the early 1930s. With the in-depth investigation of an increasing number of identified analogs, tanshinone has demonstrated a wide variety of bioactivities and contradicted the saying, 'You can't teach an old dog new tricks'. This review is focused on the pharmacological action of tanshinone and status of research on tanshinone in recent years. The mechanism of tanshinone has also drawn much attention, with the findings of representative targets and pathways of tanshinone. The most recent studies have comprehensively shown that tanshinone can be used to treat leukemia and solid carcinoma, protect against cardiovascular and cerebrovascular diseases, and alleviate liver- and kidney-related diseases, among its other effects. Multiple signaling pathways, including antiproliferative, antiapoptotic, anti-inflammatory, and antioxidative stress pathways, are involved in its actions.
Collapse
|
13
|
Tanshinone II A attenuates vascular remodeling through klf4 mediated smooth muscle cell phenotypic switching. Sci Rep 2020; 10:13858. [PMID: 32807822 PMCID: PMC7431534 DOI: 10.1038/s41598-020-70887-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 08/05/2020] [Indexed: 01/01/2023] Open
Abstract
The aim of this study is to investigate the therapeutic role of Tanshinone II A, a key integrant from salvia miltiorrhiza, against pathological vascular remodeling. Completed ligation of mouse left common carotid arteries animal model and rat smooth muscle cells used to investigate the role of Tanshinone II A in regulating pathological vascular remodeling through hematoxylin and eosin staining, immunohistochemistry staining, immunofluorescence staining, adenovirus infection, real time PCR and western blotting. Our data demonstrated that Tanshinone II A treatment suppresses vascular injury-induced neointima formation. In vitro studies on rat smooth muscle cell indicated that Tanshinone II A treatment attenuates PDGF-BB induced cell growth, and promotes smooth muscle cell differentiated marker genes expression that induced by rapamycin treatment. Tanshinone II A treatment significant inhibits rat smooth muscle cell proliferation and migration. Tanshinone II A promotes KLF4 expression during smooth muscle phenotypic switching. Overexpression of KLF4 exacerbates Tanshinone II A mediated smooth muscle cell growth inhibition. Tanshinone II A plays a pivotal role in regulating pathological vascular remodeling through KLF4 mediated smooth muscle cell phenotypic switching. This study demonstrated that Tanshinone II A is a potential therapeutic agent for vascular diseases.
Collapse
|
14
|
Han Z, Liu S, Lin H, Trivett AL, Hannifin S, Yang D, Oppenheim JJ. Inhibition of murine hepatoma tumor growth by cryptotanshinone involves TLR7-dependent activation of macrophages and induction of adaptive antitumor immune defenses. Cancer Immunol Immunother 2019; 68:1073-1085. [PMID: 31161238 PMCID: PMC6584221 DOI: 10.1007/s00262-019-02338-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 04/01/2019] [Indexed: 01/05/2023]
Abstract
Cryptotanshinone (CT), a purified compound initially isolated from the dried roots of Salvia militorrhiza. Bunge, exhibits cytotoxic antitumor effects on many tumors. We have shown that CT possesses the dual capacities to concomitantly inhibit the proliferation of lung cancer cells and promote the generation of antitumor immunity. In this study, we investigated whether CT could be used to treat hepatocellular carcinoma (HCC) using a mouse Hepa1-6 model. CT inhibited the proliferation of mouse hepatoma (Hepa1-6) cells in vitro by inducing Hepa1-6 cells apoptosis through the JAK2/STAT3 signaling pathway. In addition, CT activated macrophages and polarized mouse bone marrow-derived macrophages (BMM) toward an M1 phenotype in vitro, which depended on the TLR7/MyD88/NF-κB signaling pathway. Furthermore, CT significantly inhibited the growth of syngeneic Hepa1-6 hepatoma tumors, and, in combination with anti-PD-L1 cured Hepa1-6-bearing mice with the induction of long-term anti-Hepa1-6 specific immunity. Immunoprofiling of treated Hepa1-6-bearing mice revealed that CT-promoted activation of tumor-infiltrating macrophages and dendritic cells, induction of antitumor T cell response, and infiltration of effector/memory CD8 T cells in the tumor tissue. Importantly, the immunotherapeutic effects of CT and anti-PD-L1 depended on the presence of CD8 T cells. Thus, CT and anti-PD-L1 may provide an effective immunotherapeutic regimen for human HCC based on a combination of cytotoxic effects and induction of tumor-specific immunity.
Collapse
Affiliation(s)
- Zhen Han
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick National Laboratory for Cancer Research (FNLCR), Rm 21-89/31-19, Bldg 560, 1050 Boyles Street, Frederick, MD, 21702-1201, USA
| | - Shuo Liu
- Guang' Anmen Hospital, China Academy of Chinese Medical Sciences, #5 Beixian Ge, Xi Cheng District, Beijing, 100053, China
| | - Hongsheng Lin
- Guang' Anmen Hospital, China Academy of Chinese Medical Sciences, #5 Beixian Ge, Xi Cheng District, Beijing, 100053, China.
| | - Anna L Trivett
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick National Laboratory for Cancer Research (FNLCR), Rm 21-89/31-19, Bldg 560, 1050 Boyles Street, Frederick, MD, 21702-1201, USA
| | - Sean Hannifin
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick National Laboratory for Cancer Research (FNLCR), Rm 21-89/31-19, Bldg 560, 1050 Boyles Street, Frederick, MD, 21702-1201, USA
| | - De Yang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick National Laboratory for Cancer Research (FNLCR), Rm 21-89/31-19, Bldg 560, 1050 Boyles Street, Frederick, MD, 21702-1201, USA.
| | - Joost J Oppenheim
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick National Laboratory for Cancer Research (FNLCR), Rm 21-89/31-19, Bldg 560, 1050 Boyles Street, Frederick, MD, 21702-1201, USA.
| |
Collapse
|
15
|
Shi MJ, Dong BS, Yang WN, Su SB, Zhang H. Preventive and therapeutic role of Tanshinone ⅡA in hepatology. Biomed Pharmacother 2019; 112:108676. [DOI: 10.1016/j.biopha.2019.108676] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/06/2019] [Accepted: 02/06/2019] [Indexed: 12/13/2022] Open
|
16
|
El-Saied MA, Sobeh M, Abdo W, Badr OM, Youssif LT, Elsayed IH, Osman SM, Wink M. Rheum palmatum root extract inhibits hepatocellular carcinoma in rats treated with diethylnitrosamine. J Pharm Pharmacol 2018. [DOI: 10.1111/jphp.12899] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Abstract
Objectives
The aim of this study was to investigate the potential anticancer properties of a methanol extract of Rheum palmatum roots against diethylnitrosamine (DENA)-induced hepatocellular carcinoma (HCC) in rats and to characterize its phytoconstituents.
Methods
HPLC-PDA-MS/MS was used to profile the secondary metabolites in R. palmatum root extract. HCC was induced using diethylnitrosamine (DENA). The activity of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and gamma-glutamyl transferase (GGT), alpha-fetoprotein (AFP), total proteins, serum albumin and serum globulin was determined. DNA fragmentation and histopathological examination and GST-P immunostaining were also studied.
Key findings
LC-MS/MS analysis identified 16 compounds belonging to anthraquinones, flavonoids and tannins. The root extract significantly reduced the elevated liver enzymes ALT and AST and increased total proteins, albumin and globulin in HCC-rats. Also, the tumour markers AFP and GGT levels were significantly reduced in HCC-rats treated with the extract. In addition, the extract significantly reduced elevated DNA fragmentation and decreased the numbers and areas of GST-P positive putative foci in HCC-rats.
Conclusions
Rheum palmatum is a potential candidate to be explored for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Mahmoud A El-Saied
- Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Menoufia Province, Egypt
| | - Mansour Sobeh
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Walied Abdo
- Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Osama M Badr
- Animal Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Menoufia Province, Egypt
| | - Lamiaa T Youssif
- Molecular Diagnostics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Menoufia Province, Egypt
| | - Ibrahim H Elsayed
- Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Menoufia Province, Egypt
| | - Samir M Osman
- Pharmacognosy Department, Faculty of Pharmacy, October 06 University, Cairo, Egypt
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
17
|
Kim JM, Noh EM, Song HK, Lee M, Lee SH, Park SH, Ahn CK, Lee GS, Byun EB, Jang BS, Kwon KB, Lee YR. Salvia miltiorrhiza extract inhibits TPA-induced MMP-9 expression and invasion through the MAPK/AP-1 signaling pathway in human breast cancer MCF-7 cells. Oncol Lett 2017; 14:3594-3600. [PMID: 28927117 PMCID: PMC5588011 DOI: 10.3892/ol.2017.6638] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/09/2017] [Indexed: 02/01/2023] Open
Abstract
Cancer cell invasion is crucial for metastasis. A major factor in the capacity of cancer cell invasion is the activation of matrix metalloproteinase-9 (MMP-9), which degrades the extracellular matrix. Salvia miltiorrhiza has been used as a promotion for blood circulation to remove blood stasis. Numerous previous studies have demonstrated that S. miltiorrhiza extracts (SME) decrease lipid levels and inhibit inflammation. However, the mechanism behind the effect of SME on breast cancer invasion has not been identified. The inhibitory effects of SME on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced MMP-9 expression were assessed using western blotting, reverse transcription-quantitative polymerase chain reaction and zymography assays. MMP-9 upstream signal proteins, including mitogen-activated protein kinases and activator protein 1 (AP-1) were also investigated. Cell invasion was assessed using a matrigel invasion assay. The present study demonstrated the inhibitory effects of the SME ethanol solution on MMP-9 expression and cell invasion in TPA-treated MCF-7 breast cancer cells. SME suppressed TPA-induced MMP-9 expression and MCF-7 cell invasion by blocking the transcriptional activation of AP-1. SME may possess therapeutic potential for inhibiting breast cancer cell invasiveness.
Collapse
Affiliation(s)
- Jeong-Mi Kim
- Center for Metabolic Function Regulation, Wonkwang University School of Korean Medicine, Iksan, North Jeolla 570-749, Republic of Korea
| | - Eun-Mi Noh
- Center for Metabolic Function Regulation, Wonkwang University School of Korean Medicine, Iksan, North Jeolla 570-749, Republic of Korea
| | - Hyun-Kyung Song
- Center for Metabolic Function Regulation, Wonkwang University School of Korean Medicine, Iksan, North Jeolla 570-749, Republic of Korea
| | - Minok Lee
- Center for Metabolic Function Regulation, Wonkwang University School of Korean Medicine, Iksan, North Jeolla 570-749, Republic of Korea
| | - Soo Ho Lee
- Department of Korean Physiology, Wonkwang University School of Korean Medicine, Iksan, North Jeolla 570-749, Republic of Korea
| | - Sueng Hyuk Park
- Department of Korean Physiology, Wonkwang University School of Korean Medicine, Iksan, North Jeolla 570-749, Republic of Korea
| | - Chan-Keun Ahn
- Department of Otolaryngology and Dermatology, Wonkwang University School of Korean Medicine, Iksan, North Jeolla 570-749, Republic of Korea
| | - Guem-San Lee
- Department of Herbology, Wonkwang University School of Korean Medicine, Iksan, North Jeolla 570-749, Republic of Korea
| | - Eui-Baek Byun
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, North Jeolla 580-185, Republic of Korea
| | - Beom-Su Jang
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, North Jeolla 580-185, Republic of Korea
| | - Kang-Beom Kwon
- Center for Metabolic Function Regulation, Wonkwang University School of Korean Medicine, Iksan, North Jeolla 570-749, Republic of Korea
- Department of Korean Physiology, Wonkwang University School of Korean Medicine, Iksan, North Jeolla 570-749, Republic of Korea
| | - Young-Rae Lee
- Center for Metabolic Function Regulation, Wonkwang University School of Korean Medicine, Iksan, North Jeolla 570-749, Republic of Korea
- Department of Oral Biochemistry, School of Dentistry, Wonkwang University, Iksan, North Jeolla 570-749, Republic of Korea
- Institute of Biomaterials Implant, School of Dentistry, Wonkwang University, Iksan, North Jeolla 570-749, Republic of Korea
- Integrated Omics Institute, Wonkwang University, Iksan, North Jeolla 570-749, Republic of Korea
| |
Collapse
|
18
|
Hu B, An HM, Wang SS, Chen JJ, Xu L. Preventive and Therapeutic Effects of Chinese Herbal Compounds against Hepatocellular Carcinoma. Molecules 2016; 21:142. [PMID: 26828466 PMCID: PMC6274246 DOI: 10.3390/molecules21020142] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/13/2016] [Accepted: 01/20/2016] [Indexed: 12/14/2022] Open
Abstract
Traditional Chinese Medicines, unique biomedical and pharmaceutical resources, have been widely used for hepatocellular carcinoma (HCC) prevention and treatment. Accumulated Chinese herb-derived compounds with significant anti-cancer effects against HCC have been identified. Chinese herbal compounds are effective in preventing carcinogenesis, inhibiting cell proliferation, arresting cell cycle, inducing apoptosis, autophagy, cell senescence and anoikis, inhibiting epithelial-mesenchymal transition, metastasis and angiogenesis, regulating immune function, reversing drug resistance and enhancing the effects of chemotherapy in HCC. This paper comprehensively reviews these compounds and their effects on HCC. Finally, the perspectives and rational application of herbal compounds for HCC management are discussed.
Collapse
Affiliation(s)
- Bing Hu
- Department of Oncology and Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Hong-Mei An
- Department of Science & Technology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 202032, China.
| | - Shuang-Shuang Wang
- Department of Oncology and Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Jin-Jun Chen
- Department of Plastic & Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, The Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200011, China.
| | - Ling Xu
- Department of Oncology and Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
19
|
Ho TF, Chang CC. A promising "TRAIL" of tanshinones for cancer therapy. Biomedicine (Taipei) 2015; 5:23. [PMID: 26621311 PMCID: PMC4664605 DOI: 10.7603/s40681-015-0023-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 10/30/2015] [Indexed: 12/11/2022] Open
Abstract
An ideal cancer therapy specifically targets cancer cells while sparing normal
tissues. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) elicits
apoptosis by engaging its cognate death receptors (DRs—namely, DR4 and DR5. The
cancer cell-selective proapoptotic action of TRAIL is highly attractive for cancer
therapy, but clinical application of TRAIL is rather limited due to tumors’ inherent
or acquired TRAIL resistance. Combining TRAIL with agents that reverse resistance to
it has proved promising in the sensitization of TRAIL-induced apoptosis. Noteworthy,
natural compounds have already been validated as potential resources for TRAIL
sensitizers. In this review, we focus on the recently identified TRAILsensitizing
effect of tanshinones, the anticancer ingredients of the medicinal plant Salvia miltiorrhiza (Danshen in Chinese). Research from
our laboratories and others have revealed the synergy of a tanshinones-TRAIL
combination in diverse types of cancer cells through up-regulation of DR5 and/or
down-regulation of antiapoptotic proteins such as survivin. Thus, in addition to
their anticancer mechanisms, tanshinones as TRAIL sensitizers hold great potential
to be translated to TRAIL-based therapeutic modalities for combatting cancer.
Collapse
Affiliation(s)
- Tsing-Fen Ho
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, 406, Taichung, Taiwan
| | - Chia-Che Chang
- Institute of Biomedical Sciences, National Chung Hsing University, No. 250, Kuo-Kuang Road, 402, Taichung, Taiwan. .,Agricultural Biotechnology Center, National Chung Hsing University, 402, Taichung, Taiwan. .,Ph.D. Program in Translational Medicine, National Chung Hsing University, 402, Taichung, Taiwan. .,Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, 402, Taichung, Taiwan.
| |
Collapse
|
20
|
Wang X, Wang N, Cheung F, Lao L, Li C, Feng Y. Chinese medicines for prevention and treatment of human hepatocellular carcinoma: current progress on pharmacological actions and mechanisms. JOURNAL OF INTEGRATIVE MEDICINE 2015; 13:142-164. [PMID: 26006028 DOI: 10.1016/s2095-4964(15)60171-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of leading causes of death in the world. Although various treatments have been developed, the therapeutic side effects are far from desirable. Chinese medicines (CMs, including plants, animal parts and minerals) have drawn a great deal of attention in recent years for their potential in the treatment of HCC. Most studies have shown that CMs may be able to retard HCC progression with multiple actions, either alone or in combination with other conventional therapies to improve quality of life in HCC patients. Additionally, CMs are used for preventing HCC occurrence. The aim of this study is to review the potential prophylactic and curative effects of CMs on human HCC and the possible mechanisms that underlie these pharmacological actions. Publications were collected and reviewed from PubMed and China National Knowledge Infrastructure from 2000 to 2014. Keywords for literature searches include "Chinese medicine", "Chinese herb", "traditional Chinese Medicine", "hepatocellular carcinoma" and "liver cancer". CMs in forms of pure compounds, isolated fractions, and composite formulas are included. Combination therapies are also considered. Both in vitro and in vivo efficacies of CMs are being discussed and the translational potential to bedside is to be discussed with clinical cases, which show the actions of CMs on HCC may include tumor growth inhibition, antimetastatic activities, anti-inflammation, anti-liver cancer stem cells, reversal on multi-drug resistance and induction/reduction of oxidative stress. Multiple types of molecules are found to contribute in the above actions. The review paper indicated that CMs might have potential to both prevent HCC occurrence and retard HCC progression with several molecular targets involved.
Collapse
Affiliation(s)
- Xuanbin Wang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Fan Cheung
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Lixing Lao
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Charlie Li
- California Department of Public Health, Richmond, CA 94804, USA
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
21
|
Solamargine inhibits migration and invasion of human hepatocellular carcinoma cells through down-regulation of matrix metalloproteinases 2 and 9 expression and activity. Toxicol In Vitro 2015; 29:893-900. [PMID: 25819016 DOI: 10.1016/j.tiv.2015.03.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/10/2015] [Accepted: 03/18/2015] [Indexed: 01/04/2023]
Abstract
Solamargine is a steroidal alkaloid glycoside isolated from Solanum nigrum. The aim of this study was to investigate the effects of solamargine on tumor migration and invasion in aggressive human hepatocellular carcinoma cells. The MTT assay was used to assess the effects of solamargine on the viability of HepG2 cells. Migration and invasion ability of HepG2 cells under solamargine treatment were examined by a wound healing migration assay and Boyden chamber assay, respectively. Western blotting assays were used to detect the expression of MMP-2 and MMP-9 proteins and MMP-2 and MMP-9 activity were analyzed by gelatin zymography assay. Solamargine reduced HepG2 cell viability in a concentration-dependent manner. At 7.5μM solamargine decreased cell viability by less than 20% in HepG2 cells. A wound healing migration assay and Boyden chamber invasion assay showed that solamargine significantly inhibited in vitro migration and invasion of HepG2 cells. At the highest dose, solamargine decreased cell migration and invasion by more than 70% and 72% in HepG2 cells, respectively. Western blotting and gelatin zymography results showed that solamargine reduced expression and function of MMP-2 and MMP-9 proteins. In conclusion, the results showed that solamargine significantly inhibits migration and invasion of HepG2 cells by down-regulating MMP-2 and MMP-9 expression and activity.
Collapse
|
22
|
Xing Y, Tu J, Zheng L, Guo L, Xi T. Anti-angiogenic effect of tanshinone IIA involves inhibition of the VEGF/VEGFR2 pathway in vascular endothelial cells. Oncol Rep 2015; 33:163-170. [PMID: 25376085 DOI: 10.3892/or.2014.3592] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 10/02/2014] [Indexed: 11/06/2022] Open
Abstract
Tanshinone IIA (TSA) is one of the major lipophilic components of Salvia miltiorrhiza Bunge reported to exhibit an antitumor effect. The exact intracellular signaling mechanisms involved remain elusive and were therefore the subject of this study. The process of angiogenesis is related to tumor progression, invasion and metastasis and is generally perceived as an indicator of tumor prognosis. Among the most critical factors that induce angiogenesis, the vascular endothelial growth factor (VEGF)/VEGF receptor 2 (VEGFR2) pathway and CD146 (melanoma adhesion molecule) play key roles in this process. This study aimed to demonstrate that TSA has potent anti-angiogenic activity in vitro and ex vivo. Additionally, we evaluated the role of TSA in the VEGF/VEGFR2 pathway. Through a series of in vitro experiments, we found that TSA has a negative effect on cell proliferation, migration and tube formation of human umbilical vascular endothelial cells. We further showed that TSA can inhibit angiogenesis using chorioallantoic membrane (CAM) and rat aortic ring assays. Furthermore, western blotting demonstrated that TSA effectively suppressed the expression of VEGR2 and CD146. These results suggest that TSA inhibits angiogenesis by downregulation of the VEGF/VEGFR2 pathway.
Collapse
Affiliation(s)
- Yingying Xing
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Jiajie Tu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Lufeng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Le Guo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Tao Xi
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
23
|
Akaberi M, Mehri S, Iranshahi M. Multiple pro-apoptotic targets of abietane diterpenoids from Salvia species. Fitoterapia 2015; 100:118-32. [DOI: 10.1016/j.fitote.2014.11.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 01/30/2023]
|
24
|
Goss PE, Strasser-Weippl K, Lee-Bychkovsky BL, Fan L, Li J, Chavarri-Guerra Y, Liedke PER, Pramesh CS, Badovinac-Crnjevic T, Sheikine Y, Chen Z, Qiao YL, Shao Z, Wu YL, Fan D, Chow LWC, Wang J, Zhang Q, Yu S, Shen G, He J, Purushotham A, Sullivan R, Badwe R, Banavali SD, Nair R, Kumar L, Parikh P, Subramanian S, Chaturvedi P, Iyer S, Shastri SS, Digumarti R, Soto-Perez-de-Celis E, Adilbay D, Semiglazov V, Orlov S, Kaidarova D, Tsimafeyeu I, Tatishchev S, Danishevskiy KD, Hurlbert M, Vail C, St Louis J, Chan A. Challenges to effective cancer control in China, India, and Russia. Lancet Oncol 2014; 15:489-538. [PMID: 24731404 DOI: 10.1016/s1470-2045(14)70029-4] [Citation(s) in RCA: 331] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cancer is one of the major non-communicable diseases posing a threat to world health. Unfortunately, improvements in socioeconomic conditions are usually associated with increased cancer incidence. In this Commission, we focus on China, India, and Russia, which share rapidly rising cancer incidence and have cancer mortality rates that are nearly twice as high as in the UK or the USA, vast geographies, growing economies, ageing populations, increasingly westernised lifestyles, relatively disenfranchised subpopulations, serious contamination of the environment, and uncontrolled cancer-causing communicable infections. We describe the overall state of health and cancer control in each country and additional specific issues for consideration: for China, access to care, contamination of the environment, and cancer fatalism and traditional medicine; for India, affordability of care, provision of adequate health personnel, and sociocultural barriers to cancer control; and for Russia, monitoring of the burden of cancer, societal attitudes towards cancer prevention, effects of inequitable treatment and access to medicine, and a need for improved international engagement.
Collapse
Affiliation(s)
- Paul E Goss
- Harvard Medical School, Boston, MA, USA; Avon Breast Cancer Center of Excellence, Massachusetts General Hospital, Boston, MA, USA.
| | | | - Brittany L Lee-Bychkovsky
- Harvard Medical School, Boston, MA, USA; Department of Hematology-Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA; International Cancer Research Program, Massachusetts General Hospital, Boston, MA, USA
| | - Lei Fan
- International Cancer Research Program, Massachusetts General Hospital, Boston, MA, USA; Cancer Center and Cancer Institute, Shanghai Medical College, Fudan University, Breast Surgery Department, Shanghai, China
| | - Junjie Li
- International Cancer Research Program, Massachusetts General Hospital, Boston, MA, USA; Cancer Center and Cancer Institute, Shanghai Medical College, Fudan University, Breast Surgery Department, Shanghai, China
| | - Yanin Chavarri-Guerra
- International Cancer Research Program, Massachusetts General Hospital, Boston, MA, USA; Hemato-Oncology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Pedro E R Liedke
- International Cancer Research Program, Massachusetts General Hospital, Boston, MA, USA; Oncologia Hospital de Clínicas de Porto Alegre and Instituto do Cancer Mãe de Deus, Porto Alegre, Rio Grande do Sul, Brazil
| | - C S Pramesh
- Department of Surgical Oncology/Clinical Research, Tata Memorial Centre, Parel, Mumbai, Maharashtra, India
| | - Tanja Badovinac-Crnjevic
- International Cancer Research Program, Massachusetts General Hospital, Boston, MA, USA; University Hospital Zagreb, Department of Oncology, Zagreb, Croatia
| | - Yuri Sheikine
- Harvard Medical School, Boston, MA, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Zhu Chen
- State Key Lab of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - You-lin Qiao
- Department of Cancer Epidemiology, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiming Shao
- Cancer Center and Cancer Institute, Shanghai Medical College, Fudan University, Breast Surgery Department, Shanghai, China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Daiming Fan
- Fourth Military Medical University, State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Xi'an, Shaanxi Province, China
| | - Louis W C Chow
- Organisation for Oncology and Translational Research, Hong Kong, China; UNIMED Medical Institute, Comprehensive Centre for Breast Diseases, Hong Kong, China
| | - Jun Wang
- Institute of Public Health Economics and Management, Central University of Finance and Economics, Beijing, China
| | - Qiong Zhang
- Department of Economics, School of Economics, Central University of Finance and Economics, Beijing, China
| | - Shiying Yu
- Cancer Center of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gordon Shen
- University of California, Berkeley, CA, USA; Cancer Institute & Hospital Chinese Academy of Medical Sciences, Beijing, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Arnie Purushotham
- King's Health Partners Cancer Centre, King's College London, Guy's Hospital, London, UK
| | - Richard Sullivan
- King's Health Partners Cancer Centre, King's College London, Guy's Hospital, London, UK; Institute of Cancer Policy, King's College London, Guy's Hospital, London, UK
| | - Rajendra Badwe
- Administration, Tata Memorial Centre, Parel, Mumbai, Maharashtra, India
| | - Shripad D Banavali
- Department of Medical and Pediatric Oncology, Tata Memorial Centre, Parel, Mumbai, Maharashtra, India
| | - Reena Nair
- Department of Clinical Hematology, Tata Medical Center, Kolkata, West Bengal, India
| | - Lalit Kumar
- Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Purvish Parikh
- Clinical Research and Education, BSES GH Municipal Hospital, Mumbai, India
| | | | - Pankaj Chaturvedi
- Department of Head and Neck Surgery, Tata Memorial Centre, Parel, Mumbai, Maharashtra, India
| | - Subramania Iyer
- Amrita Institute of Medical Sciences & Research Centre, Head & Neck/Plastic & Reconstructive Surgery, Kochi, Kerala, India
| | | | | | - Enrique Soto-Perez-de-Celis
- Hemato-Oncology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Dauren Adilbay
- Astana Oncology Center, Head and Neck Oncology, Astana, Kazakhstan
| | - Vladimir Semiglazov
- Reproductive System Tumors Department, NN Petrov Research Institute of Oncology, St Petersburg, Russia
| | - Sergey Orlov
- Department of Thoracic Oncology, Saint Petersburg Medical University, Saint Petersburg, Russia
| | | | - Ilya Tsimafeyeu
- Russian Society of Clinical Oncology, Kidney Cancer Research Bureau, Moscow, Russia
| | - Sergei Tatishchev
- Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA
| | | | - Marc Hurlbert
- Avon Foundation Breast Cancer Crusade, New York, NY, USA
| | - Caroline Vail
- International Cancer Research Program, Massachusetts General Hospital, Boston, MA, USA
| | - Jessica St Louis
- International Cancer Research Program, Massachusetts General Hospital, Boston, MA, USA
| | - Arlene Chan
- Breast Cancer Research Centre-Western Australia and Curtin University, Perth, WA, Australia
| |
Collapse
|
25
|
Chen L, Wang HJ, Xie W, Yao Y, Zhang YS, Wang H. Cryptotanshinone inhibits lung tumorigenesis and induces apoptosis in cancer cells in vitro and in vivo. Mol Med Rep 2014; 9:2447-52. [PMID: 24682389 DOI: 10.3892/mmr.2014.2093] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 03/04/2014] [Indexed: 01/17/2023] Open
Abstract
Cryptotanshinone is one of the compounds extracted from the root of Salvia miltiorrhiza Bunge. Unlike other tanshinones, only a small number of studies have focused on cryptotanshinone for medical treatment. In the present study, the A549 lung cancer cell line and xenograft models of human lung tumors were used to assess the anti-cancer effect of cryptotanshinone. The effect of cryptotanshinone on human lung cancer, including growth inhibition, cell cycle arrest and apoptosis factors, were identified in vitro, and inhibition of tumor formation, improvement of body condition as well as pathological apoptotic effects were detected in vivo. These results suggested that cryptotanshinone is a potential drug for the treatment and prevention of human lung cancer.
Collapse
Affiliation(s)
- Liang Chen
- Department of Respiratory Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Hui-Juan Wang
- Department of Tumor Chemotherapy, Wuwei Tumor Hospital, Wuwei, Gansu 733000, P.R. China
| | - Wenli Xie
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Yunyi Yao
- Research Center for Biochemistry and Molecular Biology, Xuzhou Medical College, Xuzhou, Jiangsu 221004, P.R. China
| | - Yan-Shan Zhang
- Department of Tumor Surgery, Wuwei Tumor Hospital, Wuwei, Gansu 733000, P.R. China
| | - Huiling Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| |
Collapse
|
26
|
Clinical Research of Tashinone IIA Combined with Endocrine Therapy in Treating Advanced-Stage Prostate Cancer. Cell Biochem Biophys 2014; 69:503-7. [DOI: 10.1007/s12013-014-9824-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
Hu Y, Wang S, Wu X, Zhang J, Chen R, Chen M, Wang Y. Chinese herbal medicine-derived compounds for cancer therapy: a focus on hepatocellular carcinoma. JOURNAL OF ETHNOPHARMACOLOGY 2013; 149:601-12. [PMID: 23916858 DOI: 10.1016/j.jep.2013.07.030] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hepatocellular carcinoma (HCC) as the major histological subtype of primary liver cancer remains one of the most common malignancies worldwide. Due to the complicated molecular pathogenesis of HCC, the option for effective systemic treatment is quite limited. There exists a critical need to explore and evaluate possible alternative strategies for effective control of HCC. With a long history of clinical use, Chinese herbal medicine (CHM) is emerging as a noticeable choice for its multi-level, multi-target and coordinated intervention effects against HCC. With the aids of phytochemistry and molecular biological approaches, in the past decades many CHM-derived compounds have been carefully studied through both preclinical and clinical researches and have shown great potential in novel anti-HCC natural product development. The present review aimed at providing the most recent developments on anti-HCC compounds derived from CHM, especially their underlying pharmacological mechanisms. MATERIALS AND METHODS A systematic search of anti-HCC compounds from CHM was carried out focusing on literatures published both in English (PubMed, Scopus, Web of Science and Medline) and in Chinese academic databases (Wanfang and CNKI database). RESULTS In this review, we tried to give a timely and comprehensive update about the anti-HCC effects and targets of several representative CHM-derived compounds, namely curcumin, resveratrol, silibinin, berberine, quercetin, tanshinone II-A and celastrol. Their mechanisms of anti-HCC behaviors, potential side effects or toxicity and future research directions were discussed. CONCLUSION Herbal compounds derived from CHM are of much significance in devising new drugs and providing unique ideas for the war against HCC. We propose that these breakthrough findings may have important implications for targeted-HCC therapy and modernization of CHM.
Collapse
Affiliation(s)
- Yangyang Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Chen X, Guo J, Bao J, Lu J, Wang Y. The anticancer properties of Salvia miltiorrhiza Bunge (Danshen): a systematic review. Med Res Rev 2013; 34:768-94. [PMID: 24123144 DOI: 10.1002/med.21304] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Salvia miltiorrhiza Bunge (Danshen in Chinese) is a classical Huoxue Huayu (a traditional Chinese medical term means promoting blood circulation and removing blood stasis) herb with 1000 years of clinical application. It mainly contains two groups of ingredients: the hydrophilic phenolic acids and the lipophilic tanshinones. Both groups have demonstrated multiple bioactivities, such as antioxidative stress, antiplatelet aggregation, anti-inflammation, among others. Recent data have demonstrated that its lipophilic compounds, especially the tanshinones, show potent anticancer activities both in vitro and in vivo. The anticancer effects of the hydrophilic phenolic acids have also been reported. Furthermore, tanshinones provide structural skeletons for chemical modifications, allowing for a series of derivatives of interests. This review provides a systematic summary of the anticancer profile and the underlying mechanisms of the bioactive compounds isolated from Danshen with special emphasis on tanshinones, aiming to bring new insights for further research and development of this ancient herb.
Collapse
Affiliation(s)
- Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | | | | | | | | |
Collapse
|
29
|
Jia L, Ma S, Hou X, Wang X, Qased ABL, Sun X, Liang N, Li H, Yi H, Kong D, Liu X, Fan F. The synergistic effects of traditional Chinese herbs and radiotherapy for cancer treatment. Oncol Lett 2013; 5:1439-1447. [PMID: 23760551 PMCID: PMC3678704 DOI: 10.3892/ol.2013.1245] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 12/28/2012] [Indexed: 12/17/2022] Open
Abstract
Traditional Chinese medicine (TCM) has been demonstrated to have potent cytotoxic activity against certain malignant tumors. Ionizing radiation (IR) is one of the most effective methods used in the clinical treatment of cancer. The drawback of a single formula is that it limits the treatment efficacy for cancer, while comprehensive strategies require additional theoretical support. However, a combination of different antitumor treatment modalities is advantageous in restricting the non-specific toxicity often observed with an extremely high dose of a single regimen. The induction of apoptotic cell death is a significant process in tumor cells following radiotherapy or chemotherapy, and resistance to these treatments has been linked to a low propensity for apoptosis. Autophagy is a response of cancer cells to IR or chemotherapy, and involves the prominent formation of autophagic vacuoles in the cytoplasm. In this review, the synergistic effects of TCM and radiotherapy are summarized and the underlying mechanisms are illustrated, providing new therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Lili Jia
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun 130021
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Tian XH, Wu JH. Tanshinone derivatives: a patent review (January 2006 – September 2012). Expert Opin Ther Pat 2012; 23:19-29. [DOI: 10.1517/13543776.2013.736494] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
31
|
Huang M, Lu JJ, Huang MQ, Bao JL, Chen XP, Wang YT. Terpenoids: natural products for cancer therapy. Expert Opin Investig Drugs 2012; 21:1801-18. [DOI: 10.1517/13543784.2012.727395] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
32
|
Abstract
Tanshinones are a class of abietane diterpene compound isolated from Salvia miltiorrhiza (Danshen or Tanshen in Chinese), a well-known herb in Traditional Chinese Medicine (TCM). Since they were first identified in the 1930s, more than 40 lipophilic tanshinones and structurally related compounds have been isolated from Danshen. In recent decades, numerous studies have been conducted to investigate the isolation, identification, synthesis and pharmacology of tanshinones. In addition to the well-studied cardiovascular activities, tanshinones have been investigated more recently for their anti-cancer activities in vitro and in vivo. In this review, we update the herbal and alternative sources of tanshinones, and the pharmacokinetics of selected tanshinones. We discuss anti-cancer properties and identify critical issues for future research. Whereas previous studies have suggested anti-cancer potential of tanshinones affecting multiple cellular processes and molecular targets in cell culture models, data from in vivo potency assessment experiments in preclinical models vary greatly due to lack of uniformity of solvent vehicles and routes of administration. Chemical modifications and novel formulations had been made to address the poor oral bioavailability of tanshinones. So far, human clinical trials have been far from ideal in their design and execution for the purpose of supporting an anti-cancer indication of tanshinones.
Collapse
|
33
|
Growth-inhibitory and apoptosis-inducing effects of tanshinones on hematological malignancy cells and their structure–activity relationship. Anticancer Drugs 2012; 23:846-55. [DOI: 10.1097/cad.0b013e328351f896] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
34
|
ZHAN T, WEI X, CHEN ZQ, WANG DS, DAI XP. A Systematic Review of RCTs and quasi-RCTs on Traditional Chinese Patent Medicines for Treatment of Chronic Hepatitis B. J TRADIT CHIN MED 2011; 31:288-96. [DOI: 10.1016/s0254-6272(12)60006-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Tsai MY, Yang RC, Wu HT, Pang JHS, Huang ST. Anti-angiogenic effect of Tanshinone IIA involves inhibition of matrix invasion and modification of MMP-2/TIMP-2 secretion in vascular endothelial cells. Cancer Lett 2011; 310:198-206. [PMID: 21788102 DOI: 10.1016/j.canlet.2011.06.031] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 06/02/2011] [Accepted: 06/24/2011] [Indexed: 10/17/2022]
Abstract
Tanshinone IIA (Tan IIA) is one of the major lipophilic components of Salvia miltiorrhiza Bunge reported to exhibit anti-carcinogenic effect. In the present study, we further evaluated the anti-angiogenic effect of Tan IIA using the chorioallantoic membrane (CAM) in chicken embryos and human umbilical vascular endothelial cells (HUVECs). Tan IIA was confirmed to inhibit in vivo angiogenesis by CAM assay. Tan IIA also exhibited in vitro anti-angiogenic effects as demonstrated by tube formation assay, transwell migration assay and TNF-α-induced matrix invasion assay. The mRNA expressions of matrix metalloproteinase-2, -3, -9, -14 (MMP-2, -3, -9, -14), tissue inhibitor of metalloproteinase-2 (TIMP-2) and reversion-inducing cysteine-rich protein with kazal motifs (RECK) were not affected by Tan IIA as analyzed by reverse transcription polymerase chain reaction (RT-PCR). However, the extracellular matrix metalloproteinase-2 (MMP-2) activity was found to be reduced dose-dependently by Tan IIA as determined by gelatin zymography. Results from western blot analysis and ELISA further demonstrated the dose-dependent decrease of MMP-2 and increase of TIMP-2 secretion from cytosol of vascular endothelial cells simultaneously after Tan IIA treatment. Together, the present study confirmed the anti-angiogenic effects of Tan IIA both in vivo and in vitro. Our results also demonstrated that Tan IIA could modulate the secretion of MMP-2 and TIMP-2 in an opposite way and resulted in the decreased MMP-2 activity of vascular endothelial cells.
Collapse
Affiliation(s)
- Ming-Yen Tsai
- Department of Chinese Medicine, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Taiwan, ROC
| | | | | | | | | |
Collapse
|
36
|
Dong Y, Morris-Natschke SL, Lee KH. Biosynthesis, total syntheses, and antitumor activity of tanshinones and their analogs as potential therapeutic agents. Nat Prod Rep 2011; 28:529-42. [PMID: 21225077 DOI: 10.1039/c0np00035c] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tanshinones are a series of abietane diterpenes, isolated exclusively from Salvia miltiorrhiza and related species. More than 40 tanshinones and their analogs have been isolated since the 1930s. Their biosynthetic pathway correlates with the MEP/DOXP pathway, and many key enzymes, such as mCPS, are responsible for establishing their molecular scaffolds and stereospecificity. Because of their unique structural characteristics and promising biological activities, total syntheses of various tanshinones have attracted the interest of many synthetic chemists, including R. H. Thomson, H. Kakisawa, R. L. Danheiser, Y. Inouye and J. K. Snyder. Tanshinones and their analogs exhibit interesting and broad antitumor activity in various cell and animal models. Most recently, the tanshinone analog neo-tanshinlactone has shown potent and selective activity against breast cancer. This review will discuss the biosynthesis, total syntheses, and antitumor activities of tanshinones,especially neo-tanshinlactone and its analogs.
Collapse
Affiliation(s)
- Yizhou Dong
- Natural Products Research Laboratories, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568, USA
| | | | | |
Collapse
|