1
|
Jung SH, Jung M, Chung K, Moon HS, Kim S, Lee SH, Choi CH, Kim SH. Three-Dimensionally Measured TT-TG Distance Remains After Medial Open-Wedge High Tibial Osteotomy and Correlates With Internal Rotation of Distal Tibial Segment Below the Osteotomy Site. Cartilage 2025:19476035251327025. [PMID: 40138459 PMCID: PMC11948260 DOI: 10.1177/19476035251327025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
ObjectiveTo evaluate perioperative changes in anatomical parameters related to patellofemoral biomechanics, as well as cartilage repair outcomes following additional arthroscopic marrow stimulation for full-thickness trochlear cartilage defects (TCDs) during medial open-wedge high tibial osteotomy (MOWHTO).DesignA total of 38 patients (38 knees) who underwent arthroscopic marrow stimulation (microfracture or microdrilling) for TCDs combined with MOWHTO were retrospectively reviewed. The mean follow-up period was 27.0 months. Three-dimensional measurements of parameters associated with patellar biomechanics were performed. Magnetic resonance imaging and second-look arthroscopy were used to assess repaired cartilage, using Magnetic Resonance Observation of Cartilage Repaired Tissue (MOCART) knee score and International Cartilage Repair Society Cartilage repair assessment (ICRS CRA).ResultsIn 3-dimensional measurements, the tibial tubercle-trochlear groove (TT-TG) distance was maintained (mean difference: -0.6 mm, P = 0.227), whereas the modified Q-angle significantly decreased (mean difference: -1.9°, P = 0.002). The distal femur-distal tibial rotation (DF-DTR) decreased, indicating internal rotation of the distal tibial segment (mean difference: -5.3°, P < 0.001). TT-TG distance was associated with DF-DTR (r = 0.583, P = 0.001). Arthroscopic marrow stimulation for TCDs showed favorable cartilage repaired tissue, especially for the microdrilling group (median MOCART score, 70; ICRS CRA grade 1-2, 82.8%).ConclusionThe 3-dimensionally measured TT-TG distance was maintained after MOWHTO and was associated with internal rotation of the distal tibial segment below the osteotomy site. Arthroscopic marrow stimulation for TCDs in patients undergoing MOWHTO achieved favorable cartilage repaired tissue in short term.
Collapse
Affiliation(s)
- Se-Han Jung
- Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Orthopedic Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Jung
- Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Orthopedic Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kwangho Chung
- Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Orthopedic Surgery, Yongin Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun-Soo Moon
- Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Orthopedic Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sungjun Kim
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - So-Heun Lee
- Department of Medical Device Engineering and Management, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chong-Hyuk Choi
- Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Orthopedic Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung-Hwan Kim
- Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Orthopedic Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Son GK, Kim MS. Factors affecting healing of rotator cuff repairs: microfracture of the greater tuberosity. Clin Shoulder Elb 2024; 27:412-418. [PMID: 39523784 PMCID: PMC11615469 DOI: 10.5397/cise.2024.00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/18/2024] [Accepted: 08/03/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND This study aimed to investigate the impact of microfractures generated within the footprint of the greater tuberosity (GT) on postoperative cuff healing following arthroscopic rotator cuff repair (ARCR). METHODS A retrospective analysis was conducted on patients who underwent ARCR for full-thickness rotator cuff tear (FTRCT) between April 2020 and October 2023 at our institution. A total of 73 patients was categorized into two groups based on the presence of microfractures: a microfracture group (group M, n=33) and a non-microfracture group (group N, n=40). Six months post-surgery, magnetic resonance imaging was performed to assess cuff healing and retear rates between the two groups. Furthermore, patients were stratified into retear and healing groups based on cuff integrity to analyze the factors influencing retear. RESULTS There was no significant difference in retear rates between groups M and N (18.2% vs. 10.0%, P=0.332). Among demographic factors, age showed a significant difference between the retear and healing groups (67.4±8.5 vs. 61.6±6.1, P=0.044). ML tear size (3.1±1.7 vs. 2.0±1.1, P=0.015), AP tear size (2.4±1.2 vs. 1.6±1.0, P=0.332), FI of the supraspinatus (2.3±1.3 vs. 1.4±1.0, P=0.029), and FI of the infraspinatus (1.6±1.3 vs. 0.9±0.8, P=0.015) exhibited significant differences between the retear and healing groups. CONCLUSIONS ARCR with concurrent microfracture of the GT footprint did not significantly impact cuff healing in patients with FTRCT. However, older age and larger ML tear size were associated with an increased risk of retear. Level of evidence: III.
Collapse
Affiliation(s)
- Gwan Kyu Son
- Department of Orthopedic Surgery, Shoulder and Elbow Clinic, School of Medicine, Kyung Hee University and Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - Myung Seo Kim
- Department of Orthopedic Surgery, Shoulder and Elbow Clinic, School of Medicine, Kyung Hee University and Kyung Hee University Hospital at Gangdong, Seoul, Korea
| |
Collapse
|
3
|
Taniguchi N. Editorial Commentary: Bone Marrow Stimulation and Losartan Augmentation of Shoulder Rotator Cuff Repair. Arthroscopy 2023; 39:2420-2422. [PMID: 37981385 DOI: 10.1016/j.arthro.2023.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 11/21/2023]
Abstract
Rotator cuff retear rates after repair have been variously reported as ranging from 5% to 40% for small to mediums tears and as high as 40% to 94% for large to massive tears. Thus strategies to enhance structural healing are relevant. In rabbits, combining oral losartan (which has antifibrotic effects by downregulating transforming growth factor-β1) and bone marrow stimulation (BMS) of the greater tuberosity, showed improved rotator cuff repair pull-out strength and highly organized tendon matrix in a chronic injury model, whereas BMS alone did not improve the mechanical properties. However, clinical studies show that BMS techniques have a positive impact on healing and retear rates. BMS stimulates migration of mesenchymal stem cells from bone marrow to the lesion, and this approach has been widely used to fill cartilage defects by fibrocartilage metaplasia. BMS is a straightforward and cost-effective technique; the use of multiple deeper bone tunnels is recommended.
Collapse
|
4
|
Bai Y, Lin B, Wang M, Ding H, Sun W, Sun J. Medial opening-wedge high tibial osteotomy with microfracture in treatment of varus medial compartmental knee osteoarthritis: clinical outcomes and second-look arthroscopic results. Front Bioeng Biotechnol 2023; 11:1247165. [PMID: 37811370 PMCID: PMC10551133 DOI: 10.3389/fbioe.2023.1247165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Objective: This study aimed to investigate the clinical outcomes of medial opening high tibial osteotomy (MOWHTO) combined with arthroscopic microfracture in the treatment of varus medial compartmental knee osteoarthritis and to assess cartilage regeneration using second-look arthroscopy. Methods: This study involved 86 patients (86 knees) who underwent MOWHTO and microfracture from August 2016 to August 2020, including 15 men and 71 women with an average age of 55.3 ± 7.6 years (range, 42-71 years). The patients underwent a second-look arthroscopy to evaluate the status of cartilage regeneration at the time of plate removal, an average of 2 years after the initial osteotomy. Clinical and radiological examinations were performed preoperatively and at the final follow-up visit. The radiologic evaluation included the weight-bearing line ratio (WBL ratio), mechanical femorotibial angle (FTA), medial proximal tibial angle (MPTA), posterior tibial slope angle (PTS) and Kellgren-Lawrence (KL) grade. Clinical outcomes were assessed using the Knee Society score (KSS) and International Knee Documentation Committee (IKDC) scores. Arthroscopic findings were assessed by macroscopic evaluation of cartilage repair according to the International Cartilage Repair Society (ICRS) grading system. Results: The mean KSS and IKDC scores significantly improved at the final follow-up compared to the scores obtained preoperatively (p < 0.05). At the time of plate removal, a second-look arthroscopic examination showed that the ICRS grade of the medial femoral condyle was as follows: grade I -11 cases, grade II -56, grade III-12, and grade IV-7, and cartilage regeneration was seen in 85% of knees (73/86). The ICRS grade of medial tibial plateau was grade I-12 cases, grade II-44, grade III-22, and grade IV-8, and cartilage regeneration was seen in 63% of knees (54/86). Significant differences were observed between cartilage regeneration and clinical outcomes (p < 0.05). Clinical results were better in the good cartilage regeneration group (grades I and II) than were in the poor cartilage regeneration group (grades III and IV). Conclusion: MOWHTO combined with arthroscopic microfracture can effectively improve clinical outcomes in the treatment of varus medial compartmental knee osteoarthritis. Cartilage regeneration can be promoted by correcting varus deformities, which affect clinical outcomes.
Collapse
Affiliation(s)
| | | | | | | | - Weibing Sun
- Department of Orthopaedic Surgery, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Sun
- Department of Orthopaedic Surgery, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Wang H, Guo Y, Zhao Y, Chen Q, Gong Y, Jeon IH, Sun Y. Microfracture Lateral to the Greater Tuberosity of the Humerus Enhances Tendon-to-Bone Healing in a Rat Rotator Cuff Model. Am J Sports Med 2023; 51:2842-2849. [PMID: 37551676 DOI: 10.1177/03635465231188117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
BACKGROUND Microfracture at the rotator cuff insertion is an established surgical marrow-stimulation technique for enhancing rotator cuff healing. However, the effect of lateralized or medialized microfracture on the insertion is unknown. PURPOSE To compare the biomechanical and histologic effects of microfracture at 3 different regions for rotator cuff repair in a rat model. STUDY DESIGN Controlled laboratory study. METHODS A total of 72 Sprague-Dawley rats with bilateral supraspinatus tendon insertion detachment were allocated into 4 groups with 4 different interventions: no microfracture at the humeral head as a control group (Con), traditional microfracture at the footprint area (MFA), and medialized microfracture to the footprint area (MMFA) on the articular surface of the humerus or lateralized microfracture to the footprint area at the greater tuberosity (LMFA). All underwent immediate repair. Tendon-to-bone healing was assessed by biomechanical and histologic tests 4 and 8 weeks postoperation. RESULTS At 4 weeks, the LMFA group showed a significantly superior failure load compared with the other groups (all P < .05). The LMFA and MFA groups showed significantly superior stiffness compared with the Con and MMFA groups (all P < .01). At 8 weeks, superior failure load and stiffness were observed in the LMFA group compared with the control group (all P < .05). Histologic examination revealed that the LMFA group had superior collagen composition and tendon-to-bone maturation at the interface at 4 and 8 weeks compared with the Con group (all P < .05). CONCLUSION Lateralized microfracture at the greater tuberosity improved the histologic quality of repair tissue and biomechanical strength at the tendon-to-bone insertion after rotator cuff repair in a rat model. CLINICAL RELEVANCE Microfracture lateral to the footprint area might be a better way to enhance rotator cuff healing clinically.
Collapse
Affiliation(s)
- Haoliang Wang
- Department of Hand Surgery, Affiliated Hospital of Nantong University, College of Medicine, University of Nantong, Nantong, China
| | - Yawen Guo
- Department of Rehabilitation, Taizhou People's Hospital, Taizhou, China
| | - Yurou Zhao
- Department of Hand Surgery, Affiliated Hospital of Nantong University, College of Medicine, University of Nantong, Nantong, China
| | - Qingzhong Chen
- Department of Hand Surgery, Affiliated Hospital of Nantong University, College of Medicine, University of Nantong, Nantong, China
| | - Yanpei Gong
- Department of Hand Surgery, Affiliated Hospital of Nantong University, College of Medicine, University of Nantong, Nantong, China
| | - In-Ho Jeon
- Department of Orthopedic Surgery, ASAN Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| | - Yucheng Sun
- Department of Hand Surgery, Affiliated Hospital of Nantong University, College of Medicine, University of Nantong, Nantong, China
| |
Collapse
|
6
|
Kilic AI, Hapa O, Ozmanevra R, Pak T, Akokay P, Ergur BU, Kosay MC. Histomorphological Investigation of Microfracture Location in a Rabbit Osteochondral Defect Model. Am J Sports Med 2023; 51:3025-3034. [PMID: 37594006 DOI: 10.1177/03635465231188446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
BACKGROUND Microfracture is the most common treatment for cartilage defects of the knee. In microfracture surgery, holes are randomly drilled into the subchondral bone. The effect of the hole's location on its interaction with the cartilage defect site and its influence on the healing process is currently uncertain. PURPOSE To investigate the effects of different microfracture locations on healing in a rabbit knee osteochondral defect model. STUDY DESIGN Controlled laboratory study. METHODS A total of 29 adult New Zealand White rabbits were divided into 5 groups. In the healthy cartilage control group (n = 5), no surgical procedure was performed. Cylindrical full-thickness cartilage defects (5 × 3 mm) were created in the patellar groove of the remaining 24 rabbits. In the defect control group (n = 6), only the defect was created. A microfracture was performed at the 12-o'clock position (group peripheral single; n = 6), centrally (group central; n = 6), and at the 12- and 6-o'clock positions (group peripheral double; n = 6) of the defect. The animals were sacrificed after 8 weeks. Cartilage healing was evaluated by International Cartilage Regeneration & Joint Preservation Society (ICRS) score, modified O'Driscoll score, immunohistochemical analysis (type 1 collagen, type 2 collagen, and aggrecan), and scanning electron microscopy analysis. RESULTS In group peripheral double, better cartilage healing was observed in all parameters compared with the other groups (P < .05). Group peripheral double had the greatest amount of filling, with 79% of the defect area filled with fibrocartilage repair tissue. Group peripheral single demonstrated filling of 73% of the defect area, group central 56%, and the defect control group 45%. The ICRS score was significantly higher in group peripheral single compared with group central and the defect control group. Type 2 collagen and aggrecan immunoreactivity were significantly stronger in group central than group peripheral single and the defect control group (P < .05). CONCLUSION Microfracture performed at the peripheral margin of the defect had better filling characteristics in a rabbit model. This study suggests that interaction of pluripotent cells released from the microfracture site with the intact cartilage may enhance the quality of the repair tissue. CLINICAL RELEVANCE The location of microfracture holes in relation to the peripheral border of the osteochondral defect (to the intact cartilage) is important in both the quality and the quantity of the newly formed repair tissue.
Collapse
Affiliation(s)
- Ali Ihsan Kilic
- Department of Orthopaedics and Traumatology, Izmir Bakırcay University, Izmir, Turkey
| | - Onur Hapa
- Department of Orthopaedics and Traumatology, Dokuz Eylul University, Izmir, Turkey
| | - Ramadan Ozmanevra
- Department of Orthopaedics and Traumatology, Cyprus International University, Nicosia, Cyprus
| | - Theresa Pak
- Department of Orthopaedics and Traumatology, Oregon Shoulder Institute, Medford, Oregon, USA
| | - Pınar Akokay
- Department of Histology and Embryology, Izmir Kavram Vocational School, Izmir, Turkey
| | - Bekir Ugur Ergur
- Department of Orthopaedics and Traumatology, University of Kyrenia, Kyrenia, Cyprus
| | - Mustafa Can Kosay
- Department of Orthopaedics and Traumatology, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
7
|
Krupp R, Frankle M, Nyland J, Baker CE, Werner BC, Pierre PS, Tashjian R. Interpositional scaffold anchor rotator cuff footprint tear repair: excellent survival, healing, and early outcomes. Knee Surg Sports Traumatol Arthrosc 2023:10.1007/s00167-023-07383-2. [PMID: 36976315 DOI: 10.1007/s00167-023-07383-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/01/2023] [Indexed: 03/29/2023]
Abstract
PURPOSE Shoulder function limitation duration after a full-thickness rotator cuff tendon (RCT) tear may influence post-repair healing and outcomes. A suture anchor was developed to improve footprint repair fixation and healing through biological fluid delivery and scaffold augmentation. The primary multicenter study objective was to evaluate RCT repair failure rate based on 6-month MRI examination, and device survival at 1-year follow-up. The secondary objective was to compare the clinical outcomes of subjects with shorter- and longer-term shoulder function limitation duration. METHODS Seventy-one subjects (46 men) with moderate-to-large RCT tears (1.5-4 cm), at a median 61 years of age (range = 40-76), participated in this study. Pre-repair RCT tear location/size and 6-month healing status were confirmed by an independent radiologist. Subjects with shorter- (Group 1: 17.8 ± 21 days, n = 37) and longer-term (Group 2: 185.4 ± 89 days, n = 34) shoulder function limitation durations were also compared over 1 year for active mobility, strength, American Shoulder and Elbow Surgeon's Shoulder Score (ASES score), Veterans RAND 12 Item Health Survey (VR-12), and visual analog scale (VAS) pain and instability scores. RESULTS Three of the 52 subjects [5.8%] who underwent 6-month MRI experienced a re-tear at the original RCT footprint repair site. By the 1-year follow-up, overall anchor survival was 97%. Although Group 2 displayed lower ASES and VR-12 scores pre-repair (ASES = 40.1 ± 17 vs. 47.9 ± 17; VR-12 physical health (PH) = 37.2 ± 9 vs. 41.4 ± 8) (p ≤ 0.048), at 3-month post-RCT repair (ASES = 61.3 ± 19 vs. 71.3 ± 20; VR-12 PH = 40.8 ± 8 vs. 46.8 ± 9) (p ≤ 0.038), and at 6-month post-RCT repair (ASES = 77.4 ± 18 vs. 87.8 ± 13; VR-12 PH = 48.9 ± 11 vs. 54.0 ± 9) (p ≤ 0.045), by 1-year post-RCT repair, groups did not differ (n.s.). Between-groups VR-12 mental health score differences were not evident at any time period (n.s.). Shoulder pain and instability VAS scores also did not differ (n.s.), displaying comparable improvement between groups from pre-RCT repair to 1-year post-RCT repair. Groups had comparable active shoulder mobility and strength recovery at each follow-up (n.s.). CONCLUSION At 6-month post-RCT repair, only 3/52 of patients [5.8%] had a footprint re-tear, and at 1-year follow-up, overall anchor survival was 97%. Use of this scaffold anchor was associated with excellent early clinical outcomes regardless of shoulder function impairment duration. LEVEL OF EVIDENCE II.
Collapse
Affiliation(s)
- Ryan Krupp
- Norton Orthopedic Institute, 9880 Angies Way Suite 250, Louisville, KY, 40241, USA
| | - Mark Frankle
- Florida Orthopaedic Institute, Temple Terrace, USA
| | - John Nyland
- Norton Orthopedic Institute, 9880 Angies Way Suite 250, Louisville, KY, 40241, USA.
- Department of Orthopaedic Surgery, University of Louisville, Louisville, USA.
| | | | | | | | | |
Collapse
|
8
|
Zhang L, Zhu Y, Xu T, Fu W. Bone marrow stimulation in arthroscopic rotator cuff repair is a cost-effective and straightforward technique to reduce retear rates: A systematic review and meta-analysis. Front Surg 2023; 10:1047483. [PMID: 36896263 PMCID: PMC9989271 DOI: 10.3389/fsurg.2023.1047483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 01/23/2023] [Indexed: 02/23/2023] Open
Abstract
Background Bone marrow stimulation (BMS) has been considered a well-established method for treating knee and ankle osteochondral lesions. Some studies have also shown that BMS can promote healing of the repaired tendon and enhance biomechanical properties during rotator cuff repair. Our purpose was to compare the clinical outcomes of arthroscopic repair rotator cuff (ARCR) with and without BMS. Methods A systematic review with meta-analysis was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). PubMed, Embase, Web of Science, Google scholar, ScienceDirect, and the Cochrane Library were searched from inception to March 20, 2022. Data on retear rates, shoulder functional outcomes, visual analog score and range of motion were pooled and analyzed. Dichotomous variables were presented as odds ratios (OR), and continuous variables were presented as mean differences (MD). Meta-analyses were conducted with Review Manager 5.3. Results Eight studies involving 674 patients were included, with mean follow-up period ranging from 12 to 36.8 months. Compared to ARCR alone, the intraoperative combination of the BMS resulted in lower retear rates (P < 0.0001), but showed similar results in Constant score (P = 0.10), University of California at Los Angeles (UCLA) score (P = 0.57), American Shoulder and Elbow Surgeons (ASES) score (P = 0.23), Disabilities of the Arm, Shoulder and Hand (DASH) score (P = 0.31), VAS (visual analog score) score (P = 0.34), and range of motion (ROM) (forward flexion, P = 0.42; external rotation, P = 0.21). After sensitivity analyses and subgroup analyses, no significant changes in statistical results were observed. Conclusion Compared to ARCR alone, the combination of intraoperative BMS can significantly reduce the retear rates, but showed similar short-term results in functional outcomes, ROM and pain. Better clinical outcomes are anticipated in the BMS group by improving structural integrity during long-term follow-up. Currently, BMS may be a viable option in ARCR based on its straightforward and cost-effective advantages. Systematic Review Registration https://www.crd.york.ac.uk/prospero/, identifier: CRD42022323379.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Yanlin Zhu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Tianhao Xu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Weili Fu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Browe DC, Burdis R, Díaz-Payno PJ, Freeman FE, Nulty JM, Buckley CT, Brama PA, Kelly DJ. Promoting endogenous articular cartilage regeneration using extracellular matrix scaffolds. Mater Today Bio 2022; 16:100343. [PMID: 35865410 PMCID: PMC9294195 DOI: 10.1016/j.mtbio.2022.100343] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 12/13/2022] Open
Abstract
Articular cartilage defects fail to heal spontaneously, typically progressing to osteoarthritis. Bone marrow stimulation techniques such as microfracture (MFX) are the current surgical standard of care; however MFX typically produces an inferior fibro-cartilaginous tissue which provides only temporary symptomatic relief. Here we implanted solubilised articular cartilage extracellular matrix (ECM) derived scaffolds into critically sized chondral defects in goats, securely anchoring these implants to the joint surface using a 3D-printed fixation device that overcame the need for sutures or glues. In vitro these ECM scaffolds were found to be inherently chondro-inductive, while in vivo they promoted superior articular cartilage regeneration compared to microfracture. In an attempt to further improve the quality of repair, we loaded these scaffolds with a known chemotactic factor, transforming growth factor (TGF)-β3. In vivo such TGF-β3 loaded scaffolds promoted superior articular cartilage regeneration. This study demonstrates that ECM derived biomaterials, either alone and particularly when combined with exogenous growth factors, can successfully treat articular cartilage defects in a clinically relevant large animal model.
Collapse
Affiliation(s)
- David C. Browe
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Ireland
| | - Ross Burdis
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - Pedro J. Díaz-Payno
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - Fiona E. Freeman
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland
- Institute for Medical Engineering and Science Massachusetts Institute of Technology Cambridge, MA, 02142, USA
- Department of Medicine Division of Engineering in Medicine Brigham and Women’s Hospital Harvard Medical School Boston, MA, 02115, USA
| | - Jessica M. Nulty
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - Conor T. Buckley
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Ireland
- Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Pieter A.J. Brama
- Section of Veterinary Clinical Sciences, School of Veterinary Medicine, University College Dublin, Ireland
| | - Daniel J. Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Ireland
- Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
10
|
Stachel N, Madry H, Orth P. Aktuelle Empfehlungen zur knochenmarkstimulierenden Technik auf Basis präklinischer Erkenntnisse. ARTHROSKOPIE 2022. [DOI: 10.1007/s00142-022-00558-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Augmented Marrow Stimulation: Drilling Techniques and Scaffold Options. OPER TECHN SPORT MED 2022. [DOI: 10.1016/j.otsm.2022.150958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Stachel N, Orth P, Zurakowski D, Menger MD, Laschke MW, Cucchiarini M, Madry H. Subchondral Drilling Independent of Drill Hole Number Improves Articular Cartilage Repair and Reduces Subchondral Bone Alterations Compared With Debridement in Adult Sheep. Am J Sports Med 2022; 50:2669-2679. [PMID: 35834876 DOI: 10.1177/03635465221104775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Subchondral drilling is an established marrow stimulation technique for small cartilage defects, but whether drilling is required at all and if the drill hole density affects repair remains unclear. HYPOTHESES Osteochondral repair is improved when the subchondral bone is perforated by a higher number of drill holes per unit area, and drilling is superior to defect debridement alone. STUDY DESIGN Controlled laboratory study. METHODS Rectangular full-thickness chondral defects (4 × 8 mm) were created in the trochlea of adult sheep (N = 16), debrided down to the subchondral bone plate without further treatment as controls (no treatment; n = 7) or treated with either 2 or 6 (n = 7 each) subchondral drill holes (diameter, 1.0 mm; depth, 10.0 mm). Osteochondral repair was assessed at 6 months postoperatively by standardized (semi-)quantitative macroscopic, histological, immunohistochemical, biochemical, and micro-computed tomography analyses. RESULTS Compared with defect debridement alone, histological overall cartilaginous repair tissue quality (P = .025) and the macroscopic aspect of the adjacent cartilage (P≤ .032) were improved after both drilling densities. Only drilling with 6 holes increased type 2 collagen content in the repair tissue compared with controls (P = .038). After debridement, bone mineral density was significantly decreased in the subchondral bone plate (P≤ .015) and the subarticular spongiosa (P≤ .041) compared with both drilling groups. Debridement also significantly increased intralesional osteophyte sectional area compared with drilling (P≤ .034). No other differences in osteochondral repair existed between subchondral drilling with 6 or 2 drill holes. CONCLUSION Subchondral drilling independent of drill hole density significantly improves structural cartilage repair compared with sole defect debridement of full-thickness cartilage defects in sheep after 6 months. Subchondral drilling also leads to a better reconstitution of the subchondral bone compartment below the defects. Simultaneously, drilling reduced the formation of intralesional osteophytes caused by osseous overgrowth compared with debridement. CLINICAL RELEVANCE These results have important clinical implications, as they support subchondral drilling independent of drill hole number but discourage debridement alone for the treatment of small cartilage defects. Clinical studies are warranted to further quantify the effects of subchondral drilling in similar settings.
Collapse
Affiliation(s)
- Niklas Stachel
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Patrick Orth
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - David Zurakowski
- Departments of Anesthesia and Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| |
Collapse
|
13
|
Wen HJ, Yuan LB, Tan HB, Xu YQ. Microfracture versus Enhanced Microfracture Techniques in Knee Cartilage Restoration: A Systematic Review and Meta-Analysis. J Knee Surg 2022; 35:707-717. [PMID: 32951191 DOI: 10.1055/s-0040-1716552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study aimed to compare the efficacy and safety of the microfracture (MFx) and microfracture augmented (MFx + ) techniques for the treatment of cartilage defects of the knee. The PubMed and EMBASE databases were searched from 1 January, 1950 to 1 May, 2019. RevMan5.3 was used to perform statistical analysis. Relative risk was calculated for binary variables, and weighted mean difference and standardized mean difference (SMD) were measured for continuous variables. The 95% confidence interval (CI) of each variable was assessed. Thirteen trials with 635 patients were included. There was a significant difference in the Lysholm's score (SMD = 0.26, 95% CI: 0.01-0.50, p = 0.04) and magnetic resonance observation of cartilage repair tissue score (SMD = 14.01, 95% CI: 8.01-20.02, p < 0.01) between the MFx and MFx+ groups. There was no significant difference in the Western Ontario and McMaster Universities Osteoarthritis Index score (SMD = - 12.40, 95% CI: -27.50 to 32.71, p = 0.11), International Knee Documentation Committee score (SMD = 8.67, 95% CI: -0.92 to 18.27, p = 0.08), visual analog scale score (SMD = - 0.20, 95% CI: -2.45 to 0.96, p = 0.57), Tegner's score (SMD = 0.26, 95% CI: -0.67 to 1.18, p = 0.59), modified Cincinnati's score (SMD = - 4.58, 95% CI: -14.31 to 5.14, p = 0.36) and modified International Cartilage Repair Society pain score (SMD = 0.09, 95% CI: -0.37 to 0.55, p = 0.70) between the groups. Results of the pooled analyses of the MFx+ and MFx groups suggested that the MFx+ technique is slightly superior to the MFx technique for the treatment of articular cartilage defects of the knee. Further research is required and future studies should include assessments of the outcomes at long-term follow-ups. Trial registration number is PROSPERO CRD42019135803.
Collapse
Affiliation(s)
- Hong-Jie Wen
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li-Bo Yuan
- Department of Orthopaedic Surgery, 920th Hospital of Joint Logistics Support Force, Kunming Medical University, Kunming, China
| | - Hong-Bo Tan
- Department of Orthopaedic Surgery, 920th Hospital of Joint Logistics Support Force, Kunming Medical University, Kunming, China
| | - Yong-Qing Xu
- Department of Orthopaedic Surgery, 920th Hospital of Joint Logistics Support Force, Kunming Medical University, Kunming, China
| |
Collapse
|
14
|
Marín Fermín T, Macchiarola L, Zampeli F, Maskalo G, Olory B, Papakostas E, Murawski CD, Hogan MV, Kennedy JG, D'Hooghe P. Osteochondral lesions of the talar dome in the athlete: what evidence leads to which treatment. JOURNAL OF CARTILAGE & JOINT PRESERVATION 2022; 2:100065. [DOI: 10.1016/j.jcjp.2022.100065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Irem Demir A, Pulatkan A, Ucan V, Yilmaz B, Tahmasebifar A, Tok OE, Tuncay I, Elmali N, Ozturk BY, Uzer G. Comparison of 3 Cell-Free Matrix Scaffolds Used to Treat Osteochondral Lesions in a Rabbit Model. Am J Sports Med 2022; 50:1399-1408. [PMID: 35354059 DOI: 10.1177/03635465221074292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Various cell-free scaffolds are already in use for the treatment of osteochondral defects (OCDs); however, a gold standard material has not yet been defined. PURPOSE This study compared the macroscopic, histological, and scanning electron microscopy (SEM) characteristics of Chondro-Gide (CG), MaioRegen (MA), and poly-d,l-lactide-co-caprolactone (PLCL) cell-free scaffolds enhanced with small-diameter microfractures (SDMs) for OCDs in a rabbit model. STUDY DESIGN Controlled laboratory study. METHODS In total, 54 knees from 27 rabbits were used in this study. Three rabbits were sacrificed at the beginning of the study to form an intact cartilage control group (group IC). An OCD model was created at the center of the trochlea, and SDMs were generated in 24 rabbits. Rabbits with OCDs were divided into 4 groups (n = 12 knees per group) according to the cell-free scaffold applied: CG (group CG), MA (group MA), PLCL (group PLCL), and a control group (group SDM). Half of the rabbits were sacrificed at 1 month after treatment, while the other half were sacrificed at 3 months after treatment. Healed cartilage was evaluated macroscopically (using International Cartilage Regeneration & Joint Preservation Society [ICRS] classification criteria) and histopathologically (using modified O'Driscoll scores and collagen staining). Additionally, cell-free scaffold morphologies were compared using SEM analysis. RESULTS ICRS and modified O'Driscoll classification and staining with collagen type 1 and type 2 demonstrated significant differences among groups at both 1 and 3 months after treatment (P < .05). The histological characteristics of the group IC samples were superior to those of all other groups, except group PLCL, at 3 months after treatment (P < .05). In addition, the histological properties of group PLCL samples were superior to those of group SDM samples at both 1 and 3 months after treatment in terms of the modified O'Driscoll scores and type 1 collagen staining (P < .05). Concerning type 2 collagen staining intensity, the groups were ranked from highest to lowest at 3 months after treatment as follows: group PLCL (30.3 ± 2.6) > group MA (26.6 ± 1.2) > group CG (23.3 ± 2.3) > group SDM (18.9 ± 0.9). CONCLUSION OCDs treated with enhanced SDM using cell-free PLCL scaffolds had superior histopathological and microenvironmental properties, more hyaline cartilage, and more type 2 collagen compared with those treated using CG or MA scaffolds. CLINICAL RELEVANCE OCDs treated with PLCL cell-free scaffolds may have superior histopathological properties and contain more type 2 collagen than do OCDs treated with CG or MA cell-free scaffolds.
Collapse
Affiliation(s)
- Ahder Irem Demir
- Department of Orthopaedics and Traumatology, Istanbul Beykoz State Hospital, Istanbul, Turkey
| | - Anil Pulatkan
- Department of Orthopaedics and Traumatology, Bezmialem Vakif University, Istanbul, Turkey
| | - Vahdet Ucan
- Department of Orthopaedics and Traumatology, Bezmialem Vakif University, Istanbul, Turkey
| | - Bengi Yilmaz
- Department of Biomaterials, University of Health Sciences Turkey, Istanbul, Turkey
| | - Aydin Tahmasebifar
- Department of Biomaterials, University of Health Sciences Turkey, Istanbul, Turkey
| | - Olgu Enis Tok
- Department of Histology and Embryology, Medipol University Medical Faculty Regenerative and Restorative Medicine Research Center, Istanbul, Turkey
| | - Ibrahim Tuncay
- Department of Orthopaedics and Traumatology, Bezmialem Vakif University, Istanbul, Turkey
| | - Nurzat Elmali
- Department of Orthopaedics and Traumatology, Bezmialem Vakif University, Istanbul, Turkey
| | | | - Gokcer Uzer
- Department of Orthopaedics and Traumatology, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
16
|
Elmholt SB, Hede KC, Christensen BB, Thomsen JS, Lind M. The Effect of Bone Marrow Stimulation for Cartilage Repair on the Subchondral Bone Plate. Cartilage 2022; 13:19476035221074011. [PMID: 35098739 PMCID: PMC9137303 DOI: 10.1177/19476035221074011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
PURPOSE To investigate the effect of bone-marrow stimulation (BMS) on subchondral bone plate morphology and remodeling compared to untreated subchondral bone in a validated minipig model. METHODS Three Göttingen minipigs received BMS with drilling as treatment for two chondral defects in each knee. The animals were euthanized after six months. Follow-up consisted of a histological semiquantitative evaluation using a novel subchondral bone scoring system and micro computed tomography (µCT) of the BMS subchondral bone. The histological and microstructural properties of the BMS-treated subchondral bone were compared to that of the adjacent healthy subchondral bone. RESULTS The µCT analysis showed that subchondral bone treated with BMS had significantly higher connectivity density compared to adjacent untreated subchondral bone (26 1/mm3 vs. 21 1/mm3, P = 0.048). This was the only microstructural parameter showing a significant difference. The histological semiquantitative score differed significantly between the subchondral bone treated with BMS and the adjacent untreated subchondral (8.0 vs. 10 P = < 0.001). Surface irregularities were seen in 43% and bone overgrowth in 27% of the histological sections. Only sparse formation of bone cysts was detected (1%). CONCLUSIONS BMS with drilling does not cause extensive changes to the subchondral bone microarchitecture. Furthermore, the morphology of BMS subchondral bone resembled that of untreated subchondral bone with almost no formation of bone cyst, but some surface irregularities and bone overgrowth.
Collapse
Affiliation(s)
- Simone Birkebæk Elmholt
- Department of Orthopaedics, Aarhus University Hospital, Aarhus, Denmark,Simone Birkebæk Elmholt, Department of Orthopaedics, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark.
| | | | | | | | - Martin Lind
- Department of Orthopaedics, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
17
|
Small Ruminant Models for Articular Cartilage Regeneration by Scaffold-Based Tissue Engineering. Stem Cells Int 2021; 2021:5590479. [PMID: 34912460 PMCID: PMC8668357 DOI: 10.1155/2021/5590479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 10/10/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022] Open
Abstract
Animal models play an important role in preclinical studies, especially in tissue engineering scaffolds for cartilage repair, which require large animal models to verify the safety and effectiveness for clinical use. The small ruminant models are most widely used in this field than other large animals because they are cost-effective, easy to raise, not to mention the fact that the aforementioned animal presents similar anatomical features to that of humans. This review discusses the experimental study of tissue engineering scaffolds for knee articular cartilage regeneration in small ruminant models. Firstly, the selection of these scaffold materials and the preparation process in vitro that have been already used in vivo are briefly reviewed. Moreover, the major factors influencing the rational design and the implementation as well as advantages and limitations of small ruminants are also demonstrated. As regards methodology, this paper applies principles and methods followed by most researchers in the process of experimental design and operation of this kind. By summarizing and comparing different therapeutic concepts, this paper offers suggestions aiming to increase the effectiveness of preclinical research using small ruminant models and improve the process of developing corresponding therapies.
Collapse
|
18
|
Medina J, Garcia-Mansilla I, Fabricant PD, Kremen TJ, Sherman SL, Jones K. Microfracture for the Treatment of Symptomatic Cartilage Lesions of the Knee: A Survey of International Cartilage Regeneration & Joint Preservation Society. Cartilage 2021; 13:1148S-1155S. [PMID: 32911974 PMCID: PMC8808788 DOI: 10.1177/1947603520954503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE The purpose of this study was to describe the current practice trends for managing symptomatic cartilage lesions of the knee with microfracture among ICRS (International Cartilage Regeneration & Joint Repair Society) members. DESIGN A 42-item electronic questionnaire was sent to all ICRS members, which explored indications, surgical technique, postoperative management, and outcomes of the microfracture procedure for the treatment of symptomatic, full thickness chondral and osteochondral defects of the knee. Responses were compared between surgeons from different regions and years of practice. RESULTS A total of 385 surgeons answered the questionnaire. There was a significant difference noted in the use of microfracture among surgeons by region (P < 0.001). There was no association between the number of years in practice and the self-reported proportion of microfracture cases performed (P = 0.37). Fifty-eight subjects (15%) indicated that they do not perform microfracture at all. Regarding indication for surgery, 56% of surgeons would limit their indication of microfracture to lesions measuring 2 cm2 or less. Half of the surgeons reported no upper age or body mass index limit. Regarding surgical technique, 90% of surgeons would recommend a formal debridement of the calcified layer and 91% believe it is important to create stable vertical walls. Overall, 47% of surgeons use biologic augmentation, with no significant difference between regions (P = 0.35) or years of practice (P = 0.67). Rehabilitation protocols varied widely among surgeons. CONCLUSIONS Indications, operative technique, and rehabilitation protocols utilized for patients undergoing microfracture procedures vary widely among ICRS members. Regional differences and resources likely contribute to these practice pattern variations.
Collapse
Affiliation(s)
- Jesus Medina
- David Geffen School of Medicine,
University of California, Los Angeles, Los Angeles, CA, USA
| | - Ignacio Garcia-Mansilla
- Knee Division, Hospital Italiano
de Buenos Aires, Buenos Aires, Argentina,Ignacio Garcia-Mansilla, Knee
Division, Hospital Italiano de Buenos Aires, Peron 4190, CABA, Buenos
Aires, C1199ABD, Argentina.
| | - Peter D. Fabricant
- Pediatric Orthopaedic Surgery
Service, Hospital for Special Surgery, New York, NY, USA
| | - Thomas J. Kremen
- Department of Orthopaedic Surgery,
Division of Sports Medicine, David Geffen School of Medicine, University of
California, Los Angeles, Los Angeles, CA, USA
| | - Seth L. Sherman
- Orthopedic Surgery, Division of
Sports Medicine, Stanford Cardinal Football, Stanford, CA, USA
| | - Kristofer Jones
- Department of Orthopaedic Surgery,
Division of Sports Medicine, David Geffen School of Medicine, University of
California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
19
|
Trung DT, Huu MN, Tran Q, Duc V. Anatomic based microfracture technique of insertion for rotator cuff repair in Vietnamese people: Case series study. Ann Med Surg (Lond) 2021; 71:103010. [PMID: 34840759 PMCID: PMC8606896 DOI: 10.1016/j.amsu.2021.103010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 11/29/2022] Open
Abstract
Abstract Postoperative tendon healing is still a matter of concern after rotator cuff repair. Several techniques have been introduced to help improve this healing process. Among them, the bone marrow is commonly used source and a research subject for methods using stem cells to promote wound healing process. A number of studies have shown that bone marrow stem cells can travel up through the holes on the rotator cuff insertion sites, contributing into the rotator cuff repair process, increasing the efficiency of tendon healing and improving clinical results. Patients and methods Cross-sectional descriptive study was performed on 41 rotator cuff tear patients. The microfractures for these patients were calculated beforehand, which have great depth but small diameter, based on the anatomical characteristic of the rotator cuff tear insertions of Vietnamese people. Patients' rotator cuff tendon healing processes were evaluated using ultrasound after surgery. Final tendon healing and clinical results ultimately rely on MRI assessments, classified according to Sugaya's classification, UCLA and ASES scale. Results No cases of rupture and fracture of the greater tubercle was recorded. There was a clear progression of tendon healing on ultrasound according to postoperative follow-up time-stamps (1 month, 3 months). MRI images evaluation also reveals at the latest follow-up time, according to Sugaya classification, the ratio of tendon healing was 87.8%, while the percentage of re-rupture was 12.2%. ASES and average UCLA scale were collected at the end of the study, respectively as 95.41 ± 5.45 and 32.36 ± 2.53. Conclusion The technique's microfractures characteristics based on the rotator cuff tear insertion anatomy ensures a secure, straightforward approach along with promising results in terms of tendon healing rate and postoperative functional outcomes.
Collapse
Affiliation(s)
- Dung Tran Trung
- Department of Orthopaedic Surgery, College of Health Science, VinUniversity, Hanoi, Viet Nam.,Center of Sport Medicine and Orthopaedic Surgery, Vinmec Healthcare System, Hanoi, Viet Nam
| | - Manh Nguyen Huu
- Department of Orthopaedic Surgery, College of Health Science, VinUniversity, Hanoi, Viet Nam.,Center of Sport Medicine and Orthopaedic Surgery, Vinmec Healthcare System, Hanoi, Viet Nam
| | - Quyet Tran
- Department of Orthopaedic Surgery, College of Health Science, VinUniversity, Hanoi, Viet Nam.,Center of Sport Medicine and Orthopaedic Surgery, Vinmec Healthcare System, Hanoi, Viet Nam
| | - Vu Duc
- Department of Orthopaedic Surgery, College of Health Science, VinUniversity, Hanoi, Viet Nam.,Center of Sport Medicine and Orthopaedic Surgery, Vinmec Healthcare System, Hanoi, Viet Nam
| |
Collapse
|
20
|
Yang T, Tamaddon M, Jiang L, Wang J, Liu Z, Liu Z, Meng H, Hu Y, Gao J, Yang X, Zhao Y, Wang Y, Wang A, Wu Q, Liu C, Peng J, Sun X, Xue Q. Bilayered scaffold with 3D printed stiff subchondral bony compartment to provide constant mechanical support for long-term cartilage regeneration. J Orthop Translat 2021; 30:112-121. [PMID: 34722154 PMCID: PMC8526903 DOI: 10.1016/j.jot.2021.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/29/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND/OBJECTIVE We seek to figure out the effect of stable and powerful mechanical microenvironment provided by Ti alloy as a part of subchondral bone scaffold on long-term cartilage regeneration.Methods: we developed a bilayered osteochondral scaffold based on the assumption that a stiff subchondral bony compartment would provide stable mechanical support for cartilage regeneration and enhance subchondral bone regeneration. The subchondral bony compartment was prepared from 3D printed Ti alloy, and the cartilage compartment was created from a freeze-dried collagen sponge, which was reinforced by poly-lactic-co-glycolic acid (PLGA). RESULTS In vitro evaluations confirmed the biocompatibility of the scaffold materials, while in vivo evaluations demonstrated that the mechanical support provided by 3D printed Ti alloy layer plays an important role in the long-term regeneration of cartilage by accelerating osteochondral formation and its integration with the adjacent host tissue in osteochondral defect model at rabbit femoral trochlea after 24 weeks. CONCLUSION Mechanical support provided by 3D printing Ti alloy promotes cartilage regeneration by promoting subchondral bone regeneration and providing mechanical support platform for cartilage synergistically. TRANSLATIONAL POTENTIAL STATEMENT The raw materials used in our double-layer osteochondral scaffolds are all FDA approved materials for clinical use. 3D printed titanium alloy scaffolds can promote bone regeneration and provide mechanical support for cartilage regeneration, which is very suitable for clinical scenes of osteochondral defects. In fact, we are conducting clinical trials based on our scaffolds. We believe that in the near future, the scaffold we designed and developed can be formally applied in clinical practice.
Collapse
Affiliation(s)
- Tao Yang
- Peking University Fifth School of Clinical Medicine, Beijing, China
- Department of Orthopaedics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, China
| | - Maryam Tamaddon
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, UK
| | - Le Jiang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Jing Wang
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma &War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China
- Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, No. 2, Zheshan West Road, Wuhu, Anhui, China
| | - Ziyu Liu
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, UK
| | - Zhongqun Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Haoye Meng
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma &War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Yongqiang Hu
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma &War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Jianming Gao
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma &War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Xuan Yang
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma &War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Yanxu Zhao
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma &War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Yanling Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Aiyuan Wang
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma &War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Qiong Wu
- School of Life Sciences, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Chaozong Liu
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, UK
| | - Jiang Peng
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma &War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Xiaodan Sun
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Qingyun Xue
- Peking University Fifth School of Clinical Medicine, Beijing, China
- Department of Orthopaedics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, China
| |
Collapse
|
21
|
Kobayashi Y, Kida Y, Kabuto Y, Morihara T, Sukenari T, Nakagawa H, Onishi O, Oda R, Kida N, Tanida T, Matsuda KI, Tanaka M, Takahashi K. Healing Effect of Subcutaneous Administration of Granulocyte Colony-Stimulating Factor on Acute Rotator Cuff Injury in a Rat Model. Tissue Eng Part A 2021; 27:1205-1212. [PMID: 34432525 DOI: 10.1089/ten.tea.2020.0239.a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Granulocyte colony-stimulating factor (G-CSF) is a cytokine that mobilizes bone marrow-derived cells (BMDCs) to peripheral blood and has been clinically used to treat neutropenia. Previously, we reported that BMDCs migrated into the rotator cuff repair site via peripheral blood in the healing process. However, techniques to accelerate the healing process using the peripheral blood pathway have not been established. We evaluated whether G-CSF has a noteworthy effect on improving rotator cuff healing by enhancing the influx of BMDCs into the peripheral blood. We used Sprague-Dawley rats and chimeric rats, selectively expressing green fluorescent protein (GFP) in BMDCs. Their bilateral supraspinatus tendons were resected and sutured to the greater tuberosity of the humerus using the Masson-Allen technique, and G-CSF was subcutaneously injected for 5 days after surgery. Several GFP-positive cells were observed around the enthesis in the G-CSF-treated group compared with that in the Control group. Histological analysis revealed that the tendon-to-bone maturing scores and the Safranin O-stained cartilaginous areas were significantly higher in G-CSF-injected rats than in the control rats at weeks 4 and 8 after surgery. Consistently, the ultimate force to failure in the G-CSF-treated group significantly increased compared with the Control group at weeks 4 and 8 after surgery. These results suggest that BMDCs mobilized into the peripheral blood after G-CSF administration migrated to the rotator cuff repair area and effectively enhanced rotator cuff healing by promoting tenocyte and cartilage matrix production. In conclusion, the BMDC mobilization technique by G-CSF treatment via peripheral blood will provide a potential therapeutic approach for rotator cuff healing with clinically relevant applications. Impact statement As the retear rate following rotator cuff repair is high, new methods to aid its healing are required. Granulocyte colony-stimulating factor (G-CSF) has been used clinically and may represent a novel approach to treating rotator cuff tear. Herein, using a rat model, we elucidate the kinetics of bone marrow-derived mesenchymal stem cells at the repair site following G-CSF administration and describe the underlying mechanism by which G-CSF can help promote the repair of the rotator cuff.
Collapse
Affiliation(s)
- Yusuke Kobayashi
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshikazu Kida
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yukichi Kabuto
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toru Morihara
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tsuyoshi Sukenari
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Haruhiko Nakagawa
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Okihiro Onishi
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryo Oda
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Noriyuki Kida
- Faculty of Arts and Sciences, Kyoto Institute of Technology, Kyoto, Japan
| | - Takashi Tanida
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ken Ichi Matsuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masaki Tanaka
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kenji Takahashi
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
22
|
Liu H, Ding Q, Ma C, Qin H, Wei Y, Ren Y. [Comparison of two methods for preparing knee osteochondral injury models in mice]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:862-867. [PMID: 34308594 DOI: 10.7507/1002-1892.202101098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To observe the effect of using tungsten drills to prepare mouse knee osteochondral injury model by comparing with the needle modeling method, in order to provide an appropriate animal modeling method for osteochondral injury research. Methods A total of 75 two-month-old male C57BL/6 mice were randomly divided into 3 groups ( n=25). Mice in groups A and B were used to prepare the right knee osteochondral injury models by using needles and tungsten drills, respectively; group C was sham-operation group. The general condition of the mice was observed after operation. The samples were taken at 1 day and 1, 2, 4, and 8 weeks after modeling, and HE staining was performed. The depth, width, and cross-sectional area of the injury site at 1 day in groups A and B were measured, and the percentage of the injury depth to the thickness of the articular cartilage (depth/thickness) was calculated. Toluidine blue staining and immunohistochemical staining for collagen type Ⅱ were performed at 8 weeks, and the International Cartilage Research Society (ICRS) score was used to evaluate the osteochondral healing in groups A and B. Results All mice survived to the completion of the experiment. HE staining showed that group C had normal cartilage morphology. At 1 day after modeling, the injury in group A only broke through the cartilage layer and reached the subchondral bone without entering the bone marrow cavity; the injury in group B reached the bone marrow cavity. The depth, width, cross-sectional area, and depth/thickness of the injury in group A were significantly lower than those in group B ( P<0.05). At 1, 2, 4, and 8 weeks after modeling, there was no obvious tissue filling in the injured part of group A, and no toluidine blue staining and expression of collagen type Ⅱ were observed at 8 weeks; while the injured part of group B was gradually filled with tissue, the toluidine blue staining and the expression of collagen type Ⅱ were seen at 8 weeks. At 8 weeks, the ICRS score of group A was 8.2±1.3, which was lower than that of group B (13.6±0.9), showing significant difference ( t=-7.637, P=0.000). Conclusion The tungsten drills can break through the subchondral bone layer and enter the bone marrow cavity, and the injury can heal spontaneously. Compared with the needle modeling method, it is a better method for modeling knee osteochondral injury in mice.
Collapse
Affiliation(s)
- Huan Liu
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing Jiangsu, 210000, P.R.China.,Department of Orthopedics, the Affiliated Huaian No.1 Hospital of Nanjing Medical University, Huaian Jiangsu, 223300, P.R.China
| | - Qirui Ding
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing Jiangsu, 210000, P.R.China
| | - Cheng Ma
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing Jiangsu, 210000, P.R.China
| | - Haonan Qin
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing Jiangsu, 210000, P.R.China
| | - Yifan Wei
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing Jiangsu, 210000, P.R.China
| | - Yongxin Ren
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing Jiangsu, 210000, P.R.China
| |
Collapse
|
23
|
[Cartilage repair procedures for early osteoarthritis]. DER ORTHOPADE 2021; 50:356-365. [PMID: 33844031 DOI: 10.1007/s00132-021-04099-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Commonly used cartilage repair procedures have been established for focal cartilage lesions; however, degenerative lesions with accompanying changes of other intraarticular structures are much more common in clinical practice. This stage, in which classic radiological signs of osteoarthritis are absent, is called early osteoarthritis and is characterized by impaired joint homeostasis with biomechanical and biochemical changes that can have a negative effect on regenerative cartilage therapy procedures. INDICATION Cartilage repair procedures are indicated for symptomatic focal early osteoarthritis, defined as cartilage degeneration ICRS grades I or II around a focal cartilage defect ICRS grades III or IV. In more advanced osteoarthritis with significant narrowing of the joint space, cartilage repair procedures are generally contraindicated. THERAPY The most studied cartilage repair procedure for early osteoarthritis is autologous chondrocyte implantation, which has shown acceptable results in case series, although higher failure rates are to be expected compared to focal, traumatic cartilage lesions. The use of bone marrow-stimulating techniques seems to be limited in early osteoarthritis and should only be used in cases of lesion < 2 cm2 and very little surrounding cartilage degeneration. Concomitant surgical procedures, especially unloading osteotomies, are very important.
Collapse
|
24
|
PHB/CHIT Scaffold as a Promising Biopolymer in the Treatment of Osteochondral Defects-An Experimental Animal Study. Polymers (Basel) 2021; 13:polym13081232. [PMID: 33920328 PMCID: PMC8069702 DOI: 10.3390/polym13081232] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 01/22/2023] Open
Abstract
Biopolymer composites allow the creation of an optimal environment for the regeneration of chondral and osteochondral defects of articular cartilage, where natural regeneration potential is limited. In this experimental study, we used the sheep animal model for the creation of knee cartilage defects. In the medial part of the trochlea and on the medial condyle of the femur, we created artificial defects (6 × 3 mm2) with microfractures. In four experimental sheep, both defects were subsequently filled with the porous acellular polyhydroxybutyrate/chitosan (PHB/CHIT)-based implant. Two sheep had untreated defects. We evaluated the quality of the newly formed tissue in the femoral trochlea defect site using imaging (X-ray, Computer Tomography (CT), Magnetic Resonance Imaging (MRI)), macroscopic, and histological methods. Macroscopically, the surface of the treated regenerate corresponded to the niveau of the surrounding cartilage. X-ray examination 6 months after the implantation confirmed the restoration of the contour in the subchondral calcified layer and the advanced rate of bone tissue integration. The CT scan revealed a low regenerative potential in the bone zone of the defect compared to the cartilage zone. The percentage change in cartilage density at the defect site was not significantly different to the reference area (0.06–6.4%). MRI examination revealed that the healing osteochondral defect was comparable to the intact cartilage signal on the surface of the defect. Hyaline-like cartilage was observed in most of the treated animals, except for one, where the defect was repaired with fibrocartilage. Thus, the acellular, chitosan-based biomaterial is a promising biopolymer composite for the treatment of chondral and osteochondral defects of traumatic character. It has potential for further clinical testing in the orthopedic field, primarily with the combination of supporting factors.
Collapse
|
25
|
Dekker TJ, Aman ZS, DePhillipo NN, Dickens JF, Anz AW, LaPrade RF. Chondral Lesions of the Knee: An Evidence-Based Approach. J Bone Joint Surg Am 2021; 103:629-645. [PMID: 33470591 DOI: 10.2106/jbjs.20.01161] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
➤ Management of chondral lesions of the knee is challenging and requires assessment of several factors including the size and location of the lesion, limb alignment and rotation, and the physical and mental health of the individual patient. ➤ There are a multitude of options to address chondral pathologies of the knee that allow individualized treatment for the specific needs and demands of the patient. ➤ Osteochondral autograft transfer remains a durable and predictable graft option in smaller lesions (<2 cm2) in the young and active patient population. ➤ Both mid-term and long-term results for large chondral lesions (≥3 cm2) of the knee have demonstrated favorable results with the use of osteochondral allograft or matrix-associated chondrocyte implantation. ➤ Treatment options for small lesions (<2 cm2) include osteochondral autograft transfer and marrow stimulation and/or microfracture with biologic adjunct, while larger lesions (≥2 cm2) are typically treated with osteochondral allograft transplantation, particulated juvenile articular cartilage, or matrix-associated chondrocyte implantation. ➤ Emerging technologies, such as allograft scaffolds and cryopreserved allograft, are being explored for different graft sources to address complex knee chondral pathology; however, further study is needed.
Collapse
Affiliation(s)
- Travis J Dekker
- Division of Orthopaedics, Department of Surgery, Eglin Air Force Base, Eglin, Florida
| | - Zachary S Aman
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | - Jonathan F Dickens
- Division of Orthopaedics, Department of Surgery, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Adam W Anz
- Andrews Research & Education Foundation, Gulf Breeze, Florida
| | | |
Collapse
|
26
|
Hejazi F, Bagheri-Khoulenjani S, Olov N, Zeini D, Solouk A, Mirzadeh H. Fabrication of nanocomposite/nanofibrous functionally graded biomimetic scaffolds for osteochondral tissue regeneration. J Biomed Mater Res A 2021; 109:1657-1669. [PMID: 33687800 DOI: 10.1002/jbm.a.37161] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/24/2022]
Abstract
One of the main challenges in treating osteochondral lesions via tissue engineering approach is providing scaffolds with unique characteristics to mimic the complexity. It has led to application of heterogeneous scaffolds as a potential candidate for engineering of osteochondral tissues, in which graded multilayered-structure should promote bone and cartilage growth. By designing three-dimensional (3D)-nanofibrous scaffolds mimicking the native extracellular matrix's nanoscale structure, cells can grow in controlled conditions and regenerate the damaged tissue. In this study, novel 3D-functionality graded nanofibrous scaffolds composed of five layers based on different compositions containing polycaprolactone(PCL)/gelatin(Gel)/nanohydroxyapatite (nHA) for osteoregeneration and chitosan(Cs)/polyvinylalcohol(PVA) for chondral regeneration are introduced. This scaffold is fabricated by electrospinning technique using spring as collector to create 3D-nanofibrous scaffolds. Fourier-transform infrared spectroscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, scanning electron microscopy, mechanical compression test, porosimetry, and water uptake studies were applied to study each layer's physicochemical properties and whole functionally graded scaffold. Besides, biodegradation and biological studies were done to investigate biological performance of scaffold. Results showed that each layer has a fibrous structure with continuous nanofibers with improved pore size and porosity of novel 3D scaffold (6-13 μm and 90%) compared with two-dimensional (2D) mat (2.2 μm and 19.3%) with higher water uptake capacity (about 100 times of 2D mat). Compression modulus of electrospun scaffold was increased to 78 MPa by adding nHA. The biological studies revealed that the layer designed for osteoregeneration could improve cell proliferation rate in comparison to the layer designed for chondral regeneration. These results showed such structure possesses a promising potential for the treatment of osteochondral defects.
Collapse
Affiliation(s)
- Fatemeh Hejazi
- Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran
| | | | - Nafiseh Olov
- Polymer and Color Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Darya Zeini
- Faculty of Medicine, Institute of basic medical sciences, Oslo, Norway
| | - Atefeh Solouk
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Hamid Mirzadeh
- Polymer and Color Engineering Department, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
27
|
Morscheid YP, Venkatesan JK, Schmitt G, Orth P, Zurakowski D, Speicher-Mentges S, Menger MD, Laschke MW, Cucchiarini M, Madry H. rAAV-Mediated Human FGF-2 Gene Therapy Enhances Osteochondral Repair in a Clinically Relevant Large Animal Model Over Time In Vivo. Am J Sports Med 2021; 49:958-969. [PMID: 33606561 DOI: 10.1177/0363546521988941] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Osteochondral defects, if left untreated, do not heal and can potentially progress toward osteoarthritis. Direct gene transfer of basic fibroblast growth factor 2 (FGF-2) with the clinically adapted recombinant adeno-associated viral (rAAV) vectors is a powerful tool to durably activate osteochondral repair processes. PURPOSE To examine the ability of an rAAV-FGF-2 construct to target the healing processes of focal osteochondral injury over time in a large translational model in vivo versus a control gene transfer condition. STUDY DESIGN Controlled laboratory study. METHODS Standardized osteochondral defects created in the knee joints of adult sheep were treated with an rAAV human FGF-2 (hFGF-2) vector by direct administration into the defect relative to control (reporter) rAAV-lacZ gene transfer. Osteochondral repair was monitored using macroscopic, histological, immunohistological, and biochemical methods and by micro-computed tomography after 6 months. RESULTS Effective, localized prolonged FGF-2 overexpression was achieved for 6 months in vivo relative to the control condition without undesirable leakage of the vectors outside the defects. Such rAAV-mediated hFGF-2 overexpression significantly increased the individual histological parameter "percentage of new subchondral bone" versus lacZ treatment, reflected in a volume of mineralized bone per unit volume of the subchondral bone plate that was equal to a normal osteochondral unit. Also, rAAV-FGF-2 significantly improved the individual histological parameters "defect filling,""matrix staining," and "cellular morphology" and the overall cartilage repair score versus the lacZ treatment and led to significantly higher cell densities and significantly higher type II collagen deposition versus lacZ treatment. Likewise, rAAV-FGF-2 significantly decreased type I collagen expression within the cartilaginous repair tissue. CONCLUSION The current work shows the potential of direct rAAV-mediated FGF-2 gene therapy to enhance osteochondral repair in a large, clinically relevant animal model over time in vivo. CLINICAL RELEVANCE Delivery of therapeutic (hFGF-2) rAAV vectors in sites of focal injury may offer novel, convenient tools to enhance osteochondral repair in the near future.
Collapse
Affiliation(s)
- Yannik P Morscheid
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Jagadeesh K Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Gertrud Schmitt
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Patrick Orth
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - David Zurakowski
- Department of Anesthesiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Susanne Speicher-Mentges
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| |
Collapse
|
28
|
Oláh T, Cai X, Michaelis JC, Madry H. Comparative anatomy and morphology of the knee in translational models for articular cartilage disorders. Part I: Large animals. Ann Anat 2021; 235:151680. [PMID: 33548412 DOI: 10.1016/j.aanat.2021.151680] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND The human knee is a complex joint, and affected by a variety of articular cartilage disorders. Large animal models are critical to model the complex disease mechanisms affecting a functional joint. Species-dependent differences highly affect the results of a pre-clinical study and need to be considered, necessitating specific knowledge not only of macroscopic and microscopic anatomical and pathological aspects, but also characteristics of their individual gait and joint movements. METHODS Literature search in Pubmed. RESULTS AND DISCUSSION This narrative review summarizes the most relevant anatomical structural and functional characteristics of the knee (stifle) joints of the major translational large animal species, comprising dogs, (mini)pigs, sheep, goats, and horses in comparison with humans. Specific characteristics of each species, including kinematical gait parameters are provided. Considering these multifactorial dimensions will allow to select the appropriate model for answering the research questions in a clinically relevant fashion.
Collapse
Affiliation(s)
- Tamás Oláh
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| | - Xiaoyu Cai
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| | | | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany; Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg, Germany.
| |
Collapse
|
29
|
Wang Y, Guo Y, Wei Q, Li X, Ji K, Zhang K. Current researches on design and manufacture of biopolymer-based osteochondral biomimetic scaffolds. Biodes Manuf 2021. [DOI: 10.1007/s42242-020-00119-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Shah SS, Lee S, Mithoefer K. Next-Generation Marrow Stimulation Technology for Cartilage Repair: Basic Science to Clinical Application. JBJS Rev 2021; 9:e20.00090. [PMID: 33512974 DOI: 10.2106/jbjs.rvw.20.00090] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
» Given the relatively high prevalence of full-thickness articular cartilage lesions, including in patients who are <40 years of age, and an inability to detect some of these lesions until the time of arthroscopy, there is value in performing a single-stage cartilage procedure such as marrow stimulation (MS). » While the positive outcomes of first-generation MS (namely microfracture) have been observed to drop off after 24 months in several studies, improvements have been seen when compared with preoperative conditions for lesions that are 2 to 3 cm2 in size, and MS is considered to be a procedure with technical simplicity, fairly short surgical times, and relatively low morbidity. A recent study showed that autologous chondrocyte implantation (ACI) and osteochondral allograft (OCA) transplantation remain viable treatment options for chondral defects of the knee in the setting of failed MS. » Basic science principles that have been elucidated in recent years include (1) the creation of vertical walls during defect preparation, (2) an increased depth of subchondral penetration, (3) a smaller awl diameter, and (4) an increased number of subchondral perforations, which are all thought to help resolve issues of access to the mesenchymal stromal cells (MSCs) and the subchondral bone structure/overgrowth issues. » Pioneering and evolving basic science and clinical studies have led to next-generation clinical applications, such as a hyaluronic acid-based scaffold (ongoing randomized controlled trial [RCT]), an atelocollagen-based gel (as described in a recently published RCT), a micronized allogeneic cartilage scaffold (as described in a recently completed prospective cohort study), and a biosynthetic hydrogel that is composed of polyethylene glycol (PEG) diacrylate and denatured fibrinogen (as described in an ongoing prospective study). » This review summarizes important points for defect preparation and the recent advances in MS techniques and identifies specific scaffolding augmentation strategies (e.g., mesenchymal augmentation and scaffold stimulation [MASS]) that have the capacity to advance cartilage regeneration in light of recent laboratory and clinical studies.
Collapse
Affiliation(s)
- Sarav S Shah
- Division of Sports Medicine, Department of Orthopaedic Surgery, New England Baptist Hospital, Boston, Massachusetts
| | - Sonia Lee
- Department of Orthopaedic Surgery, Tufts University School of Medicine, Boston, Massachusetts
| | - Kai Mithoefer
- Department of Orthopedics and Sports Medicine, Harvard Vanguard Medical Associates, Boston, Massachusetts
| |
Collapse
|
31
|
Onken T, Gao L, Orth P, Cucchiarini M, Bohle RM, Rupf S, Hannig M, Madry H. Investigation of microstructural alterations of the human subchondral bone following microfracture penetration reveals effect of three-dimensional device morphology. Clin Transl Med 2020; 10:e230. [PMID: 33377646 PMCID: PMC7711083 DOI: 10.1002/ctm2.230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Affiliation(s)
- Thomas Onken
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Liang Gao
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Patrick Orth
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Rainer Maria Bohle
- Institute of Pathology, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Stefan Rupf
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| |
Collapse
|
32
|
Sogi Y, Yabe Y, Hagiwara Y, Tsuchiya M, Onoda Y, Sekiguchi T, Itaya N, Yoshida S, Yano T, Suzuki K, Onoki T, Itoi E. Joint hemorrhage accelerates cartilage degeneration in a rat immobilized knee model. BMC Musculoskelet Disord 2020; 21:761. [PMID: 33213419 PMCID: PMC7678279 DOI: 10.1186/s12891-020-03795-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 11/12/2020] [Indexed: 01/05/2023] Open
Abstract
Background Joint hemorrhage is caused by trauma, ligament reconstruction surgery, and bleeding disorders such as hemophilia. Recurrence of hemorrhage in the joint space induces hemosiderotic synovitis and oxidative stress, resulting in both articular cartilage degeneration and arthropathy. Joint immobilization is a common treatment option for articular fractures accompanied by joint hemorrhage. Although joint hemorrhage has negative effects on the articular cartilage, there is no consensus on whether a reduction in joint hemorrhage would effectively prevent articular cartilage degeneration. The purpose of this study was to investigate the effect of joint hemorrhage combined with joint immobilization on articular cartilage degeneration in a rat immobilized knee model. Methods The knee joints of adult male rats were immobilized at the flexion using an internal fixator from 3 days to 8 weeks. The rats were randomly divided into the following groups: immobilized blood injection (Im-B) and immobilized-normal saline injection (Im-NS) groups. The cartilage was evaluated in two areas (contact and non-contact areas). The cartilage was used to assess chondrocyte count, Modified Mankin score, and cartilage thickness. The total RNA was extracted from the cartilage in both areas, and the expression of metalloproteinase (MMP)-8, MMP-13, interleukin (IL)-1β, and tumor necrosis factor (TNF)-α was measured by quantitative real-time polymerase chain reaction. Results The number of chondrocytes in the Im-B group significantly decreased in both areas, compared with that in the Im-NS group. Modified Mankin score from 4 to 8 weeks of the Im-B group was significantly higher than that of the Im-NS group only in the contact area. The expression of MMP-8 and MMP-13 from 2 to 4 weeks and TNF-α from 2 to 8 weeks significantly increased in the Im-B group compared with those in the Im-NS group, but there was no significant difference in IL-1β expression. Conclusions The results showed that joint hemorrhage exacerbated immobilization-induced articular cartilage degeneration. Drainage of a joint hemorrhage or avoidance of loading may help prevent cartilage degeneration during joint immobilization with a hemorrhage. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-020-03795-0.
Collapse
Affiliation(s)
- Yasuhito Sogi
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Yutaka Yabe
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Yoshihiro Hagiwara
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan.
| | - Masahiro Tsuchiya
- Department of Nursing, Faculty of Health Science, Tohoku Fukushi University, 1-8-1 Kunimi, Aoba-ku, Sendai, 981-8522, Japan
| | - Yoshito Onoda
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Takuya Sekiguchi
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Nobuyuki Itaya
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Shinichiro Yoshida
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Toshihisa Yano
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Kazuaki Suzuki
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Takahiro Onoki
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Eiji Itoi
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| |
Collapse
|
33
|
Articular cartilage regeneration by activated skeletal stem cells. Nat Med 2020; 26:1583-1592. [PMID: 32807933 DOI: 10.1038/s41591-020-1013-2] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/07/2020] [Indexed: 02/07/2023]
Abstract
Osteoarthritis (OA) is a degenerative disease resulting in irreversible, progressive destruction of articular cartilage1. The etiology of OA is complex and involves a variety of factors, including genetic predisposition, acute injury and chronic inflammation2-4. Here we investigate the ability of resident skeletal stem-cell (SSC) populations to regenerate cartilage in relation to age, a possible contributor to the development of osteoarthritis5-7. We demonstrate that aging is associated with progressive loss of SSCs and diminished chondrogenesis in the joints of both mice and humans. However, a local expansion of SSCs could still be triggered in the chondral surface of adult limb joints in mice by stimulating a regenerative response using microfracture (MF) surgery. Although MF-activated SSCs tended to form fibrous tissues, localized co-delivery of BMP2 and soluble VEGFR1 (sVEGFR1), a VEGF receptor antagonist, in a hydrogel skewed differentiation of MF-activated SSCs toward articular cartilage. These data indicate that following MF, a resident stem-cell population can be induced to generate cartilage for treatment of localized chondral disease in OA.
Collapse
|
34
|
Kim SJ, Shetty AA, Kurian NM, Ahmed S, Shetty N, Stelzeneder D, Shin YW, Cho YJ, Lee SH. Articular cartilage repair using autologous collagen-induced chondrogenesis (ACIC): a pragmatic and cost-effective enhancement of a traditional technique. Knee Surg Sports Traumatol Arthrosc 2020; 28:2598-2603. [PMID: 32064573 DOI: 10.1007/s00167-020-05884-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/23/2020] [Indexed: 02/02/2023]
Abstract
PURPOSE The autologous collagen-induced chondrogenesis technique is described, and the results of a 6-year follow-up clinical study using this technique are presented. METHODS 30 patients with International Cartilage Repair Society (ICRS) Grade III/IVa symptomatic chondral defects of the knee treated with enhanced microdrilling using atelocollagen were prospectively examined in this clinical series. The median age of the patients was 39.0 years (range 19-61 years). Patients were followed up to 72 months. Clinical evaluation was performed using functional knee scores and radiologically. Both quantitative and qualitative assessments were performed. RESULTS Statistically significant and clinically relevant improvement was observed in 2 years and was sustained for the 6 years of the study observation. At 6 years, the mean Lysholm score was 79.7 (SD 6.8) compared to 52.6 (SD 10.7) pre-operatively (p < 0.05). The symptomatic Knee Injury and Osteoarthritis Outcome Score (KOOS) improved from 68.3 (SD 11.4) to 90.2 (SD 4.3) (p < 0.05). The subjective International Knee Documentation Committee (IKDC) also showed improvement from 39.1 (SD 4.1) to 81.6 (SD 7.8) (p < 0.05). The calculated T2* relaxation times were 26.0 (SD 4.2) seconds and 30.3 (SD 6.2) seconds for the repair tissue and native cartilage, respectively. The average magnetic resonance observation of cartilage repair tissue (MOCART) score was 78.5 (SD 9.6) for all lesions. CONCLUSION The enhanced microdrilling using atelocollagen is an enhancement of the traditional microfracture method using an off-the-shelf product. When used to treat moderate to severe chondral lesions, this enhancement produces hyaline-like cartilage with a corresponding improvement in symptoms. LEVEL OF EVIDENCE IV.
Collapse
Affiliation(s)
- Seok Jung Kim
- Department of Orthopaedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Asode Ananthram Shetty
- Institute of Medical Sciences, Faculty of Health and Social Sciences, Canterbury Christ Church University, 30 Pembroke Court, Chatham Maritime, ME4 4UF, Kent, UK. .,Kent Knee Unit, Spire Alexandra Hospital, Chatham, Kent, UK.
| | - Nibu M Kurian
- Institute of Medical Sciences, Faculty of Health and Social Sciences, Canterbury Christ Church University, 30 Pembroke Court, Chatham Maritime, ME4 4UF, Kent, UK.,Kent Knee Unit, Spire Alexandra Hospital, Chatham, Kent, UK
| | - Saif Ahmed
- Institute of Medical Sciences, Faculty of Health and Social Sciences, Canterbury Christ Church University, 30 Pembroke Court, Chatham Maritime, ME4 4UF, Kent, UK.,Kent Knee Unit, Spire Alexandra Hospital, Chatham, Kent, UK
| | - Neha Shetty
- Institute of Medical Sciences, Faculty of Health and Social Sciences, Canterbury Christ Church University, 30 Pembroke Court, Chatham Maritime, ME4 4UF, Kent, UK.,Kent Knee Unit, Spire Alexandra Hospital, Chatham, Kent, UK
| | - David Stelzeneder
- Department of Orthopaedics and Trauma Surgery, Hanush Hospital, Vienna, Austria
| | - Yong-Woon Shin
- Department of Orthopaedic Surgery, College of Medicine, The Inje University of Korea, Seoul, Republic of Korea
| | - Yoon Joo Cho
- Department of Orthopaedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sang Heon Lee
- Department of Orthopaedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW The decreased contact area, edge loading, and increased stress in the adjacent area cartilage resulting from chondral defects are believed to predispose this tissue to degenerative changes that have significant economic implications, especially when considering its progression to osteoarthritis of the knee. Growth factors are considered therapeutic possibilities to enhance healing of chondral injuries and modify the progression to degenerative arthritis. Thus, the purposes of this review are to first to summarize important points for defect preparation and recent advances in techniques for marrow stimulation and second, and to identify specific growth factors and cytokines that have the capacity to advance cartilage regeneration and the treatment of osteoarthritis in light of recent laboratory and clinical studies. RECENT FINDINGS TGF-β, BMP-2, BMP-7, IGF-1, as IL-1 receptor antagonist, and recombinant human FGF-18 are some of the promising growth factor/cytokine treatments with pioneering and evolving clinical developments. The bulk of the review describes and discusses these developments in light of fundamental basic science. It is crucial to also understand the other underlying advances made in the surgical management of cartilage defects prior to onset of OA. These advances are in techniques for defect preparation and marrow stimulation, a common cartilage repair procedure used in combination with growth factor/cytokine augmentation. Multiple growth factor/cytokine modulation therapies are currently undergoing clinical trial investigation including Invossa (currently in phase III study), Kineret (currently in phase I study), and Sprifermin (currently in phase II study) for the treatment of symptomatic osteoarthritis.
Collapse
|
36
|
Small-Diameter Subchondral Drilling Improves DNA and Proteoglycan Content of the Cartilaginous Repair Tissue in a Large Animal Model of a Full-Thickness Chondral Defect. J Clin Med 2020; 9:jcm9061903. [PMID: 32570841 PMCID: PMC7356183 DOI: 10.3390/jcm9061903] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/16/2020] [Indexed: 01/02/2023] Open
Abstract
This study quantified changes in the DNA content and extracellular matrix composition of both the cartilaginous repair tissue and the adjacent cartilage in a large animal model of a chondral defect treated by subchondral drilling. Content of DNA, proteoglycans, and Type II and Type I collagen, as well as their different ratios were assessed at 6 months in vivo after treatment of full-thickness cartilage defects in the femoral trochlea of adult sheep with six subchondral drill holes, each of either 1.0 mm or 1.8 mm in diameter by biochemical analyses of the repair tissue and the adjacent cartilage and compared with the original cartilage. Only subchondral drilling which were 1.0 mm in diameter significantly increased both DNA and proteoglycan content of the repair tissue compared to the original cartilage. DNA content correlated with the proteoglycan and Type II collagen content within the repair tissue. Significantly higher amounts of Type I collagen within the repair tissue and significantly increased DNA, proteoglycan, and Type I collagen content in the adjacent cartilage were identified. These translational data support the use of small-diameter bone-cutting devices for marrow stimulation. Signs of early degeneration were present within the cartilaginous repair tissue and the adjacent cartilage.
Collapse
|
37
|
Peñalver JM, Villalba J, Yela-Verdú CP, Sánchez J, Balaguer-Castro M. All-Arthroscopic Nanofractured Autologous Matrix-Induced Chondrogenesis (A-NAMIC) Technique for the Treatment of Focal Chondral Lesions of the Knee. Arthrosc Tech 2020; 9:e755-e759. [PMID: 32577348 PMCID: PMC7301272 DOI: 10.1016/j.eats.2020.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/04/2020] [Indexed: 02/03/2023] Open
Abstract
Nanofractured autologous matrix-induced chondrogenesis (NAMIC©) is a 1-step technique that combines nanofracture needling to induce bone marrow stimulation (BMS) and the use of cell-free collagen matrix to optimize cartilage regeneration. In this Technical Note, we describe a modification of the NAMIC procedure using mosaicplasty trephines to prepare the lesion surface and to shape collagen implants in an all-arthroscopic approach (A-NAMIC). This technique is indicated for the treatment of International Cartilage Repair Society grade III to IV knee chondral lesions of ≤4 cm2. After damaged cartilage is debrided, trephines are used to create a flat, circular lesion surfaces. Subsequently, BMS is performed with nanofracture, eliciting reproducible and stop-controlled subchondral bone perforations of 9-mm depth and 1-mm width. The collagen membrane is then cut to size with the trephine, placed over the prepared defect, and secured with fibrin glue, preventing loss of regenerating cells and growth factors to the joint space. Using trephines allows the rapid and precise creation of smooth defect surfaces with known dimensions, ensuring optimal lesion coverage. Additionally, nanofracture reduces trabecular compaction and allows for a deeper access to subchondral bone in comparison with conventional microfracture, improving lesion filling and production of cartilage with higher hyaline content.
Collapse
Affiliation(s)
- Juan Manuel Peñalver
- Address correspondence to Dr. J.M. Peñalver, Plaça del Progrés, 24, 08224, Terrassa, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
38
|
Sun Y, Kwak JM, Kholinne E, Zhou Y, Tan J, Koh KH, Jeon IH. Small Subchondral Drill Holes Improve Marrow Stimulation of Rotator Cuff Repair in a Rabbit Model of Chronic Rotator Cuff Tear. Am J Sports Med 2020; 48:706-714. [PMID: 31928410 DOI: 10.1177/0363546519896350] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Microfracture of the greater tuberosity has been proved effective for enhancing tendon-to-bone healing after rotator cuff repair. However, no standard diameter for the microfracture has been established. PURPOSE/HYPOTHESIS This study aimed to assess treatment with large- and small-diameter microfractures to enhance healing during rotator cuff repair surgery in a rabbit model of chronic rotator cuff tear. It was hypothesized that a small-diameter microfracture had advantages in terms of tendon-to-bone integration, bone-tendon interface maturity, microfracture healing, and biomechanical properties compared with a large-diameter microfracture. STUDY DESIGN Controlled laboratory study. METHODS Bilateral supraspinatus tenotomy from the greater tuberosity was performed on 21 New Zealand White rabbits. Bilateral supraspinatus repair was performed 6 weeks later. Small-diameter (0.5 mm) microfracture and large-diameter microfracture (1 mm) were performed on the left side and right side, respectively, in 14 rabbits as a study group, and simple repair without microfracture was performed in 7 rabbits as a control group. At 12 weeks later, 7 of 14 rabbits in the study group were sacrificed for micro-computed tomography evaluation and biomechanical testing. Another 6 rabbits were sacrificed for histological evaluation. In the control group, 3 of the 7 rabbits were sacrificed for histological evaluation and the remaining rabbits were sacrificed for biomechanical testing. RESULTS Significantly better bone-to-tendon integration was observed in the small-diameter microfracture group. Better histological formation and maturity of the bone-tendon interface corresponding to better biomechanical results (maximum load to failure and stiffness) were obtained on the small-diameter microfracture side compared with the large-diameter side and the control group. The large-diameter microfracture showed worse radiographic and histological properties for healing of the microfracture holes on the greater tuberosity. Additionally, the large-diameter microfracture showed inferior biomechanical properties but similar histological results compared with the control group. CONCLUSION Small-diameter microfracture showed advantages with enhanced rotator cuff healing for biomechanical, histological, and radiographic outcomes compared with large-diameter microfracture, and large-diameter microfracture may worsen the rotator cuff healing. CLINICAL RELEVANCE This animal study suggested that a smaller diameter microfracture may be a better choice to enhance healing in clinical rotator cuff repair surgery in humans.
Collapse
Affiliation(s)
- Yucheng Sun
- Department of Hand Surgery, Affiliated Hospital of Nantong University, College of Medicine, University of Nantong, Nantong, China
| | - Jae-Man Kwak
- Department of Orthopedic Surgery, ASAN Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| | - Erica Kholinne
- Department of Orthopedic Surgery, ASAN Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea.,Department of Orthopedic Surgery, St. Carolus Hospital, Jakarta, Indonesia
| | - Youlang Zhou
- Department of Hand Surgery, Affiliated Hospital of Nantong University, College of Medicine, University of Nantong, Nantong, China
| | - Jun Tan
- Department of Hand Surgery, Affiliated Hospital of Nantong University, College of Medicine, University of Nantong, Nantong, China
| | - Kyoung Hwan Koh
- Department of Orthopedic Surgery, ASAN Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| | - In-Ho Jeon
- Department of Orthopedic Surgery, ASAN Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| |
Collapse
|
39
|
Orth P, Gao L, Madry H. Microfracture for cartilage repair in the knee: a systematic review of the contemporary literature. Knee Surg Sports Traumatol Arthrosc 2020; 28:670-706. [PMID: 30659314 DOI: 10.1007/s00167-019-05359-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/11/2019] [Indexed: 01/14/2023]
Abstract
PURPOSE To systematically review and evaluate novel clinical data following microfracture treatment of knee articular cartilage defects. METHODS A systematic review was performed by searching PubMed, ScienceDirect, and Cochrane Library databases for clinical trials on microfracture treatment, published between 2013 and 2018. Titles, abstracts, and articles were reviewed, and data concerning patient demographics, study design, pre-, intra-, and postoperative findings were extracted. PRISMA guidelines were applied. The methodological quality of the included studies was analyzed by the modified Coleman Methodology Score (CMS), and aggregate data were generated. RESULTS Eighteen studies including 1830 defects (1759 patients) were included. Of them, 8 (59% of patients) were cohort studies without a comparison group. Overall study quality was moderate (mean total CMS: 64 points), mainly due to low patient numbers, short follow-up periods, lack of control groups and structural repair tissue evaluation, and inhomogeneity in outcome parameters. Microfracture treatment of full-thickness articular cartilage defects (3.4 ± 2.1 cm2) was performed at 43.4 ± 68.0 months of symptom duration. Postoperative assessment at 79.5 ± 27.2 months revealed failure rates of 11-27% within 5 years and 6-32% at 10 years. Imaging analysis was conducted in 10 studies, second-look arthroscopies were reported twice (n = 205 patients) and revealed well integrated fibrocartilaginous repair tissue. CONCLUSIONS Microfracture provides good function and pain relief at the mid-term and clinically largely satisfying results thereafter. Standardized, high-quality future study designs will better refine optimal indications for microfracture in the context of cartilage repair strategies. LEVEL OF EVIDENCE This systematic review is based on studies with levels of evidence ranging between I and IV (see results section and Table). Therefore, and according to this journals Instructions for Authors (SYSTEMATIC REVIEWS AND META-ANALYSES are assigned a level of evidence equivalent to the lowest level of evidence used from the manuscripts analysed), level of evidence is IV.
Collapse
Affiliation(s)
- Patrick Orth
- Center of Experimental Orthopaedics, Saarland University, Kirrberger Strasse 100, Building 37, 66421, Homburg, Germany.,Department of Orthopaedic Surgery, Saarland University Medical Center, Kirrberger Strasse 100, Building 37, 66421, Homburg, Germany
| | - Liang Gao
- Center of Experimental Orthopaedics, Saarland University, Kirrberger Strasse 100, Building 37, 66421, Homburg, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University, Kirrberger Strasse 100, Building 37, 66421, Homburg, Germany. .,Department of Orthopaedic Surgery, Saarland University Medical Center, Kirrberger Strasse 100, Building 37, 66421, Homburg, Germany.
| |
Collapse
|
40
|
Neubauer M, Nehrer S. Knorpelregenerative Verfahren mittels Knochenmarkstimulation und augmentierter Verfahren. SPORTS ORTHOPAEDICS AND TRAUMATOLOGY 2019; 35:372-379. [DOI: 10.1016/j.orthtr.2019.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
41
|
Shimozono Y, Vannini F, Ferkel RD, Nakamura N, Kennedy JG. Restorative procedures for articular cartilage in the ankle: state-of-the-art review. J ISAKOS 2019. [DOI: 10.1136/jisakos-2017-000163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
Bittner SM, Smith BT, Diaz-Gomez L, Hudgins CD, Melchiorri AJ, Scott DW, Fisher JP, Mikos AG. Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering. Acta Biomater 2019; 90:37-48. [PMID: 30905862 PMCID: PMC6744258 DOI: 10.1016/j.actbio.2019.03.041] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/14/2019] [Accepted: 03/20/2019] [Indexed: 01/10/2023]
Abstract
Recent developments in 3D printing (3DP) research have led to a variety of scaffold designs and techniques for osteochondral tissue engineering; however, the simultaneous incorporation of multiple types of gradients within the same construct remains a challenge. Herein, we describe the fabrication and mechanical characterization of porous poly(ε-caprolactone) (PCL) and PCL-hydroxyapatite (HA) scaffolds with incorporated vertical porosity and ceramic content gradients via a multimaterial extrusion 3DP system. Scaffolds of 0 wt% HA (PCL), 15 wt% HA (HA15), or 30 wt% HA (HA30) were fabricated with uniform composition and porosity (using 0.2 mm, 0.5 mm, or 0.9 mm on-center fiber spacing), uniform composition and gradient porosity, and gradient composition (PCL-HA15-HA30) and porosity. Micro-CT imaging and porosity analysis demonstrated the ability to incorporate both vertical porosity and pore size gradients and a ceramic gradient, which collectively recapitulate gradients found in native osteochondral tissues. Uniaxial compression testing demonstrated an inverse relationship between porosity, ϕ, and compressive modulus, E, and yield stress, σy, for uniform porosity scaffolds, however, no differences were observed as a result of ceramic incorporation. All scaffolds demonstrated compressive moduli within the appropriate range for trabecular bone, with average moduli between 86 ± 14-220 ± 26 MPa. Uniform porosity and pore size scaffolds for all ceramic levels had compressive moduli between 205 ± 37-220 ± 26 MPa, 112 ± 13-118 ± 23 MPa, and 86 ± 14-97 ± 8 MPa respectively for porosities ranging between 14 ± 4-20 ± 6%, 36 ± 3-43 ± 4%, and 54 ± 2-57 ± 2%, with the moduli and yield stresses of low porosity scaffolds being significantly greater (p < 0.05) than those of all other groups. Single (porosity) gradient and dual (composition/porosity) gradient scaffolds demonstrated compressive properties similar (p > 0.05) to those of the highest porosity uniform scaffolds (porosity gradient scaffolds 98 ± 23-107 ± 6 MPa, and 102 ± 7 MPa for dual composition/porosity gradient scaffolds), indicating that these properties are more heavily influenced by the weakest section of the gradient. The compression data for uniform scaffolds were also readily modeled, yielding scaling laws of the form E ∼ (1 - ϕ)1.27 and σy ∼ (1 - ϕ)1.37, which demonstrated that the compressive properties evaluated in this study were well-aligned with expectations from previous literature and were readily modeled with good fidelity independent of polymer scaffold geometry and ceramic content. All uniform scaffolds were similarly deformed and recovered despite different porosities, while the large-pore sections of porosity gradient scaffolds were significantly more deformed than all other groups, indicating that porosity may not be an independent factor in determining strain recovery. Moving forward, the technique described here will serve as the template for more complex multimaterial constructs with bioactive cues that better match native tissue physiology and promote tissue regeneration. STATEMENT OF SIGNIFICANCE: This manuscript describes the fabrication and mechanical characterization of "dual" porosity/ceramic content gradient scaffolds produced via a multimaterial extrusion 3D printing system for osteochondral tissue engineering. Such scaffolds are designed to better address the simultaneous gradients in architecture and mineralization found in native osteochondral tissue. The results of this study demonstrate that this technique may serve as a template for future advances in 3D printing technology that may better address the inherent complexity in such heterogeneous tissues.
Collapse
Affiliation(s)
- Sean M Bittner
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA; Biomaterials Lab, Rice University, 6500 Main Street, Houston, TX 77030, USA; NIH/NIBIB Center for Engineering Complex Tissues, USA
| | - Brandon T Smith
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA; Biomaterials Lab, Rice University, 6500 Main Street, Houston, TX 77030, USA; NIH/NIBIB Center for Engineering Complex Tissues, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Luis Diaz-Gomez
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA; Biomaterials Lab, Rice University, 6500 Main Street, Houston, TX 77030, USA; NIH/NIBIB Center for Engineering Complex Tissues, USA
| | - Carrigan D Hudgins
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA; Biomaterials Lab, Rice University, 6500 Main Street, Houston, TX 77030, USA; NIH/NIBIB Center for Engineering Complex Tissues, USA
| | - Anthony J Melchiorri
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA; Biomaterials Lab, Rice University, 6500 Main Street, Houston, TX 77030, USA; NIH/NIBIB Center for Engineering Complex Tissues, USA
| | - David W Scott
- Department of Statistics, Rice University, 6100 Main Street, Houston, TX 77030, USA
| | - John P Fisher
- NIH/NIBIB Center for Engineering Complex Tissues, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA; Biomaterials Lab, Rice University, 6500 Main Street, Houston, TX 77030, USA; NIH/NIBIB Center for Engineering Complex Tissues, USA.
| |
Collapse
|
43
|
Xia C, Mei S, Gu C, Zheng L, Fang C, Shi Y, Wu K, Lu T, Jin Y, Lin X, Chen P. Decellularized cartilage as a prospective scaffold for cartilage repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:588-595. [PMID: 31029352 DOI: 10.1016/j.msec.2019.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 01/10/2023]
Abstract
Articular cartilage lacks self-healing capacity, and there is no effective therapy facilitating cartilage repair. Osteoarthritis (OA) due to cartilage defects represents large and increasing healthcare burdens worldwide. Nowadays, the generation of scaffolds to preserve bioactive factors and the biophysical environment has received increasing attention. Furthermore, improved decellularization technology has provided novel insights into OA treatment. This review provides a comparative account of different cartilage defect therapies. Furthermore, some recent effective decellularization protocols have been discussed. In particular, this review focuses on the decellularization ratio of each protocol. Moreover, these protocols were compared particularly on the basis of immunogenicity and mechanical functionality. Further, various recellularization methods have been enlisted and the reparative capacity of decellularized cartilage scaffolds is evaluated herein. The advantages and limitations of different recellularization processes have been described herein. This provides a basis for the generation of decellularized cartilage scaffolds, thereby potentially promoting the possibility of decellularization as a clinical therapeutic target.
Collapse
Affiliation(s)
- Chen Xia
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China; Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Sheng Mei
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Chenhui Gu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Lin Zheng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China; Department of Orthopedics, 5th Affiliated Hospital, Lishui Municipal Central Hospital, Wenzhou Medical University, Lishui, China
| | - Chen Fang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Yiling Shi
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Kaiwei Wu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Tongtong Lu
- Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yongming Jin
- Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.
| | - Xianfeng Lin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China.
| | - Pengfei Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China.
| |
Collapse
|
44
|
Gao L, Orth P, Cucchiarini M, Madry H. Autologous Matrix-Induced Chondrogenesis: A Systematic Review of the Clinical Evidence. Am J Sports Med 2019; 47:222-231. [PMID: 29161138 DOI: 10.1177/0363546517740575] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The addition of a type I/III collagen membrane in cartilage defects treated with microfracture has been advocated for cartilage repair, termed "autologous matrix-induced chondrogenesis" (AMIC). PURPOSE To examine the current clinical evidence regarding AMIC for focal chondral defects. STUDY DESIGN Systematic review. METHODS A systematic review was performed by searching PubMed, ScienceDirect, and Cochrane Library databases. Inclusion criteria were clinical studies of AMIC for articular cartilage repair, written in English. Relative data were extracted and critically analyzed. PRISMA guidelines were applied, the methodological quality of the included studies was assessed by the modified Coleman Methodology Score (CMS), and aggregate data were generated. RESULTS Twenty-eight clinical articles were included: 12 studies (245 patients) of knee cartilage defects, 12 studies (214 patients) of ankle cartilage defects, and 4 studies (308 patients) of hip cartilage defects. The CMS demonstrated a suboptimal study design in the majority of published studies (knee, 57.8; ankle, 55.3; hip, 57.7). For the knee, 1 study reported significant clinical improvements for AMIC compared with microfracture for medium-sized cartilage defects (mean defect size 3.6 cm2) after 5 years (level of evidence, 1). No study compared AMIC with matrix-assisted autologous chondrocyte implantation (ACI) in the knee. For the ankle, no clinical trial was available comparing AMIC versus microfracture or ACI. In the hip, only one analysis (level of evidence, 3) compared AMIC with microfracture for acetabular lesions. For medium-sized acetabular defects, one study (level of evidence, 3) found no significant differences between AMIC and ACI at 5 years. Specific aspects not appropriately discussed in the currently available literature include patient-related factors, membrane fixation, and defect properties. No treatment-related adverse events were reported. CONCLUSION This systematic review reveals a paucity of high-quality, randomized controlled studies testing the AMIC technique versus established procedures such as microfracture or ACI. Evidence is insufficient to recommend joint-specific indications for AMIC. Additional nonbiased, high-powered, randomized controlled clinical trials will provide better clinical and structural long-term evidence, thus helping to define possible indications for this technique.
Collapse
Affiliation(s)
- Liang Gao
- Center of Experimental Orthopaedics, Saarland University, Homburg/Saar, Germany
| | - Patrick Orth
- Center of Experimental Orthopaedics, Saarland University, Homburg/Saar, Germany.,Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg/Saar, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University, Homburg/Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University, Homburg/Saar, Germany.,Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg/Saar, Germany
| |
Collapse
|
45
|
Seow D, Yasui Y, Hutchinson ID, Hurley ET, Shimozono Y, Kennedy JG. The Subchondral Bone Is Affected by Bone Marrow Stimulation: A Systematic Review of Preclinical Animal Studies. Cartilage 2019; 10:70-81. [PMID: 28573889 PMCID: PMC6376565 DOI: 10.1177/1947603517711220] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Despite the mechanical and biological roles of subchondral bone (SCB) in articular cartilage health, there remains no consensus on the postoperative morphological status of SCB following bone marrow stimulation (BMS). The purpose of this systematic review was to clarify the morphology of SCB following BMS in preclinical, translational animal models. DESIGN The MEDLINE and EMBASE databases were systematically reviewed using specific search terms on April 19, 2016 based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The morphology of the SCB was assessed using of microcomputed tomography (bone density) and histology (microscopic architecture). RESULTS Seventeen animal studies with 520 chondral lesions were included. The morphology of SCB did not recover following BMS. Compared with untreated chondral defects, BMS resulted in superior morphology of superficial SCB and cartilage but inferior morphology (specifically bone density, P < 0.05) of the deep SCB. Overall, the use of biological adjuvants during BMS resulted in the superior postoperative morphology of SCB. CONCLUSIONS Alterations in the SCB following BMS were confirmed. Biologics adjuvants may improve the postoperative morphology of both SCB and articular cartilage. Refinements of BMS techniques should incorporate consideration of SCB damage and restoration. Investigations to optimize BMS techniques incorporating both minimally invasive approaches and biologically augmented platforms are further warranted.
Collapse
Affiliation(s)
- Dexter Seow
- Hospital for Special Surgery, New York, NY, USA
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Youichi Yasui
- Hospital for Special Surgery, New York, NY, USA
- Department of Orthopaedic Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Ian D. Hutchinson
- Hospital for Special Surgery, New York, NY, USA
- Department of Orthopaedic Surgery, Albany Medical Center, Albany, NY, USA
| | - Eoghan T. Hurley
- Hospital for Special Surgery, New York, NY, USA
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Yoshiharu Shimozono
- Hospital for Special Surgery, New York, NY, USA
- Department of Orthopaedic Surgery, Teikyo University School of Medicine, Tokyo, Japan
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | |
Collapse
|
46
|
López-Alcorocho JM, Guillén-Vicente I, Rodríguez-Iñigo E, Guillén-Vicente M, Fernández-Jaén TF, Caballero R, Casqueiro M, Najarro P, Abelow S, Guillén-García P. Study of Telomere Length in Preimplanted Cultured Chondrocytes. Cartilage 2019; 10:36-42. [PMID: 29322876 PMCID: PMC6376562 DOI: 10.1177/1947603517749918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
DESIGN In the process of cell division, the extremes of the eukaryotic chromosomes are progressively shortening, and this phenomenon is related to cell degeneration and senescence. The treatment of cartilage lesions with autologous chondrocytes implies that cells proliferate in an artificial environment. We have studied the viability of cultured chondrocytes after measurement of their telomere length before implantation. METHODS Articular cartilage biopsies (B1, B2, and B3) were obtained from 3 patients (2 males and 1 female) with knee cartilage defects, who were going to be treated with chondrocyte implantation. Chondrocytes were cultured in DMEM with autologous serum. After the third passage, an aliquot of 1 million cells was removed to estimate the telomere length and the remaining cells were implanted. Telomere length was measured by quantitative fluorescent in situ hybridization (Q-FISH). Patients' clinical outcome was determined preoperatively, and 12 and 24 months postimplantation with the International Knee Documentation Committee (IKDC) questionnaire. RESULTS After chondrocyte implantation, IKDC score doubled at 12 and 24 months with regard to the basal value. After 3 passages, chondrocytes were cultured for a mean of 45.67 days, the mean duplication time being 4.53 days and the mean number of cell divisions being 10.04 during the culture period. The 20th percentile of telomere lengths were 6.84, 6.96, and 7.06 kbp and the median telomere lengths 10.30, 10.47, and 10.73 kbp, respectively. No significant correlation was found between IKDC score and telomere length. CONCLUSION Culturing autologous chondrocytes for implantation is not related to cell senescence in terms of telomere length.
Collapse
Affiliation(s)
- Juan Manuel López-Alcorocho
- Research Unit, Clínica Cemtro, Madrid, Spain,Juan Manuel López-Alcorocho, Research Unit, Clínica Cemtro, C/ Ventisquero de la Condesa, 42, 28035 Madrid, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lopez-Alcorocho JM, Aboli L, Guillen-Vicente I, Rodriguez-Iñigo E, Guillen-Vicente M, Fernández-Jaén TF, Arauz S, Abelow S, Guillen-García P. Cartilage Defect Treatment Using High-Density Autologous Chondrocyte Implantation: Two-Year Follow-up. Cartilage 2018; 9:363-369. [PMID: 29156973 PMCID: PMC6139590 DOI: 10.1177/1947603517693045] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE The aim of this work was to study the short- and mid-term effectiveness and safety of high-density autologous chondrocyte implantation (HD-ACI) in the first 50 patients with knee cartilage damage treated in our unit. DESIGN Fifty consecutive patients with cartilage lesions (Outerbridge grade III-IV) in the knee treated with HD-ACI were included in this study. Chondrocytes were isolated from a nonbearing cartilage area biopsy and were cultured until 40 to 50 million cells were obtained. Five million chondrocytes per cm2 of a porcine collagen type I/III membrane were implanted covering the defect. Procedure effectiveness was assessed by evaluating pain, swelling, and range of mobility (flexion and extension) at 6-, 12-, and 24-month follow-up. The International Knee Documentation Committee (IKDC) subjective evaluation form was used to evaluate symptoms and functions of the knee. RESULTS The percentage of patients with pain and swelling decreased progressively in the following visits, with differences being statistically significant ( P < 0.001 and P = 0.040, respectively). IKDC scores improved progressively throughout the 24-month follow-up ( P < 0.001). Thus, the mean IKDC score improvement was 26.3 points (95% confidence interval [CI] = 18.2-34.4 points) at 12 months and 31.0 points (95% CI = 22.9-39 points) at 24 months. No significant differences were found when performing extension ( P = 0.112). Flexion significantly improved by 25.1° at 24-month follow-up ( P = 0.013). CONCLUSIONS HD-ACI is a safe and effective technique for the treatment of cartilage defects, improving clinical and subjective perception of knee functionality. These preliminary results encourage future studies comparing this technique with traditional ACI.
Collapse
Affiliation(s)
| | - Lucia Aboli
- Department of Traumatology and Research Unit, Clinica CEMTRO, Madrid, Spain
| | | | | | | | | | - Santiago Arauz
- Department of Traumatology and Research Unit, Clinica CEMTRO, Madrid, Spain
| | - Steve Abelow
- Department of Traumatology and Research Unit, Clinica CEMTRO, Madrid, Spain
| | | |
Collapse
|
48
|
Hayashi S, Nakasa T, Ishikawa M, Nakamae A, Miyaki S, Adachi N. Histological Evaluation of Early-Phase Changes in the Osteochondral Unit After Microfracture in a Full-Thickness Cartilage Defect Rat Model. Am J Sports Med 2018; 46:3032-3039. [PMID: 30067073 DOI: 10.1177/0363546518787287] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The microfracture (MF) technique is an established surgical treatment for cartilage injury. However, the early-phase histological changes in full-thickness cartilage defects (FTCDs) after MF and the concomitant changes in the subchondral bone are still unknown. PURPOSE To determine the early-phase histological changes in FTCD associated with subchondral bone remodeling after MF in rat model. STUDY DESIGN Controlled laboratory study. METHODS Rats were subjected to FTCD, followed by MF at the trochlear groove. For histological analysis, experiment and untreated control rats were sacrificed at 0, 1, 3, 7, 14, 28, and 56 days postoperatively (n = 6 knees per time point). Cartilage healing response was evaluated with the Pineda score. Osteoclast activity was evaluated by counting and locating the number of tartrate-resistant acid phosphatase (TRAP)-positive cells in the subchondral bone. MF hole diameter and bone mineral density in the subchondral bone were measured sequentially in 3 rats (n = 6 knees) by 3-dimensional μ-computed tomography. RESULTS Pineda score showed no difference in cartilage response from day 0 to day 3 but a significant improvement from day 7 to day 56. Although the MF holes were filled with blood clots in all specimens, the defect sites were not. The number of TRAP-positive cells peaked at day 3, mostly accumulating around the deeper zone of the MF holes. Over time, the number of TRAP-positive cells decreased to preoperative levels, localizing around the aperture of the MF holes where there was active remodeling of the osteochondral unit. The MF hole diameter was largest at day 14, and most holes disappeared by day 28. Bone mineral density was also highest at day 14 and decreased to preoperative levels by day 56. CONCLUSION Histological changes in the FTCD after MF were derived from endochondral ossification within the deeper zone of the MF holes. CLINICAL RELEVANCE The absence of healing by blood clot in the FTCD should be noted by surgeons performing MF, and indications for MF should be carefully considered not only for maximizing the postoperative clinical outcome but also minimizing potential complications, such as formation of subchondral bone cysts or intralesional osteophytes.
Collapse
Affiliation(s)
- Seiju Hayashi
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoyuki Nakasa
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masakazu Ishikawa
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Atsuo Nakamae
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shigeru Miyaki
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
49
|
Abstract
Cartilage damage is often associated with pain, reduced quality of life and decreased physical performance. In addition, even small cartilage lesions can lead to osteoarthritis. Since young active people are particularly affected, the correct treatment of cartilage damage plays an important role. Operative treatment includes bone marrow-stimulating procedures with or without a matrix, cell-based procedures and osteochondral graft transplantation. The choice of the best procedure depends on the localization, the size and the extent of the cartilage damage. In addition, especially in the treatment of cartilage damage to the lower limbs, the leg axis and loading relationships should be taken into account and possibly treated as well as additional joint instabilities. The following article gives an overview of the available surgical treatment possibilities as well as the correct indications and implementation. It also gives a brief projection of possible further treatment options associated with stem cells.
Collapse
Affiliation(s)
- A Rauch
- Sporttraumatologie und Kniechirurgie an der ATOS Klinik München, ECOM - Excellent Center of Medicine, Arabellastr. 17, 81925, München, Deutschland.
| | - E Rembeck
- Sporttraumatologie und Kniechirurgie an der ATOS Klinik München, ECOM - Excellent Center of Medicine, Arabellastr. 17, 81925, München, Deutschland
| | - L Kohn
- Klinik für Unfallchirurgie und Orthopädie, Krankenhaus Landshut Achdorf, Landshut, Deutschland
| |
Collapse
|
50
|
Farr J, Sherman SL. Evaluation of Novel Cartilage Treatment Options for Clinical Use. OPER TECHN SPORT MED 2018. [DOI: 10.1053/j.otsm.2018.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|