1
|
Panchin AY, Ogmen A, Blagodatski AS, Egorova A, Batin M, Glinin T. Targeting multiple hallmarks of mammalian aging with combinations of interventions. Aging (Albany NY) 2024; 16:12073-12100. [PMID: 39159129 PMCID: PMC11386927 DOI: 10.18632/aging.206078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/28/2024] [Indexed: 08/21/2024]
Abstract
Aging is currently viewed as a result of multiple biological processes that manifest themselves independently, reinforce each other and in their totality lead to the aged phenotype. Genetic and pharmaceutical approaches targeting specific underlying causes of aging have been used to extend the lifespan and healthspan of model organisms ranging from yeast to mammals. However, most interventions display only a modest benefit. This outcome is to be expected if we consider that even if one aging process is successfully treated, other aging pathways may remain intact. Hence solving the problem of aging may require targeting not one but many of its underlying causes at once. Here we review the challenges and successes of combination therapies aimed at increasing the lifespan of mammals and propose novel directions for their development. We conclude that both additive and synergistic effects on mammalian lifespan can be achieved by combining interventions that target the same or different hallmarks of aging. However, the number of studies in which multiple hallmarks were targeted simultaneously is surprisingly limited. We argue that this approach is as promising as it is understudied.
Collapse
Affiliation(s)
- Alexander Y Panchin
- Sector of Molecular Evolution, Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127051, Russia
| | - Anna Ogmen
- Open Longevity, Sherman Oaks, CA 91403, USA
- Department of Molecular Biology and Genetics, Bogazici University, Istanbul 34342, Turkey
| | - Artem S Blagodatski
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | | | | | - Timofey Glinin
- Open Longevity, Sherman Oaks, CA 91403, USA
- Department of Surgery, Endocrine Neoplasia Laboratory, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
2
|
Chmielewski PP, Data K, Strzelec B, Farzaneh M, Anbiyaiee A, Zaheer U, Uddin S, Sheykhi-Sabzehpoush M, Mozdziak P, Zabel M, Dzięgiel P, Kempisty B. Human Aging and Age-Related Diseases: From Underlying Mechanisms to Pro-Longevity Interventions. Aging Dis 2024:AD.2024.0280. [PMID: 38913049 DOI: 10.14336/ad.2024.0280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/02/2024] [Indexed: 06/25/2024] Open
Abstract
As human life expectancy continues to rise, becoming a pressing global concern, it brings into focus the underlying mechanisms of aging. The increasing lifespan has led to a growing elderly population grappling with age-related diseases (ARDs), which strains healthcare systems and economies worldwide. While human senescence was once regarded as an immutable and inexorable phenomenon, impervious to interventions, the emerging field of geroscience now offers innovative approaches to aging, holding the promise of extending the period of healthspan in humans. Understanding the intricate links between aging and pathologies is essential in addressing the challenges presented by aging populations. A substantial body of evidence indicates shared mechanisms and pathways contributing to the development and progression of various ARDs. Consequently, novel interventions targeting the intrinsic mechanisms of aging have the potential to delay the onset of diverse pathological conditions, thereby extending healthspan. In this narrative review, we discuss the most promising methods and interventions aimed at modulating aging, which harbor the potential to mitigate ARDs in the future. We also outline the complexity of senescence and review recent empirical evidence to identify rational strategies for promoting healthy aging.
Collapse
Affiliation(s)
- Piotr Pawel Chmielewski
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Krzysztof Data
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Bartłomiej Strzelec
- 2nd Department of General Surgery and Surgical Oncology, Medical University Hospital, Wroclaw, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Anbiyaiee
- Department of Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Uzma Zaheer
- School of Biosciences, Faculty of Health Sciences and Medicine, The University of Surrey, United Kingdom
| | - Shahab Uddin
- Translational Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | | | - Paul Mozdziak
- Graduate Physiology Program, North Carolina State University, Raleigh, NC 27695, USA
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
- Division of Anatomy and Histology, The University of Zielona Góra, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Bartosz Kempisty
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA
- Center of Assisted Reproduction, Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno, Czech Republic
| |
Collapse
|
3
|
Konopka AR, Lamming DW. Blazing a trail for the clinical use of rapamycin as a geroprotecTOR. GeroScience 2023; 45:2769-2783. [PMID: 37801202 PMCID: PMC10643772 DOI: 10.1007/s11357-023-00935-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/04/2023] [Indexed: 10/07/2023] Open
Abstract
Treatment with rapamycin, an inhibitor of the mechanistic Target Of Rapamycin Complex One (mTORC1) protein kinase, has been repeatedly demonstrated to extend lifespan and prevent or delay age-related diseases in diverse model systems. Concerns over the risk of potentially serious side effects in humans, including immunosuppression and metabolic disruptions, have cautiously limited the translation of rapamycin and its analogs as a treatment for aging associated conditions. During the last decade, we and others have developed a working model that suggests that while inhibition of mTORC1 promotes healthy aging, many of the negative side effects of rapamycin are associated with "off-target" inhibition of a second mTOR complex, mTORC2. Differences in the kinetics and molecular mechanisms by which rapamycin inhibits mTORC1 and mTORC2 suggest that a therapeutic window for rapamycin could be exploited using intermittent dosing schedules or alternative rapalogs that may enable more selective inhibition of mTORC1. However, the optimal dosing schedules and the long-term efficacy of such interventions in humans are unknown. Here, we highlight ongoing or upcoming clinical trials that will address outstanding questions regarding the safety, pharmacokinetics, pharmacodynamics, and efficacy of rapamycin and rapalogs on several clinically oriented outcomes. Results from these early phase studies will help guide the design of phase 3 clinical trials to determine whether rapamycin can be used safely to inhibit mTORC1 for the treatment and prevention of age-related diseases in humans.
Collapse
Affiliation(s)
- Adam R Konopka
- Division of Geriatrics, Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA.
- Division of Geriatrics and Gerontology, Department of Medicine, Geriatric Research Education and Clinical Center (GRECC), William S. Middleton Memorial Veterans Hospital, University of Wisconsin-Madison, 2500 Overlook Terrace, Madison, WI, 53705, USA.
| | - Dudley W Lamming
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
- Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
4
|
Antiaging Effect of 4-N-Furfurylcytosine in Yeast Model Manifests through Enhancement of Mitochondrial Activity and ROS Reduction. Antioxidants (Basel) 2022; 11:antiox11050850. [PMID: 35624714 PMCID: PMC9137487 DOI: 10.3390/antiox11050850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 12/04/2022] Open
Abstract
Small compounds are a large group of chemicals characterized by various biological properties. Some of them also have antiaging potential, which is mainly attributed to their antioxidant activity. In this study, we examined the antiaging effect of 4-N-Furfurylcytosine (FC), a cytosine derivative belonging to a group of small compounds, on budding yeast Saccharomyces cerevisiae. We chose this yeast model as it is known to contain multiple conserved genes and mechanisms identical to that of humans and has been proven to be successful in aging research. The chronological lifespan assay performed in the study revealed that FC improved the viability of yeast cells in a concentration-dependent manner. Furthermore, enhanced mitochondrial activity, together with reduced intracellular ROS level, was observed in FC-treated yeast cells. The gene expression analysis confirmed that FC treatment resulted in the restriction of the TORC1 signaling pathway. These results indicate that FC has antiaging properties.
Collapse
|
5
|
Sándor S, Jónás D, Tátrai K, Czeibert K, Kubinyi E. Poly(A) RNA sequencing reveals age-related differences in the prefrontal cortex of dogs. GeroScience 2022; 44:1269-1293. [PMID: 35288843 PMCID: PMC9213612 DOI: 10.1007/s11357-022-00533-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/17/2022] [Indexed: 12/02/2022] Open
Abstract
Dogs may possess a unique translational potential to investigate neural aging and dementia because they are prone to age-related cognitive decline, including an Alzheimer’s disease–like pathological condition. Yet very little is known about the molecular mechanisms underlying canine cognitive decline. The goal of the current study was to explore the transcriptomic differences between young and old dogs’ frontal cortex, which is a brain region often affected by various forms of age-related dementia in humans. RNA isolates from the frontal cortical brain area of 13 pet dogs, which represented 7 different breeds and crossbreds, were analyzed. The dogs were euthanized for medical reasons, and their bodies had been donated by their owners for scientific purposes. The poly(A) tail RNA subfraction of the total transcriptome was targeted in the sequencing analysis. Cluster analyses, differential gene expression analyses, and gene ontology analyses were carried out to assess which genes and genetic regulatory mechanisms were mostly affected by aging. Age was the most prominent factor in the clustering of the animals, indicating the presence of distinct gene expression patterns related to aging in a genetically variable population. A total of 3436 genes were found to be differentially expressed between the age groups, many of which were linked to neural function, immune system, and protein synthesis. These findings are in accordance with previous human brain aging RNA sequencing studies. Some genes were found to behave more similarly to humans than to rodents, further supporting the applicability of dogs in translational aging research.
Collapse
Affiliation(s)
- Sára Sándor
- Department of Ethology, ELTE Eötvös Loránd University, 1/c Pázmány Péter sétány, Budapest, 1117, Hungary.
| | - Dávid Jónás
- Department of Ethology, ELTE Eötvös Loránd University, 1/c Pázmány Péter sétány, Budapest, 1117, Hungary
| | - Kitti Tátrai
- Department of Ethology, ELTE Eötvös Loránd University, 1/c Pázmány Péter sétány, Budapest, 1117, Hungary.,Department of Genetics, ELTE Eötvös Loránd University, 1/c Pázmány Péter sétány, Budapest, 1117, Hungary
| | - Kálmán Czeibert
- Department of Ethology, ELTE Eötvös Loránd University, 1/c Pázmány Péter sétány, Budapest, 1117, Hungary
| | - Eniko Kubinyi
- Department of Ethology, ELTE Eötvös Loránd University, 1/c Pázmány Péter sétány, Budapest, 1117, Hungary
| |
Collapse
|
6
|
Directly Reprogrammed Human Neurons to Understand Age-Related Energy Metabolism Impairment and Mitochondrial Dysfunction in Healthy Aging and Neurodegeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5586052. [PMID: 34950417 PMCID: PMC8691983 DOI: 10.1155/2021/5586052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 11/08/2021] [Accepted: 11/25/2021] [Indexed: 01/10/2023]
Abstract
Brain aging is characterized by several molecular and cellular changes grouped as the hallmarks or pillars of aging, including organelle dysfunction, metabolic and nutrition-sensor changes, stem cell attrition, and macromolecular damages. Separately and collectively, these features degrade the most critical neuronal function: transmission of information in the brain. It is widely accepted that aging is the leading risk factor contributing to the onset of the most prevalent pathological conditions that affect brain functions, such as Alzheimer's, Parkinson's, and Huntington's disease. One of the limitations in understanding the molecular mechanisms involved in those diseases is the lack of an appropriate cellular model that recapitulates the “aged” context in human neurons. The advent of the cellular reprogramming of somatic cells, i.e., dermal fibroblasts, to obtain directly induced neurons (iNs) and induced pluripotent stem cell- (iPSC-) derived neurons is technical sound advances that could open the avenues to understand better the contribution of aging toward neurodegeneration. In this review, we will summarize the commonalities and singularities of these two approaches for the study of brain aging, with an emphasis on the role of mitochondrial dysfunction and redox biology. We will address the evidence showing that iNs retain age-related features in contrast to iPSC-derived neurons that lose the aging signatures during the reprogramming to pluripotency, rendering iNs a powerful strategy to deepen our knowledge of the processes driving normal cellular function decline and neurodegeneration in a human adult model. We will finally discuss the potential utilization of these novel technologies to understand the differential contribution of genetic and epigenetic factors toward neuronal aging, to identify and develop new drugs and therapeutic strategies.
Collapse
|
7
|
Valencak TG, Csiszar A, Szalai G, Podlutsky A, Tarantini S, Fazekas-Pongor V, Papp M, Ungvari Z. Animal reservoirs of SARS-CoV-2: calculable COVID-19 risk for older adults from animal to human transmission. GeroScience 2021; 43:2305-2320. [PMID: 34460063 PMCID: PMC8404404 DOI: 10.1007/s11357-021-00444-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/17/2021] [Indexed: 12/19/2022] Open
Abstract
The current COVID-19 pandemic, caused by the highly contagious respiratory pathogen SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), has already claimed close to three million lives. SARS-CoV-2 is a zoonotic disease: it emerged from a bat reservoir and it can infect a number of agricultural and companion animal species. SARS-CoV-2 can cause respiratory and intestinal infections, and potentially systemic multi-organ disease, in both humans and animals. The risk for severe illness and death with COVID-19 significantly increases with age, with older adults at highest risk. To combat the pandemic and protect the most susceptible group of older adults, understanding the human-animal interface and its relevance to disease transmission is vitally important. Currently high infection numbers are being sustained via human-to-human transmission of SARS-CoV-2. Yet, identifying potential animal reservoirs and potential vectors of the disease will contribute to stronger risk assessment strategies. In this review, the current information about SARS-CoV-2 infection in animals and the potential spread of SARS-CoV-2 to humans through contact with domestic animals (including dogs, cats, ferrets, hamsters), agricultural animals (e.g., farmed minks), laboratory animals, wild animals (e.g., deer mice), and zoo animals (felines, non-human primates) are discussed with a special focus on reducing mortality in older adults.
Collapse
Affiliation(s)
- Teresa G Valencak
- College of Animal Sciences, Zhejiang University, Hangzhou, China.
- Department of Biosciences, Paris Lodron University Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria.
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Gabor Szalai
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM, USA
| | - Andrej Podlutsky
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Vince Fazekas-Pongor
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Magor Papp
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
8
|
Lung T, Di Cesare P, Risch L, Nydegger U, Risch M. Elementary Laboratory Assays as Biomarkers of Ageing: Support for Treatment of COVID-19? Gerontology 2021; 67:503-516. [PMID: 34340235 PMCID: PMC8450824 DOI: 10.1159/000517659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/19/2021] [Indexed: 11/24/2022] Open
Abstract
Youth, working age and the elderly: On a timeline, chronological age (CA) and biological age (BA) may dissociate; nosological entities manifest themselves at different BAs. In determining which disease corresponds to a given age decade, statistical registries of causes of death are unreliable and this does not change with SARS CoV-2 infection. Beyond adolescence, ageing metrics involve estimations of changes in fitness, including prediction models to estimate the number of remaining years left to live. A substantial disparity in biomarker levels and health status of ageing can be observed: the difference in CA and BA in the large cohorts under consideration is glaring. Here, we focus more closely on ageing and senescence metrics in order to make information available for risk analysis non the least with COVID-19, including the most recent risk factors of ABO blood type and 3p21.31 chromosome cluster impacting on C5a and SC5b-9 plasma levels. From the multitude of routine medical laboratory assays, a potentially meaningful set of assays aimed to best reflect the stage of individual senescence; hence risk factors the observational prospective SENIORLABOR study of 1,467 healthy elderly performed since 2009 and similar approaches since 1958 can be instantiated as a network to combine a set of elementary laboratory assays quantifying senescence.
Collapse
Affiliation(s)
- Thomas Lung
- Labormedizinisches Zentrum Dr. Risch, Vaduz, Liechtenstein
| | | | - Lorenz Risch
- Labormedizinisches Zentrum Dr. Risch, Vaduz, Liechtenstein
| | - Urs Nydegger
- Labormedizinisches Zentrum Dr. Risch, Vaduz, Liechtenstein
| | | |
Collapse
|
9
|
Garay RP. Investigational drugs and nutrients for human longevity. Recent clinical trials registered in ClinicalTrials.gov and clinicaltrialsregister.eu. Expert Opin Investig Drugs 2021; 30:749-758. [PMID: 34081543 DOI: 10.1080/13543784.2021.1939306] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction:Several pharmacological drugs have shown proof of concept for longevity in animal models. I aimed to identify and review those longevity drug candidates that are undergoing clinical trials.Areas covered:Recent (post-2017) longevity clinical trials were found in US and EU clinical trial registries. Longevity drug candidates are the antidiabetic drugs metformin and acarbose, and the immunosuppressant rapamycin. These medicinal drugs are tested on biochemical and clinical markers of aging. In addition, vitamin D supplementation is being investigated in two mega-trials (sample size> 5000) for its efficacy in reducing all-cause mortality.Expert opinion:Anti-aging effects of longevity drug candidates suggest, but do not demonstrate that they prolong life. The two megatrials with vitamin D supplementation make it possible to detect differences in life expectancy between vitamin D and placebo. Therefore, a protocol similar to that for vitamin D could be used to demonstrate pro-longevity effects of metformin, acarbose, and rapamycin.
Collapse
Affiliation(s)
- Ricardo P Garay
- Pharmacology and Therapeutics, Craven, Villemoisson-sur-Orge, France.,CNRS, National Centre of Scientific Research, Paris, France
| |
Collapse
|
10
|
Gibbs NH, Michalski H, Promislow DEL, Kaeberlein M, Creevy KE. Reasons for Exclusion of Apparently Healthy Mature Adult and Senior Dogs From a Clinical Trial. Front Vet Sci 2021; 8:651698. [PMID: 34150883 PMCID: PMC8206478 DOI: 10.3389/fvets.2021.651698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/27/2021] [Indexed: 11/14/2022] Open
Abstract
Background: Interventional clinical trials intended to maintain health in aging dogs are unusual and require particular attention to exclusion criteria. Objectives: To describe reasons for exclusion when a mature adult and senior canine population with normal health status was sought. Animals: Fifty six companion dogs nominated for a randomized controlled trial (RCT). Procedures: Exclusions occurred within Stage 1 (S1): owner-provided survey information; Stage 2 (S2): medical records review; and Stage 3 (S3): screening examination and within Owner, Dog, or Other factor categories. Results: Of 56 nominated dogs, 39 were excluded at S1 (n = 19), S2 (n = 5), and S3 (n = 15), respectively. Dogs were excluded for Owner (n = 4), Dog (n = 27), Other (n = 6), and concurrent (Owner + Dog; n = 2) factors. The most common exclusion period was S1 (n = 19), with weight outside the target range being the most common exclusion factor in that stage (n = 10). Heart murmurs were the second most common exclusion factor (S1: n = 1; S3: n = 5); suspected or confirmed systemic illness was third most common (S1: n = 2; S2: n = 3; S3: n = 2). Among dogs who passed S1 and S2 screening (n = 32), 15 dogs (48%) were excluded at S3, for heart murmur > grade II/VI (n = 5), cardiac arrhythmias (n = 2), and clinicopathologic abnormalities (n = 2). Conclusions and Clinical Relevance: Dogs nominated for a clinical trial for healthy mature adult and senior dogs were excluded for size, previous diagnoses, and newly discovered cardiac abnormalities. For future interventions in mature adult and senior dogs of normal health status, it is important to define expected age-related abnormalities to ensure that meaningful exclusion criteria are used.
Collapse
Affiliation(s)
- Nicole H Gibbs
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Hannah Michalski
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Daniel E L Promislow
- Department of Laboratory Medicine & Pathology, University of Washington School of Medicine, Seattle, WA, United States.,Department of Biology, University of Washington, Seattle, WA, United States
| | - Matt Kaeberlein
- Department of Laboratory Medicine & Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Kate E Creevy
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
11
|
Man's best friend in life and death: scientific perspectives and challenges of dog brain banking. GeroScience 2021; 43:1653-1668. [PMID: 33970413 PMCID: PMC8492856 DOI: 10.1007/s11357-021-00373-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Biobanking refers to the systematic collection, storage, and distribution of pre- or post-mortem biological samples derived from volunteer donors. The demand for high-quality human specimens is clearly demonstrated by the number of newly emerging biobanking facilities and large international collaborative networks. Several animal species are relevant today in medical research; therefore, similar initiatives in comparative physiology could be fruitful. Dogs, in particular, are gaining increasing attention in translational research on complex phenomena, like aging, cancer, and neurodegenerative diseases. Therefore, biobanks gathering and storing dog biological materials together with related data could play a vital role in translational and veterinary research projects. To achieve these aims, a canine biobank should meet the same standards in sample quality and data management as human biobanks and should rely on well-designed collaborative networks between different professionals and dog owners. While efforts to create dog biobanks could face similar financial and technical challenges as their human counterparts, they can widen the spectrum of successful collaborative initiatives towards a better picture of dogs’ physiology, disease, evolution, and translational potential. In this review, we provide an overview about the current state of dog biobanking and introduce the “Canine Brain and Tissue Bank” (CBTB)—a new, large-scale collaborative endeavor in the field.
Collapse
|
12
|
Brinkmann V, Schiavi A, Shaik A, Puchta DR, Ventura N. Dietary and environmental factors have opposite AhR-dependent effects on C. elegans healthspan. Aging (Albany NY) 2020; 13:104-133. [PMID: 33349622 PMCID: PMC7835051 DOI: 10.18632/aging.202316] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/08/2020] [Indexed: 12/14/2022]
Abstract
Genetic, dietary, and environmental factors concurrently shape the aging process. The aryl hydrocarbon receptor (AhR) was discovered as a dioxin-binding transcription factor involved in the metabolism of different environmental toxicants in vertebrates. Since then, the variety of pathophysiological processes regulated by the AhR has grown, ranging from immune response, metabolic pathways, and aging. Many modulators of AhR activity may impact on aging and age-associated pathologies, but, whether their effects are AhR-dependent has never been explored. Here, using Caenorhabditis elegans, as an elective model organism for aging studies, we show for the first time that lack of CeAHR-1 can have opposite effects on health and lifespan in a context-dependent manner. Using known mammalian AhR modulators we found that, ahr-1 protects against environmental insults (benzo(a)pyrene and UVB light) and identified a new role for AhR-bacterial diet interaction in animal lifespan, stress resistance, and age-associated pathologies. We narrowed down the dietary factor to a bacterially extruded metabolite likely involved in tryptophan metabolism. This is the first study clearly establishing C. elegans as a good model organism to investigate evolutionarily conserved functions of AhR-modulators and -regulated processes, indicating it can be exploited to contribute to the discovery of novel information about AhR in mammals.
Collapse
Affiliation(s)
- Vanessa Brinkmann
- Leibniz Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany
| | - Alfonso Schiavi
- Leibniz Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany.,Institute of Clinical Chemistry and Laboratory Diagnostic, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany
| | - Anjumara Shaik
- Leibniz Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany.,Institute of Clinical Chemistry and Laboratory Diagnostic, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany
| | - Daniel Rüdiger Puchta
- Leibniz Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany
| | - Natascia Ventura
- Leibniz Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany.,Institute of Clinical Chemistry and Laboratory Diagnostic, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany
| |
Collapse
|
13
|
Chriskos P, Frantzidis CA, Papanastasiou E, Bamidis PD. Applications of Convolutional Neural Networks in neurodegeneration and physiological aging. Int J Psychophysiol 2020; 159:1-10. [PMID: 33202245 DOI: 10.1016/j.ijpsycho.2020.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 07/29/2020] [Accepted: 08/25/2020] [Indexed: 12/19/2022]
Abstract
The process of aging is linked with significant changes in a human's physiological organization and structure. This is more evident in the case of the brain whose functions generally vary between young and old individuals. Detecting such patterns can be of significant importance especially during the Mild Cognitive Impairment (MCI) stage which is a transition state before the clinical onset of dementia. Intervening in that stage may delay or eventually prevent dementia onset. In this paper we propose a new methodology based in electroencephalographic (EEG) recordings, aiming to classify individuals into healthy, pathological (patients diagnosed with MCI or Mild Dementia) and young, old groups (healthy individuals over and under 50 years of age) through functional connectivity and macro-architecture features. These features are calculated on the estimated brain region activations through the inverse problem solution, enabling us to transform the sensor level EEG recordings through an appropriate transformation matrix. Afterwards, Synchronization Likelihood and Relative Wavelet Entropy values were calculated along with the graph metrics corresponding to the functional connectivity values, as well as the relative energy contributions of five EEG bands (delta, theta, alpha, beta and gamma). These features were organized in Red, Green, Blue (RGB) image-like data structures. Therefore, it was possible to classify each individual into one of the two groups per experiment employing Convolutional Neural Networks. From the maximum classification accuracy achieved on the test set, 90.48% for the pathological aging group and 91.19% for the physiological aging, it is evident that the proposed approach is capable of providing adequate health and age group classification.
Collapse
Affiliation(s)
- Panteleimon Chriskos
- Laboratory of Medical Physics, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Christos A Frantzidis
- Laboratory of Medical Physics, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Emmanouil Papanastasiou
- Laboratory of Medical Physics, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Panagiotis D Bamidis
- Laboratory of Medical Physics, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
14
|
Urfer SR, Kaeberlein M, Promislow DEL, Creevy KE. Lifespan of companion dogs seen in three independent primary care veterinary clinics in the United States. Canine Med Genet 2020; 7:7. [PMID: 32835231 PMCID: PMC7386164 DOI: 10.1186/s40575-020-00086-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 06/04/2020] [Indexed: 12/24/2022] Open
Abstract
Background The privately owned companion dog is an emerging model in comparative medicine, notably because it shares the human environment including its risk factors, is affected by many analogous age-related diseases, receives comparable medical care, and has excellent veterinary medical data available. Past studies of dog lifespan have used academic, corporate or insurance data. While independent primary care data exist for the UK, none have as of yet been published for the US. This study analyzed data from three independent primary care US veterinary hospitals and identified factors that influence lifespan and mortality in a cohort of n = 20,970 privately owned dogs using Kaplan-Meier survival estimators and Cox Proportional Hazards modelling, including body size as a covariate. Results As previously reported, body size was negatively correlated with lifespan. Gonadectomy was associated with a longer lifespan, with the effect being stronger in females than in males. This lifespan advantage was conserved in gonadectomized female dogs that lived to at least ages 5 and 8 years. We did not find significant differences in lifespan between purebred and mixed breed dogs; however, breeds with larger effective population sizes and/or lower inbreeding coefficients had median survival times 3–6 months longer than breeds with smaller effective population sizes or higher inbreeding coefficients, indicating that these measures of genetic diversity may be affecting breed lifespans. We also found that dog breeds belonging to the “Mountain” ancestral group had median survival times that were 3.5–4.6 years shorter than other purebred dog groups, which remained significant even when correcting for body size. Conclusions Our findings show that it is possible to obtain and analyze data from independent veterinary clinics in the US, an approach that could be useful for studies of comparative epidemiology under the One Health and One Welfare paradigms. We also show that the lifespan effects of gonadectomy are not identical between the sexes and should be investigated separately by sex in future analyses. More research is needed to further clarify the influence of age at gonadectomy, as well as the factors leading to the observed differences in lifespan in the “Mountain” ancestral group and in dog breeds of varying inbreeding coefficients and effective population sizes.
Collapse
Affiliation(s)
- Silvan R Urfer
- Dog Aging Project, Department of Pathology, University of Washington School of Medicine, Seattle, WA USA
| | - Matt Kaeberlein
- Dog Aging Project, Department of Pathology, University of Washington School of Medicine, Seattle, WA USA
| | - Daniel E L Promislow
- Dog Aging Project, Department of Pathology, University of Washington School of Medicine, Seattle, WA USA.,Department of Biology, University of Washington, Seattle, WA USA
| | - Kate E Creevy
- Dog Aging Project, Department of Pathology, University of Washington School of Medicine, Seattle, WA USA.,College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX USA
| |
Collapse
|
15
|
Dakik P, Rodriguez MEL, Junio JAB, Mitrofanova D, Medkour Y, Tafakori T, Taifour T, Lutchman V, Samson E, Arlia-Ciommo A, Rukundo B, Simard É, Titorenko VI. Discovery of fifteen new geroprotective plant extracts and identification of cellular processes they affect to prolong the chronological lifespan of budding yeast. Oncotarget 2020; 11:2182-2203. [PMID: 32577164 PMCID: PMC7289529 DOI: 10.18632/oncotarget.27615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/14/2020] [Indexed: 11/25/2022] Open
Abstract
In a quest for previously unknown geroprotective natural chemicals, we used a robust cell viability assay to search for commercially available plant extracts that can substantially prolong the chronological lifespan of budding yeast. Many of these plant extracts have been used in traditional Chinese and other herbal medicines or the Mediterranean and other customary diets. Our search led to a discovery of fifteen plant extracts that significantly extend the longevity of chronologically aging yeast not limited in calorie supply. We show that each of these longevity-extending plant extracts is a geroprotector that decreases the rate of yeast chronological aging and promotes a hormetic stress response. We also show that each of the fifteen geroprotective plant extracts mimics the longevity-extending, stress-protecting, metabolic and physiological effects of a caloric restriction diet but if added to yeast cultured under non-caloric restriction conditions. We provide evidence that the fifteen geroprotective plant extracts exhibit partially overlapping effects on a distinct set of longevity-defining cellular processes. These effects include a rise in coupled mitochondrial respiration, an altered age-related chronology of changes in reactive oxygen species abundance, protection of cellular macromolecules from oxidative damage, and an age-related increase in the resistance to long-term oxidative and thermal stresses.
Collapse
Affiliation(s)
- Pamela Dakik
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | | | | | - Darya Mitrofanova
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Younes Medkour
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Tala Tafakori
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Tarek Taifour
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Vicky Lutchman
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Eugenie Samson
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | | | - Belise Rukundo
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Éric Simard
- Idunn Technologies Inc., Rosemere, Quebec J7A 4A5, Canada
| | | |
Collapse
|
16
|
Brinkmann V, Ale-Agha N, Haendeler J, Ventura N. The Aryl Hydrocarbon Receptor (AhR) in the Aging Process: Another Puzzling Role for This Highly Conserved Transcription Factor. Front Physiol 2020; 10:1561. [PMID: 32009975 PMCID: PMC6971224 DOI: 10.3389/fphys.2019.01561] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/11/2019] [Indexed: 12/26/2022] Open
Abstract
Aging is the most important risk factor for the development of major life-threatening diseases such as cardiovascular disorders, cancer, and neurodegenerative disorders. The aging process is characterized by the accumulation of damage to intracellular macromolecules and it is concurrently shaped by genetic, environmental and nutritional factors. These factors influence the functionality of mitochondria, which play a central role in the aging process. Mitochondrial dysfunction is one of the hallmarks of aging and is associated with increased fluxes of ROS leading to damage of mitochondrial components, impaired metabolism of fatty acids, dysregulated glucose metabolism, and damage of adjacent organelles. Interestingly, many of the environmental (e.g., pollutants and other toxicants) and nutritional (e.g., flavonoids, carotenoids) factors influencing aging and mitochondrial function also directly or indirectly affect the activity of a highly conserved transcription factor, the Aryl hydrocarbon Receptor (AhR). Therefore, it is not surprising that many studies have already indicated a role of this versatile transcription factor in the aging process. We also recently found that the AhR promotes aging phenotypes across species. In this manuscript, we systematically review the existing literature on the contradictory studies indicating either pro- or anti-aging effects of the AhR and try to reconcile the seemingly conflicting data considering a possible dependency on the animal model, tissue, as well as level of AhR expression and activation. Moreover, given the crucial role of mitochondria in the aging process, we summarize the growing body of evidence pointing toward the influence of AhR on mitochondria, which can be of potential relevance for aging.
Collapse
Affiliation(s)
- Vanessa Brinkmann
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Niloofar Ale-Agha
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Judith Haendeler
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.,Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Natascia Ventura
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.,Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
17
|
Blagosklonny MV. Disease or not, aging is easily treatable. Aging (Albany NY) 2019; 10:3067-3078. [PMID: 30448823 PMCID: PMC6286826 DOI: 10.18632/aging.101647] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/02/2018] [Indexed: 12/14/2022]
Abstract
Is aging a disease? It does not matter because aging is already treated using a combination of several clinically-available drugs, including rapamycin. Whether aging is a disease depends on arbitrary definitions of both disease and aging. For treatment purposes, aging is a deadly disease (or more generally, pre-disease), despite being a normal continuation of normal organismal growth. It must and, importantly, can be successfully treated, thereby delaying classic age-related diseases such as cancer, cardiovascular and metabolic diseases, and neurodegeneration.
Collapse
|
18
|
Bakula D, Ablasser A, Aguzzi A, Antebi A, Barzilai N, Bittner MI, Jensen MB, Calkhoven CF, Chen D, de Grey AD, Feige JN, Georgievskaya A, Gladyshev VN, Golato T, Gudkov AV, Hoppe T, Kaeberlein M, Katajisto P, Kennedy BK, Lal U, Martin-Villalba A, Moskalev AA, Ozerov I, Petr MA, Reason, Rubinsztein DC, Tyshkovskiy A, Vanhaelen Q, Zhavoronkov A, Scheibye-Knudsen M. Latest advances in aging research and drug discovery. Aging (Albany NY) 2019; 11:9971-9981. [PMID: 31770722 PMCID: PMC6914421 DOI: 10.18632/aging.102487] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/09/2019] [Indexed: 12/19/2022]
Abstract
An increasing aging population poses a significant challenge to societies worldwide. A better understanding of the molecular, cellular, organ, tissue, physiological, psychological, and even sociological changes that occur with aging is needed in order to treat age-associated diseases. The field of aging research is rapidly expanding with multiple advances transpiring in many previously disconnected areas. Several major pharmaceutical, biotechnology, and consumer companies made aging research a priority and are building internal expertise, integrating aging research into traditional business models and exploring new go-to-market strategies. Many of these efforts are spearheaded by the latest advances in artificial intelligence, namely deep learning, including generative and reinforcement learning. To facilitate these trends, the Center for Healthy Aging at the University of Copenhagen and Insilico Medicine are building a community of Key Opinion Leaders (KOLs) in these areas and launched the annual conference series titled "Aging Research and Drug Discovery (ARDD)" held in the capital of the pharmaceutical industry, Basel, Switzerland (www.agingpharma.org). This ARDD collection contains summaries from the 6th annual meeting that explored aging mechanisms and new interventions in age-associated diseases. The 7th annual ARDD exhibition will transpire 2nd-4th of September, 2020, in Basel.
Collapse
Affiliation(s)
- Daniela Bakula
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Ablasser
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Nir Barzilai
- Department of Medicine, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | - Cornelis F. Calkhoven
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, AD Groningen, The Netherlands
| | - Danica Chen
- Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA
| | | | - Jerome N. Feige
- Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Andrei V. Gudkov
- Roswell Park Comprehensive Cancer Center and Genome Protection, Inc., Buffalo, NY 14203, USA
| | - Thorsten Hoppe
- Institute for Genetics and CECAD Research Center, University of Cologne, Cologne, Germany
| | - Matt Kaeberlein
- Department of Pathology, School of Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Pekka Katajisto
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Brian K. Kennedy
- Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University Singapore, Singapore
- Centre for Healthy Ageing, National University Healthy System, Singapore
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Unmesh Lal
- Frost and Sullivan, Frankfurt am Main, Germany
| | | | - Alexey A. Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ivan Ozerov
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Rockville, MD 20850, USA
| | - Michael A. Petr
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Reason
- Repair Biotechnologies, Inc., Syracuse, NY 13210, USA
| | - David C. Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge CB2 0XY, UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Cambridge, UK
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Quentin Vanhaelen
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Rockville, MD 20850, USA
| | - Alex Zhavoronkov
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Rockville, MD 20850, USA
| | - Morten Scheibye-Knudsen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Sándor S, Kubinyi E. Genetic Pathways of Aging and Their Relevance in the Dog as a Natural Model of Human Aging. Front Genet 2019; 10:948. [PMID: 31681409 PMCID: PMC6813227 DOI: 10.3389/fgene.2019.00948] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/05/2019] [Indexed: 12/15/2022] Open
Abstract
Aging research has experienced a burst of scientific efforts in the last decades as the growing ratio of elderly people has begun to pose an increased burden on the healthcare and pension systems of developed countries. Although many breakthroughs have been reported in understanding the cellular mechanisms of aging, the intrinsic and extrinsic factors that contribute to senescence on higher biological levels are still barely understood. The dog, Canis familiaris, has already served as a valuable model of human physiology and disease. The possible role the dog could play in aging research is still an open question, although utilization of dogs may hold great promises as they naturally develop age-related cognitive decline, with behavioral and histological characteristics very similar to those of humans. In this regard, family dogs may possess unmatched potentials as models for investigations on the complex interactions between environmental, behavioral, and genetic factors that determine the course of aging. In this review, we summarize the known genetic pathways in aging and their relevance in dogs, putting emphasis on the yet barely described nature of certain aging pathways in canines. Reasons for highlighting the dog as a future aging and gerontology model are also discussed, ranging from its unique evolutionary path shared with humans, its social skills, and the fact that family dogs live together with their owners, and are being exposed to the same environmental effects.
Collapse
Affiliation(s)
- Sára Sándor
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | | |
Collapse
|
20
|
Deprez MA, Eskes E, Winderickx J, Wilms T. The TORC1-Sch9 pathway as a crucial mediator of chronological lifespan in the yeast Saccharomyces cerevisiae. FEMS Yeast Res 2019; 18:4980911. [PMID: 29788208 DOI: 10.1093/femsyr/foy048] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/19/2018] [Indexed: 12/18/2022] Open
Abstract
The concept of ageing is one that has intrigued mankind since the beginning of time and is now more important than ever as the incidence of age-related disorders is increasing in our ageing population. Over the past decades, extensive research has been performed using various model organisms. As such, it has become apparent that many fundamental aspects of biological ageing are highly conserved across large evolutionary distances. In this review, we illustrate that the unicellular eukaryotic organism Saccharomyces cerevisiae has proven to be a valuable tool to gain fundamental insights into the molecular mechanisms of cellular ageing in multicellular eukaryotes. In addition, we outline the current knowledge on how downregulation of nutrient signaling through the target of rapamycin (TOR)-Sch9 pathway or reducing calorie intake attenuates many detrimental effects associated with ageing and leads to the extension of yeast chronological lifespan. Given that both TOR Complex 1 (TORC1) and Sch9 have mammalian orthologues that have been implicated in various age-related disorders, unraveling the connections of TORC1 and Sch9 with yeast ageing may provide additional clues on how their mammalian orthologues contribute to the mechanisms underpinning human ageing and health.
Collapse
Affiliation(s)
- Marie-Anne Deprez
- Department of Biology, Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium
| | - Elja Eskes
- Department of Biology, Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium
| | - Joris Winderickx
- Department of Biology, Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium
| | - Tobias Wilms
- Department of Biology, Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium
| |
Collapse
|
21
|
Ross CN, Adams J, Gonzalez O, Dick E, Giavedoni L, Hodara VL, Phillips K, Rigodanzo AD, Kasinath B, Tardif SD. Cross-sectional comparison of health-span phenotypes in young versus geriatric marmosets. Am J Primatol 2019; 81:e22952. [PMID: 30664265 PMCID: PMC7036287 DOI: 10.1002/ajp.22952] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 12/10/2018] [Accepted: 12/15/2018] [Indexed: 12/29/2022]
Abstract
The development of the marmoset as a translational model for healthspan and lifespan studies relies on the characterization of health parameters in young and geriatric marmosets. This cross-sectional study examined health phenotypes in marmosets for five domains of interest for human health and aging: mobility, cognition, metabolism, homeostasis, and immune function. Geriatric marmosets were found to have significant executive function impairment when compared to young animals. While geriatric animals did not show gross abnormalities in mobility and measures of locomotion, their types of movement were altered from young animals. Geriatric marmosets had alterations in cardiac function, with significantly increased mean arterial pressures; metabolism, with significantly lower VO2 ; and suppressed immune function. Further, this study sought to characterize and describe histopathology for both young and geriatric healthy marmosets. Overall this study provides a characterization of health parameters for young and geriatric marmosets which will greatly enhance future aging and interventional testing in marmosets.
Collapse
Affiliation(s)
- Corinna N Ross
- Department of Science and Mathematics, Texas A&M University San Antonio, San Antonio, Texas
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas
| | - Jessica Adams
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas
| | - Olga Gonzalez
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas
| | - Edward Dick
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas
| | - Luis Giavedoni
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas
| | - Vida L Hodara
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas
| | | | - Anna D Rigodanzo
- Department of Psychology, Trinity University, San Antonio, Texas
| | - Balakuntalam Kasinath
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas
- Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas
| | - Suzette D Tardif
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
22
|
Dakik P, McAuley M, Chancharoen M, Mitrofanova D, Lozano Rodriguez ME, Baratang Junio JA, Lutchman V, Cortes B, Simard É, Titorenko VI. Pairwise combinations of chemical compounds that delay yeast chronological aging through different signaling pathways display synergistic effects on the extent of aging delay. Oncotarget 2019; 10:313-338. [PMID: 30719227 PMCID: PMC6349451 DOI: 10.18632/oncotarget.26553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 12/20/2018] [Indexed: 01/08/2023] Open
Abstract
We have recently discovered six plant extracts that delay yeast chronological aging. Most of them affect different nodes, edges and modules of an evolutionarily conserved network of longevity regulation that integrates certain signaling pathways and protein kinases; this network is also under control of such aging-delaying chemical compounds as spermidine and resveratrol. We have previously shown that, if a strain carrying an aging-delaying single-gene mutation affecting a certain node, edge or module of the network is exposed to some of the six plant extracts, the mutation and the plant extract enhance aging-delaying efficiencies of each other so that their combination has a synergistic effect on the extent of aging delay. We therefore hypothesized that a pairwise combination of two aging-delaying plant extracts or a combination of one of these plant extracts and spermidine or resveratrol may have a synergistic effect on the extent of aging delay only if each component of this combination targets a different element of the network. To test our hypothesis, we assessed longevity-extending efficiencies of all possible pairwise combinations of the six plant extracts or of one of them and spermidine or resveratrol in chronologically aging yeast. In support of our hypothesis, we show that only pairwise combinations of naturally-occurring chemical compounds that slow aging through different nodes, edges and modules of the network delay aging in a synergistic manner.
Collapse
Affiliation(s)
- Pamela Dakik
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Mélissa McAuley
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | - Darya Mitrofanova
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | | | - Vicky Lutchman
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Berly Cortes
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Éric Simard
- Idunn Technologies Inc., Rosemere, Quebec, Canada
| | | |
Collapse
|
23
|
Arlia-Ciommo A, Leonov A, Mohammad K, Beach A, Richard VR, Bourque SD, Burstein MT, Goldberg AA, Kyryakov P, Gomez-Perez A, Koupaki O, Titorenko VI. Mechanisms through which lithocholic acid delays yeast chronological aging under caloric restriction conditions. Oncotarget 2018; 9:34945-34971. [PMID: 30405886 PMCID: PMC6201858 DOI: 10.18632/oncotarget.26188] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/17/2018] [Indexed: 12/31/2022] Open
Abstract
All presently known geroprotective chemical compounds of plant and microbial origin are caloric restriction mimetics because they can mimic the beneficial lifespan- and healthspan-extending effects of caloric restriction diets without the need to limit calorie supply. We have discovered a geroprotective chemical compound of mammalian origin, a bile acid called lithocholic acid, which can delay chronological aging of the budding yeast Saccharomyces cerevisiae under caloric restriction conditions. Here, we investigated mechanisms through which lithocholic acid can delay chronological aging of yeast limited in calorie supply. We provide evidence that lithocholic acid causes a stepwise development and maintenance of an aging-delaying cellular pattern throughout the entire chronological lifespan of yeast cultured under caloric restriction conditions. We show that lithocholic acid stimulates the aging-delaying cellular pattern and preserves such pattern because it specifically modulates the spatiotemporal dynamics of a complex cellular network. We demonstrate that this cellular network integrates certain pathways of lipid and carbohydrate metabolism, some intercompartmental communications, mitochondrial morphology and functionality, and liponecrotic and apoptotic modes of aging-associated cell death. Our findings indicate that lithocholic acid prolongs longevity of chronologically aging yeast because it decreases the risk of aging-associated cell death, thus increasing the chance of elderly cells to survive.
Collapse
Affiliation(s)
| | - Anna Leonov
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Karamat Mohammad
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Adam Beach
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Vincent R Richard
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Simon D Bourque
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | | | - Pavlo Kyryakov
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | - Olivia Koupaki
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | |
Collapse
|
24
|
|
25
|
Bolman B. How experiments age: Gerontology, beagles, and species projection at Davis. SOCIAL STUDIES OF SCIENCE 2018; 48:232-258. [PMID: 29564959 DOI: 10.1177/0306312718759822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cold War curiosities about the dangers of radiation generated significant funding for an array of biomedical projects as enticing as they were unpredictable, introducing newly standardized experimental animals into laboratories and a novel merging of scientific disciplines. The desire to understand radiation's effects on human longevity spurred a multi-sited, multi-decade project that subjected beagle dogs to varying degrees of irradiation. One of those laboratories, located at the southern tip of the campus of the University of California, Davis, eventually hosted an elaborate experimental breeding kennel and a population of 'control' dogs that set new milestones for canine longevity. The present article examines this gerontological spin-off experiment, using the study of aging as a method and object in order to analyze the emergence and disappearance of the Davis Radiobiology Laboratory and explore how research using new canine model organisms mirrored the politics and anxieties faced by citizens and scientists of the era, here termed 'species projection'.
Collapse
Affiliation(s)
- Brad Bolman
- Department of the History of Science, Harvard University, Cambridge, MA, USA
| |
Collapse
|
26
|
Jung PP, Zhang Z, Paczia N, Jaeger C, Ignac T, May P, Linster CL. Natural variation of chronological aging in the Saccharomyces cerevisiae species reveals diet-dependent mechanisms of life span control. NPJ Aging Mech Dis 2018; 4:3. [PMID: 29560271 PMCID: PMC5845861 DOI: 10.1038/s41514-018-0022-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 01/30/2018] [Accepted: 02/08/2018] [Indexed: 02/07/2023] Open
Abstract
Aging is a complex trait of broad scientific interest, especially because of its intrinsic link with common human diseases. Pioneering work on aging-related mechanisms has been made in Saccharomyces cerevisiae, mainly through the use of deletion collections isogenic to the S288c reference strain. In this study, using a recently published high-throughput approach, we quantified chronological life span (CLS) within a collection of 58 natural strains across seven different conditions. We observed a broad aging variability suggesting the implication of diverse genetic and environmental factors in chronological aging control. Two major Quantitative Trait Loci (QTLs) were identified within a biparental population obtained by crossing two natural isolates with contrasting aging behavior. Detection of these QTLs was dependent upon the nature and concentration of the carbon sources available for growth. In the first QTL, the RIM15 gene was identified as major regulator of aging under low glucose condition, lending further support to the importance of nutrient-sensing pathways in longevity control under calorie restriction. In the second QTL, we could show that the SER1 gene, encoding a conserved aminotransferase of the serine synthesis pathway not previously linked to aging, is causally associated with CLS regulation, especially under high glucose condition. These findings hint toward a new mechanism of life span control involving a trade-off between serine synthesis and aging, most likely through modulation of acetate and trehalose metabolism. More generally it shows that genetic linkage studies across natural strains represent a promising strategy to further unravel the molecular basis of aging. A Sake yeast strain deficient in producing the protein building block serine lives longer than other yeast strains, especially when exposed to high glucose. A team led by Carole Linster at the University of Luxembourg found a broad variability of lifespan when analyzing more than fifty Saccharomyces cerevisiae strains isolated from around the world. Combining hundreds of lifespan measurements with genotype data from a progeny obtained by crossing the long-lived Sake strain and a short-lived collection strain, they identified two genes playing a pivotal role in causing the contrasting aging behavior of the parents: RIM15, when glucose was limiting and SER1, when glucose was plenty. RIM15 is part of a signaling cascade also regulating aging in mammals; SER1 revealed that a blockage in serine synthesis reprograms metabolism to favor glucose storage and long life.
Collapse
Affiliation(s)
- Paul P Jung
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Zhi Zhang
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Nicole Paczia
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Christian Jaeger
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Tomasz Ignac
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Carole L Linster
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
27
|
An JY, Darveau R, Kaeberlein M. Oral health in geroscience: animal models and the aging oral cavity. GeroScience 2018; 40:1-10. [PMID: 29282653 PMCID: PMC5832657 DOI: 10.1007/s11357-017-0004-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 12/14/2017] [Indexed: 12/31/2022] Open
Abstract
Age is the single greatest risk factor for many diseases, including oral diseases. Despite this, a majority of preclinical oral health research has not adequately considered the importance of aging in research aimed at the mechanistic understanding of oral disease. Here, we have attempted to provide insights from animal studies in the geroscience field and apply them in the context of oral health research. In particular, we discuss the relationship between the biology of aging and mechanisms of oral disease. We also present a framework for defining and utilizing age-appropriate rodents and present experimental design considerations, such as the number of age-points used and the importance of genetic background. While focused primarily on rodent models, alternative animal models that may be particularly useful for studies of oral health during aging, such as companion dogs and marmoset monkeys, are also discussed. We hope that such information will aid in the design of future preclinical studies of geriatric dental health, thus allowing more reliability for translation of such studies to age-associated oral disease in people.
Collapse
Affiliation(s)
- Jonathan Y An
- Department of Oral Health Sciences, University of Washington School of Dentistry, Seattle, WA, 98195, USA
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Richard Darveau
- Department of Periodontics, University of Washington School of Dentistry, Seattle, WA, 98195, USA
| | - Matt Kaeberlein
- Department of Oral Health Sciences, University of Washington School of Dentistry, Seattle, WA, 98195, USA.
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, 98195, USA.
| |
Collapse
|
28
|
Lutchman V, Dakik P, McAuley M, Cortes B, Ferraye G, Gontmacher L, Graziano D, Moukhariq FZ, Simard É, Titorenko VI. Six plant extracts delay yeast chronological aging through different signaling pathways. Oncotarget 2018; 7:50845-50863. [PMID: 27447556 PMCID: PMC5239441 DOI: 10.18632/oncotarget.10689] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/07/2016] [Indexed: 01/19/2023] Open
Abstract
Our recent study has revealed six plant extracts that slow yeast chronological aging more efficiently than any chemical compound yet described. The rate of aging in yeast is controlled by an evolutionarily conserved network of integrated signaling pathways and protein kinases. Here, we assessed how single-gene-deletion mutations eliminating each of these pathways and kinases affect the aging-delaying efficiencies of the six plant extracts. Our findings imply that these extracts slow aging in the following ways: 1) plant extract 4 decreases the efficiency with which the pro-aging TORC1 pathway inhibits the anti-aging SNF1 pathway; 2) plant extract 5 mitigates two different branches of the pro-aging PKA pathway; 3) plant extract 6 coordinates processes that are not assimilated into the network of presently known signaling pathways/protein kinases; 4) plant extract 8 diminishes the inhibitory action of PKA on SNF1; 5) plant extract 12 intensifies the anti-aging protein kinase Rim15; and 6) plant extract 21 inhibits a form of the pro-aging protein kinase Sch9 that is activated by the pro-aging PKH1/2 pathway.
Collapse
Affiliation(s)
- Vicky Lutchman
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Pamela Dakik
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Mélissa McAuley
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Berly Cortes
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - George Ferraye
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Leonid Gontmacher
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - David Graziano
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | - Éric Simard
- Idunn Technologies Inc., Rosemere, Quebec, Canada
| | | |
Collapse
|
29
|
Rapamycin in aging and disease: maximizing efficacy while minimizing side effects. Oncotarget 2018; 7:44876-44878. [PMID: 27384492 PMCID: PMC5216691 DOI: 10.18632/oncotarget.10381] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/16/2016] [Indexed: 12/31/2022] Open
Abstract
Experimental geroscience has identified rapamycin as a top candidate for promoting healthy aging and longevity in mammals. As multiple independent studies have successfully reproduced the lifespan and healthspan promoting effects of rapamycin, the focus has shifted to possible translational use. While a promising compound, clinical use of rapamycin is limited by concerns of side effects associated with the drug. Studies aimed at defining optimal dosage regimen, delivery route, and formulation will allow for benefits to be maximized while reducing side effects.
Collapse
|
30
|
Discovery of plant extracts that greatly delay yeast chronological aging and have different effects on longevity-defining cellular processes. Oncotarget 2017; 7:16542-66. [PMID: 26918729 PMCID: PMC4941334 DOI: 10.18632/oncotarget.7665] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/11/2016] [Indexed: 01/19/2023] Open
Abstract
We discovered six plant extracts that increase yeast chronological lifespan to a significantly greater extent than any of the presently known longevity-extending chemical compounds. One of these extracts is the most potent longevity-extending pharmacological intervention yet described. We show that each of the six plant extracts is a geroprotector which delays the onset and decreases the rate of yeast chronological aging by eliciting a hormetic stress response. We also show that each of these extracts has different effects on cellular processes that define longevity in organisms across phyla. These effects include the following: 1) increased mitochondrial respiration and membrane potential; 2) augmented or reduced concentrations of reactive oxygen species; 3) decreased oxidative damage to cellular proteins, membrane lipids, and mitochondrial and nuclear genomes; 4) enhanced cell resistance to oxidative and thermal stresses; and 5) accelerated degradation of neutral lipids deposited in lipid droplets. Our findings provide new insights into mechanisms through which chemicals extracted from certain plants can slow biological aging.
Collapse
|
31
|
Kaeberlein M. Translational geroscience: A new paradigm for 21 st century medicine. TRANSLATIONAL MEDICINE OF AGING 2017; 1:1-4. [PMID: 32219192 DOI: 10.1016/j.tma.2017.09.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Advances in geroscience are allowing scientists and clinicians, for the first time, to consider interventions aimed at directly targeting the hallmarks of aging. Unlike disease-specific approaches, such interventions have the potential to prevent multiple diseases of aging simultaneously, thereby greatly enhancing healthspan for most individuals. Initial clinical data indicates that geroprotective compounds such as rapamycin and metformin may be effective at delaying or reversing age-related disease in otherwise healthy elderly people and companion animals. Here I will provide an overview of the field of translational geroscience, which I believe will become the paradigm for the practice of medicine in the 21st century.
Collapse
Affiliation(s)
- Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA, 98195-7470, USA
| |
Collapse
|
32
|
Ward JM, Youssef SA, Treuting PM. Why Animals Die: An Introduction to the Pathology of Aging. Vet Pathol 2017; 53:229-32. [PMID: 26936750 DOI: 10.1177/0300985815612151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- J M Ward
- Global VetPathology, Montgomery Village, MD, USA
| | - S A Youssef
- Dutch Molecular Pathology Center, Faculty of Veterinary Medicine, Department of Pathobiology, Utrecht University, Utrecht, The Netherlands
| | - P M Treuting
- School of Medicine, Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
33
|
A randomized controlled trial to establish effects of short-term rapamycin treatment in 24 middle-aged companion dogs. GeroScience 2017; 39:117-127. [PMID: 28374166 DOI: 10.1007/s11357-017-9972-z] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 03/24/2017] [Indexed: 01/19/2023] Open
Abstract
Age is the single greatest risk factor for most causes of morbidity and mortality in humans and their companion animals. As opposed to other model organisms used to study aging, dogs share the human environment, are subject to similar risk factors, receive comparable medical care, and develop many of the same age-related diseases humans do. In this study, 24 middle-aged healthy dogs received either placebo or a non-immunosuppressive dose of rapamycin for 10 weeks. All dogs received clinical and hematological exams before, during, and after the trial and echocardiography before and after the trial. Our results showed no clinical side effects in the rapamycin-treated group compared to dogs receiving the placebo. Echocardiography suggested improvement in both diastolic and systolic age-related measures of heart function (E/A ratio, fractional shortening, and ejection fraction) in the rapamycin-treated dogs. Hematological values remained within the normal range for all parameters studied; however, the mean corpuscular volume (MCV) was decreased in rapamycin-treated dogs. Based on these results, we will test rapamycin on a larger dog cohort for a longer period of time in order to validate its effects on cardiac function and to determine whether it can significantly improve healthspan and reduce mortality in companion dogs.
Collapse
|
34
|
Rabinowitz PM, Natterson-Horowitz BJ, Kahn LH, Kock R, Pappaioanou M. Incorporating one health into medical education. BMC MEDICAL EDUCATION 2017; 17:45. [PMID: 28228144 PMCID: PMC5322638 DOI: 10.1186/s12909-017-0883-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 02/08/2017] [Indexed: 05/11/2023]
Abstract
One Health is an emerging concept that stresses the linkages between human, animal, and environmental health, as well as the need for interdisciplinary communication and collaboration to address health issues including emerging zoonotic diseases, climate change impacts, and the human-animal bond. It promotes complex problem solving using a systems framework that considers interactions between humans, animals, and their shared environment. While many medical educators may not yet be familiar with the concept, the One Health approach has been endorsed by a number of major medical and public health organizations and is beginning to be implemented in a number of medical schools. In the research setting, One Health opens up new avenues to understand, detect, and prevent emerging infectious diseases, and also to conduct translational studies across species. In the clinical setting, One Health provides practical ways to incorporate environmental and animal contact considerations into patient care. This paper reviews clinical and research aspects of the One Health approach through an illustrative case updating the biopsychosocial model and proposes a basic set of One Health competencies for training and education of human health care providers.
Collapse
Affiliation(s)
- Peter M. Rabinowitz
- Departments of Environmental and Occupational Health Sciences, Global Health, Family Medicine, University of Washington Center for One Health Research, 1959 NE Pacific Street HSB F551, Box 357234, Seattle, WA 98195 USA
| | | | - Laura H. Kahn
- Program on Science and Global Security, Woodrow Wilson School of Public and International Affairs, Princeton University, Princeton, USA
| | - Richard Kock
- Department of Pathology and Pathogen Biology, Royal Veterinary College, University of London, London, UK
| | - Marguerite Pappaioanou
- Centers for Disease Control and Prevention Liaison to the Food and Drug Administration for Food Safety, Washington, DC USA
| |
Collapse
|
35
|
Urfer SR, Kaeberlein TL, Mailheau S, Bergman PJ, Creevy KE, Promislow DEL, Kaeberlein M. Asymptomatic heart valve dysfunction in healthy middle-aged companion dogs and its implications for cardiac aging. GeroScience 2017; 39:43-50. [PMID: 28299636 DOI: 10.1007/s11357-016-9956-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/23/2016] [Indexed: 12/31/2022] Open
Abstract
Heart disease is the leading cause of death in the USA, accounting for about one in every four deaths. Age is the greatest risk factor for heart disease in both people and dogs; however, heart disease is generally not considered as a major cause of morbidity or mortality in dogs. As part of the preliminary selection process for a veterinary clinical trial, 40 companion dogs with no history of cardiac pathology that were at least 6 years old and weighed at least 18 kg underwent a cardiac screening using Doppler echocardiography. Eleven dogs from this cohort were diagnosed with valvular regurgitation by echocardiography, and seven of these cases were of sufficient severity to warrant exclusion from the clinical trial. In only one case was a heart murmur detected by auscultation. Serum alkaline phosphatase levels were significantly higher in the dogs with moderate to severe valvular regurgitation compared to the rest of the cohort. These observations suggest that asymptomatic degenerative valvular disease detectable by echocardiography, but not by a standard veterinary exam including auscultation, may be present in a significant fraction of middle-aged companion dogs, indicating a previously underappreciated similarity between human and canine aging. Further, these data suggest that companion dogs may be a particularly useful animal model for understanding mechanisms of age-related degenerative valve disease and for developing and testing interventions to ameliorate cardiac disease. Future studies should address whether dogs with asymptomatic valve disease are at higher risk for subsequent morbidity or early death.
Collapse
Affiliation(s)
- Silvan R Urfer
- Department of Pathology, University of Washington, Seattle, WA, USA.,Dog Aging Project, Seattle, WA, USA
| | - Tammi L Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA, USA.,Dog Aging Project, Seattle, WA, USA
| | | | | | - Kate E Creevy
- Dog Aging Project, Seattle, WA, USA.,College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Daniel E L Promislow
- Department of Pathology, University of Washington, Seattle, WA, USA.,Dog Aging Project, Seattle, WA, USA.,Department of Biology, University of Washington, Seattle, WA, USA
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA, USA. .,Dog Aging Project, Seattle, WA, USA.
| |
Collapse
|
36
|
The Mechanistic Target of Rapamycin: The Grand ConducTOR of Metabolism and Aging. Cell Metab 2016; 23:990-1003. [PMID: 27304501 PMCID: PMC4910876 DOI: 10.1016/j.cmet.2016.05.009] [Citation(s) in RCA: 385] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/17/2016] [Accepted: 05/24/2016] [Indexed: 12/21/2022]
Abstract
Since the discovery that rapamycin, a small molecule inhibitor of the protein kinase mTOR (mechanistic target of rapamycin), can extend the lifespan of model organisms including mice, interest in understanding the physiological role and molecular targets of this pathway has surged. While mTOR was already well known as a regulator of growth and protein translation, it is now clear that mTOR functions as a central coordinator of organismal metabolism in response to both environmental and hormonal signals. This review discusses recent developments in our understanding of how mTOR signaling is regulated by nutrients and the role of the mTOR signaling pathway in key metabolic tissues. Finally, we discuss the molecular basis for the negative metabolic side effects associated with rapamycin treatment, which may serve as barriers to the adoption of rapamycin or similar compounds for the treatment of diseases of aging and metabolism.
Collapse
|
37
|
Arriola Apelo SI, Lamming DW. Rapamycin: An InhibiTOR of Aging Emerges From the Soil of Easter Island. J Gerontol A Biol Sci Med Sci 2016; 71:841-9. [PMID: 27208895 DOI: 10.1093/gerona/glw090] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/27/2016] [Indexed: 12/27/2022] Open
Abstract
Rapamycin (sirolimus) is a macrolide immunosuppressant that inhibits the mechanistic target of rapamycin (mTOR) protein kinase and extends lifespan in model organisms including mice. Although rapamycin is an FDA-approved drug for select indications, a diverse set of negative side effects may preclude its wide-scale deployment as an antiaging therapy. mTOR forms two different protein complexes, mTORC1 and mTORC2; the former is acutely sensitive to rapamycin whereas the latter is only chronically sensitive to rapamycin in vivo. Over the past decade, it has become clear that although genetic and pharmacological inhibition of mTORC1 extends lifespan and delays aging, inhibition of mTORC2 has negative effects on mammalian health and longevity and is responsible for many of the negative side effects of rapamycin. In this review, we discuss recent advances in understanding the molecular and physiological effects of rapamycin treatment, and we discuss how the use of alternative rapamycin treatment regimens or rapamycin analogs has the potential to mitigate the deleterious side effects of rapamycin treatment by more specifically targeting mTORC1. Although the side effects of rapamycin are still of significant concern, rapid progress is being made in realizing the revolutionary potential of rapamycin-based therapies for the treatment of diseases of aging.
Collapse
Affiliation(s)
- Sebastian I Arriola Apelo
- Department of Medicine, University of Wisconsin-Madison and William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison and William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin.
| |
Collapse
|
38
|
Abstract
Aging is a risk factor for several of the world's most prevalent diseases, including neurodegenerative disorders, cancer, cardiovascular disease and metabolic disease. Although our understanding of the molecular pathways that contribute to the aging process and age-related disease is progressing through the use of model organisms, how to apply this knowledge in the clinic is less clear. In September, Nature Medicine, in collaboration with the Volkswagen Foundation, hosted a conference at the beautiful Herrenhausen Palace in Hannover, Germany with the goal of broadening our understanding of the aging process and its meaning as a 'risk factor' in disease. Here, several of the speakers at that conference answer questions posed by Nature Medicine.
Collapse
|
39
|
Kaeberlein M, Creevy KE, Promislow DEL. The dog aging project: translational geroscience in companion animals. Mamm Genome 2016; 27:279-88. [PMID: 27143112 DOI: 10.1007/s00335-016-9638-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/15/2016] [Indexed: 12/16/2022]
Abstract
Studies of the basic biology of aging have identified several genetic and pharmacological interventions that appear to modulate the rate of aging in laboratory model organisms, but a barrier to further progress has been the challenge of moving beyond these laboratory discoveries to impact health and quality of life for people. The domestic dog, Canis familiaris, offers a unique opportunity for surmounting this barrier in the near future. In particular, companion dogs share our environment and play an important role in improving the quality of life for millions of people. Here, we present a rationale for increasing the role of companion dogs as an animal model for both basic and clinical geroscience and describe complementary approaches and ongoing projects aimed at achieving this goal.
Collapse
Affiliation(s)
- Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA, USA.
| | - Kate E Creevy
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
40
|
Abstract
Aging is characterized by the progressive accumulation of degenerative changes, culminating in impaired function and increased probability of death. It is the major risk factor for many human pathologies - including cancer, type 2 diabetes, and cardiovascular and neurodegenerative diseases - and consequently exerts an enormous social and economic toll. The major goal of aging research is to develop interventions that can delay the onset of multiple age-related diseases and prolong healthy lifespan (healthspan). The observation that enhanced longevity and health can be achieved in model organisms by dietary restriction or simple genetic manipulations has prompted the hunt for chemical compounds that can increase lifespan. Most of the pathways that modulate the rate of aging in mammals have homologs in yeast, flies, and worms, suggesting that initial screening to identify such pharmacological interventions may be possible using invertebrate models. In recent years, several compounds have been identified that can extend lifespan in invertebrates, and even in rodents. Here, we summarize the strategies employed, and the progress made, in identifying compounds capable of extending lifespan in organisms ranging from invertebrates to mice and discuss the formidable challenges in translating this work to human therapies.
Collapse
Affiliation(s)
- Surinder Kumar
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - David B Lombard
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA; Institute of Gerontology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
41
|
Kaeberlein M, Rabinovitch PS, Martin GM. Healthy aging: The ultimate preventative medicine. Science 2016; 350:1191-3. [PMID: 26785476 DOI: 10.1126/science.aad3267] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Age is the greatest risk factor for nearly every major cause of mortality in developed nations. Despite this, most biomedical research focuses on individual disease processes without much consideration for the relationships between aging and disease. Recent discoveries in the field of geroscience, which aims to explain biological mechanisms of aging, have provided insights into molecular processes that underlie biological aging and, perhaps more importantly, potential interventions to delay aging and promote healthy longevity. Here we describe some of these advances, along with efforts to move geroscience from the bench to the clinic. We also propose that greater emphasis should be placed on research into basic aging processes, because interventions that slow aging will have a greater effect on quality of life compared with disease-specific approaches.
Collapse
Affiliation(s)
- Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA 98195, USA.
| | | | - George M Martin
- Department of Pathology, University of Washington, Seattle, WA 98195, USA. Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|