1
|
Han SC, Han J, Kim YK, Hyun MJ, Jeong HJ, Oh JH. Bone Marrow Aspirate Concentrate Combined With an Appropriate Carrier Effectively Promotes Bone-Tendon Interface Healing in a Rabbit Model of Chronic Rotator Cuff Tear. Am J Sports Med 2025; 53:600-611. [PMID: 39876035 DOI: 10.1177/03635465241313124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
BACKGROUND The efficacy of bone marrow aspirate concentrate (BMAC) in promoting bone-tendon interface (BTI) healing without any carriers remains a subject of debate. PURPOSE To evaluate BMAC effects with different carriers on tendon regeneration in a rabbit model of chronic rotator cuff tear. STUDY DESIGN Controlled laboratory study. METHODS In vitro, the amount of growth factor and the differentiation potential of BMAC with different carriers (polydeoxyribonucleotide [PDRN] and atelocollagen [ATC]) were assessed. In vivo, 64 rabbits were randomly allocated into 4 groups. Different materials were injected into the repair site according to the allocated group: control, saline; BMAC, BMAC and saline; BMAC-PDRN, BMAC with PDRN; BMAC-ATC, BMAC with ATC (n = 16 in each). Genetic and histologic analyses were conducted at 4 and 12 weeks after repair, while biomechanical evaluations were performed at 12 weeks after repair. RESULTS In vitro, the degree of multilineage differentiation was much stronger using BMAC with ATC as compared with administration of BMAC alone or BMAC with PDRN (P < .001). In vivo, the BMAC-ATC group had the highest levels of aggrecan expression, bone morphogenetic protein 2, and collagen type I alpha 1 among all groups (all P < .001) at 4 weeks after repair. Furthermore, the BMAC-ATC group showed collagen fiber continuity, denser collagen fibers, and more mature BTI as compared with the other groups (all P < .001) at 12 weeks after repair. Concurrently, the BMAC-ATC group also demonstrated significantly higher load-to-failure versus the remaining groups (all P < .001) at 12 weeks after repair. CONCLUSION Local application of BMAC without appropriate carriers could not enhance BTI healing. However, BMAC with 2 different carriers effectively accelerated BTI healing, particularly in the ATC environment. Therefore, the combination of BMAC and ATC may act as a powerful biological agent to promote healing after rotator cuff repair in a chronic rotator cuff tear model using rabbits. CLINICAL RELEVANCE Local application of BMAC without appropriate carriers could not enhance BTI healing. However, the combination of BMAC and ATC may synergistically promote rotator cuff tendon healing.
Collapse
Affiliation(s)
- Sheng Chen Han
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jian Han
- Department of Orthopaedic Surgery, The First People's Hospital of Huzhou, First Affiliated Hospital of Huzhou University, Huzhou, China
| | - Young Kyu Kim
- Department of Orthopaedic Surgery, Bundang Jesaeng Hospital, Seongnam, Republic of Korea
| | - Myung Jae Hyun
- Department of Orthopaedic Surgery, Yonsei the Baro Hospital, Siheung, Republic of Korea
| | - Hyeon Jang Jeong
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Joo Han Oh
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| |
Collapse
|
2
|
Kim YK, Kim YT, Won YS, Jang YH, Hwang ST, Han J, Jeon S, Kim SH, Oh JH. Efficacy of an Autologous Dermal Fibroblast Injection in Reducing the Retear Rate After Arthroscopic Rotator Cuff Repair: A Prospective Randomized Controlled Trial. Am J Sports Med 2025; 53:592-599. [PMID: 39876067 DOI: 10.1177/03635465241311605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
BACKGROUND Interest in biological augmentation for improving bone-tendon interface (BTI) healing after arthroscopic rotator cuff repair (ARCR) is growing. Dermal fibroblasts, known for collagen synthesis similar to tenocytes, have shown effectiveness in BTI healing in chronic rotator cuff tear (RCT) models in rabbits. However, no human clinical trials have been conducted. PURPOSE To evaluate the clinical efficacy of autologous dermal fibroblasts (ADFs) for BTI healing after ARCR in patients with full-thickness RCTs >2 cm. STUDY DESIGN Randomized controlled trial; Level of evidence, 2. METHODS A total of 86 patients were prospectively enrolled and randomized into 2 groups: an additional ADF injection between the bone and tendon during ARCR (ADF group) or ARCR alone (control group). A skin biopsy from the buttock was performed to obtain ADFs, which were cultured for approximately 4 weeks before surgery. ARCR was standardized to the double-row suture bridge technique to reduce the heterogeneity in different repair methods. The primary variable for evaluating ADF efficacy was the retear rate using magnetic resonance imaging at 6 months postoperatively. Secondary variables included range of motion, the American Shoulder and Elbow Surgeons score, the Constant score, and the Simple Shoulder Test score at baseline and at 6 and 12 months postoperatively. RESULTS Overall, 13 patients dropped out because of a subscapularis tendon tear, loss to follow-up, or the withdrawal of consent (7 in the ADF group and 6 in the control group). The retear rate was significantly lower in the ADF group (5.6% [2/36]) than in the control group (24.3% [9/37]) (P = .025). The American Shoulder and Elbow Surgeons, Constant, and Simple Shoulder Test scores showed significant improvement after surgery in both groups (all P values <.001). Functional scores and range of motion did not significantly differ between the 2 groups at 6 and 12 months (all P values >.05). CONCLUSION ADF application into the BTI during ARCR significantly decreased the retear rate in patients with full-thickness RCTs >2 cm. Therefore, an ADF injection could be a promising biological supplement to enhance BTI healing in these patients. However, clinical outcomes showed no significant difference between the 2 groups at 6 months and 1 year postoperatively.
Collapse
Affiliation(s)
- Young Kyu Kim
- Department of Orthopaedic Surgery, Bundang Jesaeng Hospital, Seongnam, Republic of Korea
| | - Yong Tae Kim
- Department of Orthopedic Surgery, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Republic of Korea
| | - Yoo-Sun Won
- Department of Orthopedic Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Young Hoon Jang
- Department of Orthopedic Surgery, Seoul One Hospital, Seoul, Republic of Korea
| | - Sun Tae Hwang
- Cutigen Research Institute, Tego Science, Seoul, Republic of Korea
| | - Jikhyon Han
- Cutigen Research Institute, Tego Science, Seoul, Republic of Korea
| | - Saewha Jeon
- Cutigen Research Institute, Tego Science, Seoul, Republic of Korea
| | - Sae Hoon Kim
- Department of Orthopedic Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Joo Han Oh
- Department of Orthopedic Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| |
Collapse
|
3
|
Han J, Li GC, Fang SY, Cui YM, Yang HH. Dermal Fibroblast-Derived Exosomes Promotes Bone-to-Tendon Interface Healing of Chronic Rotator Cuff Tear in Rabbit Model. Arthroscopy 2025:S0749-8063(25)00061-1. [PMID: 39914613 DOI: 10.1016/j.arthro.2025.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/05/2025] [Accepted: 01/19/2025] [Indexed: 03/04/2025]
Abstract
PURPOSE To investigate the efficacy of exosomes derived from dermal fibroblasts (DF-Ex) on bone-to-tendon interface (BTI) healing in a chronic rotator cuff tear (RCT) model of rabbit. METHODS After extraction of DF-Ex, the characterization of DF-Ex was identified in the in vitro study. In the in vivo experiment, 48 rabbits were randomly allocated into 3 groups. To create chronic RCT models, transected tendons were left untreated for 6 weeks and then were repaired in a transosseous manner. Different materials were injected into repair site according to the allocated group (group A: saline, group B: fibrin glue only, group C: DF-Ex with fibrin glue; n = 16 for each). Genetic and immunofluorescence analyses were conducted at 4 weeks post-surgery. Furthermore, genetic, histologic, and biomechanical analyses were conducted at 12 weeks post-surgery. RESULTS In vitro analyses revealed the exosomal marker proteins CD9, CD63, and ALIX were positively expressed in DF-Ex, whereas negative control Calnexin was nearly absent. In vivo analyses showed that group C had the highest mRNA expression levels of COL1A1, COL3A1, and ACAN among all groups (P < .001, P = .007, and P = .002, respectively) at 4 weeks postsurgery. Meanwhile, there were more preliminary fibrocartilaginous matrix (aggrecan+/collagen II+) formation in group C. At 12 weeks postsurgery, group C had better collagen fiber continuity and orientation, denser collagen fibers, more mature bone-to-tendon junction, and greater fibrocartilage layer formation compared with the other groups (all P < .05). Moreover, group C also had greater load-to-failure value (53.3 ± 6.1 N/kg, P < .001). CONCLUSIONS Topical DF-Ex administration effectively promoted BTI healing by upregulating the COL1A1, COL3A1, and ACAN mRNA expression levels at an early stage and enhancing the structural and biomechanical properties at 12 weeks after surgical repair of a chronic RCT model of rabbit. CLINICAL RELEVANCE The study could be a transitional study to investigate the efficacy of DF-Ex on BTI healing for surgical repair of chronic RCTs as a powerful biological agent in humans.
Collapse
Affiliation(s)
- Jian Han
- Department of Orthopaedic Surgery, The First People's Hospital of Huzhou, First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, China
| | - Guan-Cong Li
- Department of Orthopaedic Surgery, The First People's Hospital of Huzhou, First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, China
| | - Shen-Yun Fang
- Department of Orthopaedic Surgery, The First People's Hospital of Huzhou, First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, China
| | - Yun-Mei Cui
- Department of Pediatrics, The First People's Hospital of Huzhou, First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, China
| | - Hong-Hang Yang
- Department of Orthopaedic Surgery, The First People's Hospital of Huzhou, First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, China.
| |
Collapse
|
4
|
Jiang F, Zhao H, Zhang P, Bi Y, Zhang H, Sun S, Yao Y, Zhu X, Yang F, Liu Y, Xu S, Yu T, Xiao X. Challenges in tendon-bone healing: emphasizing inflammatory modulation mechanisms and treatment. Front Endocrinol (Lausanne) 2024; 15:1485876. [PMID: 39568806 PMCID: PMC11576169 DOI: 10.3389/fendo.2024.1485876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/11/2024] [Indexed: 11/22/2024] Open
Abstract
Tendons are fibrous connective tissues that transmit force from muscles to bones. Despite their ability to withstand various loads, tendons are susceptible to significant damage. The healing process of tendons and ligaments connected to bone surfaces after injury presents a clinical challenge due to the intricate structure, composition, cellular populations, and mechanics of the interface. Inflammation plays a pivotal role in tendon healing, creating an inflammatory microenvironment through cytokines and immune cells that aid in debris clearance, tendon cell proliferation, and collagen fiber formation. However, uncontrolled inflammation can lead to tissue damage, and adhesions, and impede proper tendon healing, culminating in scar tissue formation. Therefore, precise regulation of inflammation is crucial. This review offers insights into the impact of inflammation on tendon-bone healing and its underlying mechanisms. Understanding the inflammatory microenvironment, cellular interactions, and extracellular matrix dynamics is essential for promoting optimal healing of tendon-bone injuries. The roles of fibroblasts, inflammatory cytokines, chemokines, and growth factors in promoting healing, inhibiting scar formation, and facilitating tissue regeneration are discussed, highlighting the necessity of balancing the suppression of detrimental inflammatory responses with the promotion of beneficial aspects to enhance tendon healing outcomes. Additionally, the review explores the significant implications and translational potential of targeted inflammatory modulation therapies in refining strategies for tendon-bone healing treatments.
Collapse
Affiliation(s)
- Fan Jiang
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Haibo Zhao
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Po Zhang
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yanchi Bi
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Haoyun Zhang
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Shenjie Sun
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Yizhi Yao
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xuesai Zhu
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Fenghua Yang
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yang Liu
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Sicong Xu
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Tengbo Yu
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Xiao Xiao
- Central Laboratories, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
5
|
Han J, Han SC, Jeong HJ, Rhee SM, Kim YS, Jin YJ, Park SH, Oh JH. Recombinant Human Parathyroid Hormone Biocomposite Promotes Bone-to-Tendon Interface Healing by Enhancing Tenogenesis, Chondrogenesis, and Osteogenesis in a Rabbit Model of Chronic Rotator Cuff Tears. Arthroscopy 2024; 40:1093-1104.e2. [PMID: 38000485 DOI: 10.1016/j.arthro.2023.09.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 11/26/2023]
Abstract
PURPOSE To investigate the effect of recombinant human parathyroid hormone (rhPTH) biocomposite on bone-to-tendon interface (BTI) healing for surgical repair of a chronic rotator cuff tear (RCT) model of rabbit, focusing on genetic, histologic, biomechanical and micro-computed tomography (CT) evaluations. METHODS Sixty-four rabbits were equally assigned to the 4 groups: saline injection (group A), nanofiber sheet alone (group B), rhPTH-soaked nanofiber sheet (nanofiber sheet was soaked with rhPTH, group C), and rhPTH biocomposite (rhPTH permeated the nanofiber sheet by coaxial electrospinning, group D). The release kinetics of rhPTH (groups C and D) was examined for 6 weeks in vitro. Nanofiber scaffolds were implanted on the surface of the repair site 6 weeks after the induction of chronic RCT. Genetic and histologic analyses were conducted 4 weeks after surgery. Furthermore, genetic, histologic, biomechanical, micro-CT, and serologic analyses were performed 12 weeks after surgery. RESULTS In vivo, group D showed the highest collagen type I alpha 1 (COL1A1), collagen type III alpha 1 (COL3A1), and bone morphogenetic protein 2 (BMP-2) messenger RNA (mRNA) expression levels (all P < .001) 4 weeks after surgery; however, there were no differences between groups at 12 weeks postsurgery. After 12 weeks postsurgery, group D showed better collagen fiber continuity and orientation, denser collagen fibers, more mature bone-to-tendon junction, and greater fibrocartilage layer formation compared with the other groups (all P < .05). Furthermore, group D showed the highest load-to-failure rate (28.9 ± 2.0 N/kg for group A, 30.1 ± 3.3 N/kg for group B, 39.7 ± 2.7 N/kg for group C, and 48.2 ± 4.5 N/kg for group D, P < .001) and micro-CT outcomes, including bone and tissue mineral density, and bone volume/total volume rate (all P < .001) at 12 weeks postsurgery. CONCLUSIONS In comparison to rhPTH-soaked nanofiber sheet and the other control groups, rhPTH biocomposite effectively accelerated BTI healing by enhancing the mRNA expression levels of COL1A1, COL3A1, and BMP-2 at an early stage and achieving tenogenesis, chondrogenesis, and osteogenesis at 12 weeks after surgical repair of a chronic RCT model of rabbit. CLINICAL RELEVANCE The present study might be a transitional study to demonstrate the efficacy of rhPTH biocomposites on BTI healing for surgical repair of chronic RCTs as an adaptable polymer biomaterial in humans.
Collapse
Affiliation(s)
- Jian Han
- Department of Orthopaedic Surgery, The First People's Hospital of Huzhou, First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, China
| | - Sheng Chen Han
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Korea
| | - Hyeon Jang Jeong
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Korea
| | - Sung Min Rhee
- Department of Orthopedic Surgery, KyungHee University Medical Center, Seoul, Korea
| | - Yeong Seo Kim
- School of Mechanical Engineering, Pusan National University, Busan, Korea
| | - Yong Jun Jin
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Korea
| | - Suk-Hee Park
- School of Mechanical Engineering, Pusan National University, Busan, Korea.
| | - Joo Han Oh
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Korea.
| |
Collapse
|
6
|
Lacheta L, Gao X, Miles JW, Murata Y, Fukase N, Utsunomiya H, Dornan G, Tashman S, Kashyap R, Altintas B, Ravuri S, Philippon M, Huard J, Millett PJ. Losartan in Combination With Bone Marrow Stimulation Showed Synergistic Effects on Load to Failure and Tendon Matrix Organization in a Rabbit Model. Arthroscopy 2023; 39:2408-2419. [PMID: 37270113 DOI: 10.1016/j.arthro.2023.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/05/2023]
Abstract
PURPOSE To investigate the effects of combining bone marrow stimulation (BMS) with oral losartan to block transforming growth factor β1 (TGF-β1) on biomechanical repair strength in a rabbit chronic injury model. METHODS Forty rabbits were randomly allocated into 4 groups (10 in each group). The supraspinatus tendon was detached and left alone for 6 weeks to establish a rabbit chronic injury model and was then repaired in a surgical procedure using a transosseous, linked, crossing repair construct. The animals were divided into the following groups: control group (group C), surgical repair only; BMS group (group B), surgical repair with BMS of the tuberosity; losartan group (group L), surgical repair plus oral losartan (TGF-β1 blocker) for 8 weeks; and BMS-plus-losartan group (group BL), surgical repair plus BMS plus oral losartan for 8 weeks. At 8 weeks after repair, biomechanical and histologic evaluations were performed. RESULTS The biomechanical testing results showed significantly higher ultimate load to failure in group BL than in group B (P = .029) but not compared with group C or group L. A 2 × 2 analysis-of-variance model found that the effect of losartan on ultimate load significantly depended on whether BMS was performed (interaction term F1,28 = 5.78, P = .018). No difference was found between the other groups. No difference in stiffness was found between any groups. On histologic assessment, groups B, L, and BL showed improved tendon morphology and an organized type I collagen matrix with less type III collagen compared with group C. Group BL showed the most highly organized tendon matrix with more type I collagen and less type III collagen, which indicates less fibrosis. Similar results were found at the bone-tendon interface. CONCLUSIONS Rotator cuff repair combined with oral losartan and BMS of the greater tuberosity showed improved pullout strength and a highly organized tendon matrix in this rabbit chronic injury model. CLINICAL RELEVANCE Tendon healing or scarring is accompanied by the formation of fibrosis, which has been shown to result in compromised biomechanical properties, and is therefore a potential limiting factor in healing after rotator cuff repair. TGF-β1 expression has been shown to play an important role in the formation of fibrosis. Recent studies focusing on muscle healing and cartilage repair have found that the downregulation of TGF-β1 by losartan intake can reduce fibrosis and improve tissue regeneration in animal models.
Collapse
Affiliation(s)
- Lucca Lacheta
- Department of Sports Orthopaedics, Technical University of Munich, Munich, Germany; Steadman Philippon Research Institute, Vail, Colorado, U.S.A
| | - Xueqin Gao
- Steadman Philippon Research Institute, Vail, Colorado, U.S.A
| | | | - Yoichi Murata
- Steadman Philippon Research Institute, Vail, Colorado, U.S.A
| | - Naomasa Fukase
- Steadman Philippon Research Institute, Vail, Colorado, U.S.A
| | | | - Grant Dornan
- Steadman Philippon Research Institute, Vail, Colorado, U.S.A
| | - Scott Tashman
- Steadman Philippon Research Institute, Vail, Colorado, U.S.A
| | - Ritesh Kashyap
- Steadman Philippon Research Institute, Vail, Colorado, U.S.A
| | - Burak Altintas
- Division of Orthopaedic Surgery, NYC Health + Hospitals/Jacobi, Bronx, New York, U.S.A.; Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, New York, U.S.A
| | - Sudheer Ravuri
- Steadman Philippon Research Institute, Vail, Colorado, U.S.A
| | - Marc Philippon
- Steadman Philippon Research Institute, Vail, Colorado, U.S.A.; The Steadman Clinic, Vail, Colorado, U.S.A
| | - Johnny Huard
- Steadman Philippon Research Institute, Vail, Colorado, U.S.A.; The Steadman Clinic, Vail, Colorado, U.S.A..
| | - Peter J Millett
- Steadman Philippon Research Institute, Vail, Colorado, U.S.A.; The Steadman Clinic, Vail, Colorado, U.S.A
| |
Collapse
|
7
|
Rhee SM, Jeon S, Han J, Kim YH, Jeong HJ, Park JH, Oh JH. The Effect of Combining Hyaluronic Acid and Human Dermal Fibroblasts on Tendon Healing. Am J Sports Med 2023; 51:3243-3250. [PMID: 37681499 DOI: 10.1177/03635465231191779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
BACKGROUND The incidence of rotator cuff tears is rapidly increasing, and operative techniques for rotator cuff repair have been developed. However, the rates of postoperative retear remain high. PURPOSE/HYPOTHESIS The purpose was to determine the effects of human dermal fibroblasts (HDFs) with hyaluronic acid (HA) on tendon-to-bone healing in a rabbit model of chronic rotator cuff tear injury. It was hypothesized that HA would enhance HDF proliferation and that a combination of HA and HDFs would produce a synergistic effect on the healing of repaired rotator cuff tendons of rabbits. STUDY DESIGN Controlled laboratory study. METHODS For in vitro study, HDFs were plated on a 24-well plate. After 1 day, 2 wells were designated as the test group and treated with 0.75% HA in phenol red-free Dulbecco's modified Eagle medium (DMEM). An other 2 wells served as control groups and were treated with the same volume of phenol red-free DMEM without HA. Each group was duplicated, resulting in a total of 4 wells, with 2 wells in each group for replication purposes. The cells were incubated for 24 hours, followed by 72-hour cultivation. Absorbance ratios at 96 and 24 hours were compared to evaluate cell proliferation. For the in vivo study, a total of 24 rabbits were randomly allocated to groups A, B, and C (n = 8 each). Supraspinatus tendons were detached bilaterally and left for 6 weeks to establish a chronic rotator tear model. Torn tendons were subsequently repaired using the following injections: group A, 0.5 × 106 HDFs with HA; group B, HA only; and group C, saline only. At 12 weeks after repair, biomechanical tests and histological evaluation were performed. RESULTS In vitro study showed that HDF proliferation significantly increased with HA (HDFs with HA vs HDFs without HA; 3.96 ± 0.09 vs 2.53 ± 0.15; P < .01). In vivo, group A showed significantly higher load-to-failure values than the other groups (53.8 ± 6.9 N/kg for group A, 30.6 ± 6.4 N/kg for group B, and 24.3 ± 7.6 N/kg for group C; P < .001). Histological evaluation confirmed that group A showed higher collagen fiber density and better collagen fiber continuity, tendon-to-bone interface maturation, and nuclear shape than the other groups (all P < .05). CONCLUSION This controlled laboratory study verified the potential of the combination of HDFs and HA in enhancing healing in a chronic rotator cuff tear rabbit model. CLINICAL RELEVANCE A potential synergistic effect on rotator cuff tendon healing may be expected from a combination of HDFs and HA.
Collapse
Affiliation(s)
- Sung-Min Rhee
- Shoulder & Elbow Clinic, Department of Orthopaedic Surgery, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Saewha Jeon
- Cutigen Research Institute, Tego Science Inc, Seoul, Republic of Korea
| | - Jikhyon Han
- Cutigen Research Institute, Tego Science Inc, Seoul, Republic of Korea
| | - Yun Hee Kim
- Cutigen Research Institute, Tego Science Inc, Seoul, Republic of Korea
| | - Hyeon Jang Jeong
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
| | - Joo Hyun Park
- Department of Orthopaedic Surgery, College of Medicine, Dongguk University Hospital, Goyang-si, Republic of Korea
| | - Joo Han Oh
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
| |
Collapse
|
8
|
Han J, Han SC, Kim YK, Tarafder S, Jeong HJ, Jeong HJ, Chung JY, Lee CH, Oh JH. Bioactive Scaffold With Spatially Embedded Growth Factors Promotes Bone-to-Tendon Interface Healing of Chronic Rotator Cuff Tear in Rabbit Model. Am J Sports Med 2023; 51:2431-2442. [PMID: 37345646 DOI: 10.1177/03635465231180289] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
BACKGROUND Functional restoration of the bone-to-tendon interface (BTI) after rotator cuff repair is a challenge. Therefore, numerous biocompatible biomaterials for promoting BTI healing have been investigated. PURPOSE To determine the efficacy of scaffolds with spatiotemporal delivery of growth factors (GFs) to accelerate BTI healing after rotator cuff repair. STUDY DESIGN Controlled laboratory study. METHODS An advanced 3-dimensional printing technique was used to fabricate bioactive scaffolds with spatiotemporal delivery of multiple GFs targeting the tendon, fibrocartilage, and bone regions. In total, 50 rabbits were used: 2 nonoperated controls and 48 rabbits with induced chronic rotator cuff tears (RCTs). The animals with RCTs were divided into 3 groups: (A) saline injection, (B) scaffold without GF, and (C) scaffold with GF. To induce chronic models, RCTs were left unrepaired for 6 weeks; then, surgical repairs with or without bioactive scaffolds were performed. For groups B and C, each scaffold was implanted between the bony footprint and the supraspinatus tendon. Four weeks after repair, quantitative real-time polymerase chain reaction and immunofluorescence analyses were performed to evaluate early signs of regenerative healing. Histological, biomechanical, and micro-computed tomography analyses were performed 12 weeks after repair. RESULTS Group C had the highest mRNA expression of collagen type I alpha 1, collagen type III alpha 1, and aggrecan. Immunofluorescence analysis showed the formation of an aggrecan+/collagen II+ fibrocartilaginous matrix at the BTI when repaired with scaffold with GFs. Histologic analysis revealed greater collagen fiber continuity, denser collagen fibers, and a more mature tendon-to-bone junction in GF-embedded scaffolds than those in the other groups. Group C demonstrated the highest load-to-failure ratio, and modulus mapping showed that the distribution of the micromechanical properties of the BTI repaired with GF-embedded scaffolds was comparable with that of the native BTI. Micro-computed tomography analysis identified the highest bone mineral density and bone volume/total volume ratio in group C. CONCLUSION Bioactive scaffolds with spatially embedded GFs have significant potential to promote the BTI healing of chronic RCTs in a rabbit model. CLINICAL RELEVANCE The scaffolds with spatiotemporal delivery of GF may serve as an off-the-shelf biomaterial graft to promote the healing of RCTs.
Collapse
Affiliation(s)
- Jian Han
- Department of Orthopaedic Surgery, The First People's Hospital of Huzhou, Huzhou, Zhejiang Province, China
| | - Sheng Chen Han
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Young Kyu Kim
- Department of Orthopaedic Surgery, Bundang Jesaeng Hospital, Seongnam, Republic of Korea
| | - Solaiman Tarafder
- Regenerative Engineering Laboratory, Center for Dental and Craniofacial Research, Columbia University Irving Medical Center, New York, New York, USA
| | - Hun Jin Jeong
- Regenerative Engineering Laboratory, Center for Dental and Craniofacial Research, Columbia University Irving Medical Center, New York, New York, USA
| | - Hyeon Jang Jeong
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ju Young Chung
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Chang H Lee
- Regenerative Engineering Laboratory, Center for Dental and Craniofacial Research, Columbia University Irving Medical Center, New York, New York, USA
| | - Joo Han Oh
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| |
Collapse
|
9
|
Song Y, Li P, Xu Y, Lin Z, Deng Z, Chen C. Menstrual Blood-Derived Mesenchymal Stem Cells Encapsulated in Autologous Platelet-Rich Gel Facilitate Rotator Cuff Healing in a Rabbit Model of Chronic Tears. Am J Sports Med 2023:3635465231168104. [PMID: 37184028 DOI: 10.1177/03635465231168104] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Successful management of chronic rotator cuff (RC) tears remains a challenge owing to its limited intrinsic healing capacity and unsatisfactory failure rate. Menstrual blood-derived mesenchymal stem cells (MenSCs) have the potential to differentiate into the chondrogenic or osteogenic lineage. Autologous platelet-rich gel (APG), a gel material derived from platelet-rich plasma (PRP), can be applied as a carrier system for cell delivery and also as a releasing system for endogenous growth factors. PURPOSE To investigate the effect of human MenSCs encapsulated in APG (MenSCs@APG) on the healing of chronic RC tears in a rabbit model. STUDY DESIGN Controlled laboratory study. METHODS After evaluation of the effect of PRP on MenSC proliferation or differentiation, the stem cells were encapsulated in APG for in vivo injection. Supraspinatus tenotomy from the right greater tuberosity was performed on 45 New Zealand White rabbits. After 6 weeks, these rabbits were randomly allocated to 3 supplemental treatments during supraspinatus repair: saline injection (control [CTL] group), APG injection (APG group), and MenSCs@APG injection (MenSCs@APG group). At week 18, these rabbits were sacrificed to harvest the humerus-supraspinatus tendon complexes for micro-computed tomography (CT), histological evaluation, tensile test, and MenSC tracking. RESULTS In vitro results showed that APG can stimulate MenSC proliferation and enhance chondrogenic or osteogenic differentiation. In vivo results showed that APG can act as a carrier for delivering MenSCs into the healing site, and also as a stimulator for enhancing the in vivo performance of MenSCs. Micro-CT showed that bone volume/total volume and trabecular thickness of the new bone in the MenSCs@APG group presented significantly larger values than those of the APG or CTL group (P < .05 for all). Histologically, compared with the CTL or APG group, significantly more mature fibrocartilage regenerated at the healing site in the MenSCs@APG group. A large number of human nuclei-stained cells were observed in the MenSCs@APG group, presenting a similar appearance to fibrochondrocytes or osteocytes. Biomechanically, the MenSCs@APG group showed significantly higher failure load and stiffness than the APG or CTL group (P < .05 for all). CONCLUSION Human MenSCs@APG facilitated RC healing in a rabbit model of chronic tears. CLINICAL RELEVANCE Autogenous MenSCs@APG may be a new stem cell-based therapy for augmenting RC healing in the clinic.
Collapse
Affiliation(s)
- Ya Song
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ping Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Xu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Zhangyuan Lin
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenhan Deng
- Department of Sports Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China
| | - Can Chen
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Department of Sports Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China
| |
Collapse
|
10
|
Vasquez-Bolanos LS, Gibbons MC, Ruoss S, Wu IT, Esparza MC, Fithian DC, Lane JG, Singh A, Nasamran CA, Fisch KM, Ward SR. Transcriptional time course after rotator cuff repair in 6 month old female rabbits. Front Physiol 2023; 14:1164055. [PMID: 37228812 PMCID: PMC10203179 DOI: 10.3389/fphys.2023.1164055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction: Rotator cuff tears are prevalent in the population above the age of 60. The disease progression leads to muscle atrophy, fibrosis, and fatty infiltration, which is not improved upon with surgical repair, highlighting the need to better understand the underlying biology impairing more favorable outcomes. Methods: In this study, we collected supraspinatus muscle tissue from 6 month old female rabbits who had undergone unilateral tenotomy for 8 weeks at 1, 2, 4, or 8 weeks post-repair (n = 4/group). RNA sequencing and enrichment analyses were performed to identify a transcriptional timeline of rotator cuff muscle adaptations and related morphological sequelae. Results: There were differentially expressed (DE) genes at 1 (819 up/210 down), 2 (776/120), and 4 (63/27) weeks post-repair, with none at 8 week post-repair. Of the time points with DE genes, there were 1092 unique DE genes and 442 shared genes, highlighting that there are changing processes in the muscle at each time point. Broadly, 1-week post-repair differentially expressed genes were significantly enriched in pathways of metabolism and energetic activity, binding, and regulation. Many were also significantly enriched at 2 weeks, with the addition of NIF/NF-kappaB signaling, transcription in response to hypoxia, and mRNA stability alongside many additional pathways. There was also a shift in transcriptional activity at 4 weeks post-repair with significantly enriched pathways for lipids, hormones, apoptosis, and cytokine activity, despite an overall decrease in the number of differentially expressed genes. At 8 weeks post-repair there were no DE genes when compared to control. These transcriptional profiles were correlated with the histological findings of increased fat, degeneration, and fibrosis. Specifically, correlated gene sets were enriched for fatty acid metabolism, TGF-B-related, and other pathways. Discussion: This study identifies the timeline of transcriptional changes in muscle after RC repair, which by itself, does not induce a growth/regenerative response as desired. Instead, it is predominately related to metabolism/energetics changes at 1 week post-repair, unclear or asynchronous transcriptional diversity at 2 weeks post-repair, increased adipogenesis at 4 weeks post-repair, and a low transcriptional steady state or a dysregulated stress response at 8 weeks post-repair.
Collapse
Affiliation(s)
- Laura S. Vasquez-Bolanos
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
- Department of Orthopaedic Surgery, University of California, San Diego, San Diego, CA, United States
| | - Michael C. Gibbons
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
- Department of Orthopaedic Surgery, University of California, San Diego, San Diego, CA, United States
| | - Severin Ruoss
- Department of Orthopaedic Surgery, University of California, San Diego, San Diego, CA, United States
| | - Isabella T. Wu
- Department of Orthopaedic Surgery, University of California, San Diego, San Diego, CA, United States
| | - Mary C. Esparza
- Department of Orthopaedic Surgery, University of California, San Diego, San Diego, CA, United States
| | - Donald C. Fithian
- Department of Orthopaedic Surgery, University of California, San Diego, San Diego, CA, United States
| | - John G. Lane
- Department of Orthopaedic Surgery, University of California, San Diego, San Diego, CA, United States
| | - Anshuman Singh
- Department of Orthopaedic Surgery, University of California, San Diego, San Diego, CA, United States
- Department of Orthopaedic Surgery, Kaiser Permanente, San Diego, CA, United States
| | - Chanond A. Nasamran
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Kathleen M. Fisch
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California, San Diego, San Diego, CA, United States
- Department of Obstetrics, Gynecology and Reproductive Science, University of California, San Diego, San Diego, CA, United States
| | - Samuel R. Ward
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
- Department of Orthopaedic Surgery, University of California, San Diego, San Diego, CA, United States
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
11
|
Gulcu A, Turhan E, Aslan A, Çaylı S, Alimogullari E, Akcan G. Investigation the Effect of Human Recombinant Epidermal Growth Factor on Rotator Cuff Healing: An Experimental Model. Rev Bras Ortop 2023; 58:271-278. [PMID: 37252305 PMCID: PMC10212643 DOI: 10.1055/s-0042-1750832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 04/28/2022] [Indexed: 10/17/2022] Open
Abstract
Objective To investigate the effectiveness of human recombinant epidermal growth factor in the healing of rotator cuff tear in the rabbit shoulder. Methods Rotator cuff tears (RCTs) were experimentally created on both shoulders of 20 New Zealand rabbits. The rabbits were divided into the following groups: RCT (sham group; n = 5), RCT + EGF (EGF group; n = 5), RCT + transosseous repair (repair group; n = 5), and RCT + EGF + transosseous repair (combined repair + EGF group; n = 5). All rabbits were then observed for 3 weeks, and biopsies were taken from the right shoulders in the third week. After three more weeks of observation, all rabbits were sacrificed, and a biopsy removed from their left shoulders. All biopsy material was stained with haematoxylin & eosin (H&E) and vascularity, cellularity, the proportion of fibers and the number of fibrocartilage cells were evaluated under light microscope. Results The highest collagen amount and the most regular collagen sequence was detected in the combined repair + EGF group. The repair group and the EGF group showed higher fibroblastic activity and capillary formation when compared with the sham group, but the highest fibroblastic activity and capillary formation with highest vascularity was detected in the combined repair + EGF group ( p < 0.001). EGF seems to improve wound healing in the repair of RCT. The EGF application alone, even without repair surgery, seems to be beneficial to RCT healing. Conclusion In addition to rotator cuff tear repair, application of human recombinant epidermal growth factor has an effect on rotator cuff healing in rabbit shoulders.
Collapse
Affiliation(s)
- Anil Gulcu
- Departamento de Ortopedia e Traumatologia, Faculdade de Medicina, Universidade Alanya Alaaddin Keykubat, Alanya/Antalya, Turquia
| | - Egemen Turhan
- Departamento de Ortopedia e Traumatologia, Faculdade de Medicina, Universidade Hacettepe, Ankara, Turquia
| | - Ahmet Aslan
- Departamento de Ortopedia e Traumatologia, Faculdade de Medicina, Universidade Alanya Alaaddin Keykubat, Alanya/Antalya, Turquia
| | - Sevil Çaylı
- Departamento de Histologia e Embriologia, Faculdade de Medicina, Universidade Ankara Yıldırım Beyazıt, Ankara, Turquia
| | - Ebru Alimogullari
- Departamento de Histologia e Embriologia, Faculdade de Medicina, Universidade Ankara Yıldırım Beyazıt, Ankara, Turquia
| | - Gülben Akcan
- Departamento de Histologia e Embriologia, Faculdade de Medicina, Universidade Ankara Yıldırım Beyazıt, Ankara, Turquia
| |
Collapse
|
12
|
Bono OJ, Jenkin B, Forlizzi J, Mousad A, Le Breton S, MacAskill M, Mandalia K, Mithoefer K, Ramappa A, Ross G, Shah SS. Evidence for Utilization of Injectable Biologic Augmentation in Primary Rotator Cuff Repair: A Systematic Review of Data From 2010 to 2022. Orthop J Sports Med 2023; 11:23259671221150037. [PMID: 36756167 PMCID: PMC9900676 DOI: 10.1177/23259671221150037] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/21/2022] [Indexed: 02/05/2023] Open
Abstract
Background Biologic healing after rotator cuff repair remains a significant challenge. Injectable biologic augmentation may improve tissue quality at the suture-tendon interface. Purpose To investigate the effect of injectable biologic supplementation in rotator cuff repair and to assess the quality and adherence to evolving reporting standards. Study Design Systematic review; Level of evidence, 3. Methods A systematic review was conducted following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Included were 40 studies: 29 preclinical (in vivo animal models) and 11 clinical. Each clinical study was assessed for quality, risk of bias, and adherence to relevant MIBO (Minimum Information for Studies Evaluating Biologics in Orthopaedics) guidelines. The outcomes of interest were reported load to failure, load to gap, gap size, and stiffness in the preclinical studies, and healing rate and any patient-reported outcome measures in the clinical studies. Results Injectables reported included growth factors (eg, transforming growth factor-beta 3, erythropoietin), bone marrow-derived mesenchymal stem cells and adipose-derived mesenchymal stem cells (ADSCs), and other agents such as platelet-rich plasma (PRP) and hyaluronic acid. The most common findings for preclinical injectables were increased load to failure (16/29 studies; 55.2%) and improved collagen histological quality (11/29 studies; 37.9%). All 11 clinical studies (10 PRP, 1 ADSC) indicated no adverse events, with similar or improved patient-reported outcomes compared with repairs in the control groups. In 1 study utilizing an innovative delivery technique, a concentrated PRP globule with fibrin matrix was shuttled over a suture to maintain concentrated PRP at the repair site and demonstrated a significant decrease in retears (P = .03) at a 31-month follow-up. A matched-cohort study investigating augmentation with ADSCs demonstrated a significantly lower retear rate in the ADSC-augmented group than the control group at a 28-month follow-up (P < .001). On average, the clinical studies adhered to 66% of relevant MIBO reporting guidelines and had a low risk of bias. Conclusion Approximately 83% of preclinical studies found a positive biomechanical or histological effect, with no studies showing an overall negative effect. Clinically, utilization of innovative delivery techniques may reduce the risk of arthroscopic washout of PRP and improve retear rates. ADSCs were shown to reduce retear rates at a 28-month follow-up.
Collapse
Affiliation(s)
- Olivia J. Bono
- Albany Medical College, Albany, New York, USA.,Olivia J. Bono, BA, Albany Medical College, 49 New Scotland
Avenue, Albany, NY 12208, USA (
)
| | - Bryan Jenkin
- Tufts University School of Medicine, Boston, Massachusetts,
USA
| | | | - Albert Mousad
- Tufts University School of Medicine, Boston, Massachusetts,
USA
| | | | | | | | - Kai Mithoefer
- New England Baptist Hospital, Boston, Massachusetts, USA
| | - Arun Ramappa
- Beth Israel Deaconess Medical Center, Boston, Massachusetts,
USA
| | - Glen Ross
- New England Baptist Hospital, Boston, Massachusetts, USA
| | - Sarav S. Shah
- New England Baptist Hospital, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Combination of autologous osteochondral and periosteum transplantation effectively promotes fibrocartilage regeneration at the tendon-bone junction of the rotator cuff in rabbits. Knee Surg Sports Traumatol Arthrosc 2022; 31:1953-1962. [PMID: 36515732 DOI: 10.1007/s00167-022-07250-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE Rotator cuff tendon-bone healing often leads to scarring and low biomechanical strength, resulting in a tendency to re-tear. This study examined whether combining autologous osteochondral transplantation and periosteum transplantation increases fibrocartilage transition zone regeneration and improves biomechanical fixation. METHODS A total of 48 New Zealand white rabbits were divided into the periosteum, autologous osteochondral, combination of autologous osteochondral and periosteum, and control groups. The supraspinatus tendon was cut from the greater tuberosity and repaired by different transplants. A total of 12 rabbits were used for histological examination (haematoxylin and eosin staining, Masson's staining and Safranin-O staining) at 4, 8 and 12 weeks after the repair, and 36 rabbits were used for biomechanical tests (maximal failure load and stiffness). RESULTS At 4 weeks following the operation, each group had a large tendon-bone gap with a small number of disordered collagen fibres. At 8 weeks, the tendon-bone gap was smaller than that before the operation, and the tendon-bone gap in each experimental group was smaller with neater and denser collagen fibres and chondrocytes than in the control group, with the osteochondral combined periosteum group having the best results. At 12 weeks, the typical tendon-bone transitional structure was observed in the osteochondral combined periosteum group, and more collagen fibres and chondrocytes were generated in each group. The osteochondral combined periosteum group had the largest staining area and the largest amount of cartilage. The maximum tensile strength and stiffness of each group increased over time. There was no significant difference in each group's maximum tensile strength and stiffness at 4 weeks after the operation. However, the maximum tensile strength and stiffness of the osteochondral combined periosteum group at 8 and 12 weeks after operation were significantly higher than those of other groups (P < 0.05). CONCLUSION Histological and biomechanical results show that autologous osteochondral transplantation combined with periosteum transplantation can effectively promote the regeneration of fibrous cartilage in the tendon-bone junction of the rotator cuff. It is concluded that this technique is a new treatment method to promote tendon-bone healing in the rotator cuff.
Collapse
|
14
|
Zhang G, Zhou X, Hu S, Jin Y, Qiu Z. Large animal models for the study of tendinopathy. Front Cell Dev Biol 2022; 10:1031638. [PMID: 36393858 PMCID: PMC9640604 DOI: 10.3389/fcell.2022.1031638] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/12/2022] [Indexed: 11/23/2022] Open
Abstract
Tendinopathy has a high incidence in athletes and the aging population. It can cause pain and movement disorders, and is one of the most difficult problems in orthopedics. Animal models of tendinopathy provide potentially efficient and effective means to develop understanding of human tendinopathy and its underlying pathological mechanisms and treatments. The selection of preclinical models is essential to ensure the successful translation of effective and innovative treatments into clinical practice. Large animals can be used in both micro- and macro-level research owing to their similarity to humans in size, structure, and function. This article reviews the application of large animal models in tendinopathy regarding injuries to four tendons: rotator cuff, patellar ligament, Achilles tendon, and flexor tendon. The advantages and disadvantages of studying tendinopathy with large animal models are summarized. It is hoped that, with further development of animal models of tendinopathy, new strategies for the prevention and treatment of tendinopathy in humans will be developed.
Collapse
Affiliation(s)
- Guorong Zhang
- School of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xuyan Zhou
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Shuang Hu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Ye Jin, ; Zhidong Qiu,
| | - Zhidong Qiu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Ye Jin, ; Zhidong Qiu,
| |
Collapse
|
15
|
Abstract
Approved therapies for tendon diseases have not yet changed the clinical practice of symptomatic pain treatment and physiotherapy. This review article summarizes advances in the development of novel drugs, biologic products, and biomaterial therapies for tendon diseases with perspectives for translation of integrated therapies. Shifting from targeting symptom relief toward disease modification and prevention of disease progression may open new avenues for therapies. Deep evidence-based clinical, cellular, and molecular characterization of the underlying pathology of tendon diseases, as well as therapeutic delivery optimization and establishment of multidiscipline interorganizational collaboration platforms, may accelerate the discovery and translation of transformative therapies for tendon diseases.
Collapse
Affiliation(s)
- Benjamin R. Freedman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - David J. Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | | |
Collapse
|
16
|
Han J, Rhee SM, Kim YW, Park SH, Oh JH. Three-dimensionally printed recombinant human parathyroid hormone-soaked nanofiber sheet accelerates tendon-to-bone healing in a rabbit model of chronic rotator cuff tear. J Shoulder Elbow Surg 2022; 31:1628-1639. [PMID: 35337954 DOI: 10.1016/j.jse.2022.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/23/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Recombinant human parathyroid hormone (rhPTH) promotes tendon-to-bone healing in humans and animals with rotator cuff tear (RCT). However, problems regarding repeated systemic rhPTH injections in humans exist. This study was conducted to evaluate the effect of topical rhPTH administration using 3-dimensionally (3D) printed nanofiber sheets on tendon-to-bone healing in a rabbit RCT model compared to that of direct topical rhPTH administration. METHODS Eighty rabbits were randomly assigned to 5 groups (n = 16 each). To create the chronic RCT model, we induced complete supraspinatus tendon tears in both shoulders and left them untreated for 6 weeks. All transected tendons were repaired in a transosseous manner with saline injection in group A, hyaluronic acid (HA) injection in group B, 3D-printed nanofiber sheet fixation in group C, rhPTH and HA injection in group D, and 3D-printed rhPTH- and HA-soaked nanofiber sheet fixation in group E. Genetic (messenger RNA expression evaluation) and histologic evaluations (hematoxylin and eosin and Masson trichrome staining) were performed in half of the rabbits at 4 weeks postrepair. Genetic, histologic, and biomechanical evaluations (mode of tear and load to failure) were performed in the remaining rabbits at 12 weeks. RESULTS For genetic evaluation, group E showed a higher collagen type I alpha 1 expression level than did the other groups (P = .008) at 4 weeks. However, its expression level was downregulated, and there was no difference at 12 weeks. For histologic evaluation, group E showed greater collagen fiber continuity, denser collagen fibers, and more mature tendon-to-bone junction than did the other groups (P = .001, P = .001, and P = .003, respectively) at 12 weeks. For biomechanical evaluation, group E showed a higher load-to-failure rate than did the other groups (P < .001) at 12 weeks. CONCLUSION Three-dimensionally printed rhPTH-soaked nanofiber sheet fixation can promote tendon-to-bone healing of chronic RCT.
Collapse
Affiliation(s)
- Jian Han
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Republic of Korea
| | - Sung Min Rhee
- Department of Orthopaedic Surgery, KyungHee University Medical Center, Seoul, Republic of Korea
| | - Young Won Kim
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Suk Hee Park
- School of Mechanical Engineering, Pusan National University, Republic of Korea.
| | - Joo Han Oh
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Republic of Korea.
| |
Collapse
|
17
|
Xu J, Han K, Ye Z, Wu C, Wu X, Li Z, Zhang T, Xu C, Su W, Zhao J. Biomechanical and Histological Results of Dual-Suspensory Reconstruction Using Banded Tendon Graft to Bridge Massive Rotator Cuff Tears in a Chronic Rabbit Model. Am J Sports Med 2022; 50:2767-2781. [PMID: 35853168 DOI: 10.1177/03635465221102744] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Bridging rotator cuff tendon defects with a patch is a reasonable treatment for massive rotator cuff tears (MRCTs). However, the poor outcomes associated with routine patch repair have prompted exploration into superior bridging techniques and graft structures. PURPOSE To detect whether dual-suspensory reconstruction using a banded graft would be superior to routine bridging using a patch graft to treat MRCTs and to detect the comparative effectiveness of patellar tendon (PT) and fascia lata (FL) grafts in dual-suspensory reconstruction. STUDY DESIGN Controlled laboratory study. METHODS Unilateral chronic MRCTs were created in 72 mature male New Zealand White rabbits, which were randomly divided into 3 groups: (1) patch bridging repair using rectangular FL autograft (PR-FL), (2) dual-suspensory bridging reconstruction using banded FL autograft (DSR-FL), and (3) dual-suspensory bridging reconstruction using banded PT autograft (DSR-PT). In each group, the mean failure load and stiffness of the cuff-graft-humerus (C-G-H) complexes of 6-week and 12-week specimens were recorded, with the failure modes and sites noted. Moreover, cuff-to-graft and graft-to-bone interface healing and graft substance remodeling of the complexes were histologically evaluated (via hematoxylin and eosin, Picrosirius red, Masson trichrome, and Safranin O/fast green staining) at 6 and 12 weeks to assess integrations between the bridging constructs and the native bone or rotator cuff tendons. RESULTS The DSR-PT group had the greatest mean failure loads and stiffness of the C-G-H complexes at 6 and 12 weeks (41.81 ± 7.00 N, 10.34 ± 2.68 N/mm; 87.62 ± 9.20 N, 17.98 ± 1.57 N/mm, respectively), followed by the DSR-FL group (32.04 ± 5.49 N, 8.20 ± 2.27 N/mm; 75.30 ± 7.31 N, 14.39 ± 3.29 N/mm, respectively). In the DSR-PT and DSR-FL groups, fewer specimens failed at the graft-to-bone junction and more failed at the cuff-to-graft junction, but both groups had higher median failure loads at 6 and 12 weeks (DSR-PT: cuff-to-graft junction, 37.80 and 83.76 N; graft-to-bone junction, 45.46 and 95.86 N) (DSR-FL: cuff-to-graft junction, 28.52 and 67.68 N; graft-to-bone junction, 37.92 and 82.18 N) compared with PR-FL (cuff-to-graft junction, 27.17 and 60.04 N; graft-to-bone junction, 30.12 and 55.95 N). At 12 weeks, the DSR-FL group had higher median failure loads at graft substance (72.26 N) than the PR-FL group (61.27 N). Moreover, the PR-FL group showed more inflammatory responses at the 2 healing interfaces and the graft substance in the 6-week specimens and subsequently displayed poorer interface healing (assessed via collagen organization, collagen maturity, and fibrocartilage regeneration) and graft substance remodeling (assessed via collagen organization and maturity) in 12-week specimens compared with the DSR-PT and DSR-FL groups. Superior interface healing and substance remodeling processes were observed in the DSR-PT group compared with the DSR-FL group. CONCLUSION When compared with routine patch repair, the dual-suspensory reconstructions optimized biomechanical properties and improved interface healing and graft substance remodeling for bridging MRCTs. Furthermore, the dual-suspensory technique using the PT graft presented superior histological and biomechanical characteristics than that using FL. CLINICAL RELEVANCE The dual-suspensory reconstruction technique using banded tendon grafts may enhance bridging constructs for MRCTs in humans, warranting further investigations of clinical outcomes.
Collapse
Affiliation(s)
- Junjie Xu
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Kang Han
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zipeng Ye
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chenliang Wu
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiulin Wu
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ziyun Li
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Tianlun Zhang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Caiqi Xu
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei Su
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
18
|
Shi Q, Zhang T, Chen Y, Xu Y, Deng Z, Xu D. Local Administration of Metformin Improves Bone Microarchitecture and Biomechanical Properties During Ruptured Canine Achilles Tendon-Calcaneus Interface Healing. Am J Sports Med 2022; 50:2145-2154. [PMID: 35621546 DOI: 10.1177/03635465221098144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Tendon-bone interface (TBI) healing is a clinical dilemma that is closely relevant to new bone formation and remodeling at the repair site. Previous studies showed that metformin is an osteogenic inducer for stem cells in vitro and capable of stimulating bone regeneration in vivo. HYPOTHESIS Metformin would be effective for promoting TBI healing by enhancing new bone formation and remodeling. STUDY DESIGN Controlled laboratory study. METHODS Canine bone marrow stem cells (BMSCs) were cultured with various concentrations of metformin (0, 10, 50, 100, 200 μM). The effect of metformin on the osteogenic differentiation of canine BMSCs was evaluated via alizarin red staining and osteogenic gene expression. Eighteen mature beagles were included in a bilateral Achilles tendon-calcaneus (ATC) interface injury model. The right interface was reattached via surgical repair only, while the left was surgically reattached after implanting a fibrin glue containing metformin. At postoperative week 4 or 8, the healing quality of the wounded ATC interfaces was evaluated. RESULTS In vitro experiments determined that metformin was an osteogenic inducer for canine BMSCs. In vivo experiments showed that the metformin-treated ATC interfaces were repaired with significantly greater failure load and stiffness than was the no-metformin control site (P < .05 for all). Micro-computed tomography analysis showed that the metformin-treated specimens presented significantly higher bone volume/total volume and trabecular thickness than did the no-metformin control specimens (P < .05 for all), as confirmed via hematoxylin and eosin staining. Immunohistochemical staining showed that significantly more osteocalcin-positive cells were located at the newly formed bones treated with metformin than at the no-metformin control site at week 4 (P < .05). Masson trichrome staining showed that significantly more oriented collagen fibers anchored into the newly formed bone of the metformin-treated site than the no-metformin control site (P < .05). CONCLUSION Metformin induced the osteogenesis of canine BMSCs in vitro, and local administration of metformin provided an improvement of bone microarchitecture at the calcaneus as well as an increase in the tensile properties of the repaired ATC interfaces in canines. CLINICAL RELEVANCE Findings of the study indicate that local administration of metformin may be an effective strategy for TBI healing in clinic.
Collapse
Affiliation(s)
- Qiang Shi
- Department of Spine Surgery, the Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.,Department of Sport Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Tao Zhang
- Department of Sport Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yang Chen
- Department of Sport Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Xu
- Department of Sport Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenhan Deng
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Daqi Xu
- Department of Sport Medicine, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
19
|
Rhee SM, Kim YH, Park JH, Jeong HJ, Han J, Jeon S, Oh JH. Allogeneic Dermal Fibroblasts Improve Tendon-to-Bone Healing in a Rabbit Model of Chronic Rotator Cuff Tear Compared With Platelet-Rich Plasma. Arthroscopy 2022; 38:2118-2128. [PMID: 34968652 DOI: 10.1016/j.arthro.2021.12.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 12/11/2021] [Accepted: 12/16/2021] [Indexed: 02/02/2023]
Abstract
PURPOSE To compare the effects of allogeneic dermal fibroblasts (ADFs) and platelet-rich plasma (PRP) on tendon-to-bone healing in a rabbit model of chronic rotator cuff tear. METHODS Thirty-two rabbits were divided into 4 groups (8 per group). In 2 groups, the supraspinatus tendon was detached and was left as such for 6 weeks. At 6 weeks after creating the tear model, we performed transosseous repair with 5 × 106 ADFs plus fibrin injection in the left shoulder and PRP plus fibrin in the right shoulder. The relative expression of the COL1, COL3, BMP2, SCX, SOX9, and ACAN genes was assessed at 4 weeks (group A) and 12 weeks (group B) after repair. Histologic and biomechanical evaluations of tendon-to-bone healing at 12 weeks were performed with ADF injection in both shoulders in group C and PRP injection in group D. RESULTS At 4 weeks, COL1 and BMP2 messenger RNA expression was higher in ADF-injected shoulders (1.6 ± 0.8 and 1.0 ± 0.3, respectively) than in PRP-injected shoulders (1.0 ± 0.3 and 0.6 ± 0.3, respectively) (P = .019 and P = .013, respectively); there were no differences in all genes in ADF- and PRP-injected shoulders at 12 weeks (P > .05). Collagen continuity, orientation, and maturation of the tendon-to-bone interface were better in group C than in group D (P = .024, P = .012, and P = .013, respectively) at 12 weeks, and mean load to failure was 37.4 ± 6.2 N/kg and 24.4 ± 5.2 N/kg in group C and group D, respectively (P = .015). CONCLUSIONS ADFs caused higher COL1 and BMP2 expression than PRP at 4 weeks and showed better histologic and biomechanical findings at 12 weeks after rotator cuff repair of the rabbit model. ADFs enhanced healing better than PRP in the rabbit model. CLINICAL RELEVANCE This study could serve as a transitional study to show the effectiveness of ADFs in achieving tendon-to-bone healing after repair of chronic rotator cuff tears in humans.
Collapse
Affiliation(s)
- Sung-Min Rhee
- Shoulder & Elbow Clinic, Department of Orthopaedic Surgery, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Yun Hee Kim
- Cutigen Research Institute, Tego Science, Seoul, Republic of Korea
| | - Joo Hyun Park
- Department of Orthopaedic Surgery, Bundang Jesaeng Hospital, Seongnam-si, Republic of Korea
| | - Hyeon Jang Jeong
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Jikhyon Han
- Cutigen Research Institute, Tego Science, Seoul, Republic of Korea
| | - Saewha Jeon
- Cutigen Research Institute, Tego Science, Seoul, Republic of Korea
| | - Joo Han Oh
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea.
| |
Collapse
|
20
|
Ankem HK. Editorial Commentary: Allogenic Dermal Fibroblasts in Collagen Matrix Scaffold Enhance Rotator Cuff Repair in an Animal Model. Arthroscopy 2022; 38:2129-2130. [PMID: 35809975 DOI: 10.1016/j.arthro.2022.01.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 02/02/2023]
Abstract
There has been a recent surge of interest on the use of biologic supplements to facilitate rotator cuff repair healing. Experimental evidence appears to support use of allogenic dermal fibroblasts (ADFs), either in the form of local injection or tenocytes embedded in collagen matrix scaffold, to enhance healing of a repaired rotator cuff tendon tear in an animal model. When compared with the ADFs, the platelet-rich plasma (PRP)-induced response seems to be limited in terms of the specific increases in local collagen 1 concentration, thus resulting in a bone-tendon healing response that is inferior in both biology and biomechanical behavior under the same laboratory conditions. While on the one hand, there is pilot data supporting use of dermal fibroblast in the clinical setting, thus reinforcing the animal study findings, on the other hand, we are also aware of the encouraging biologic changes that occurred in the retrieved acellular dermal matrix (ADM) allograft that was used for superior capsular reconstruction as a treatment of irreparable rotator cuff tears. In theory, ADFs locally instilled as an injection should further enhance the healing response compared to the ADM. However, this needs to be further studied to be able to be widely applicable clinically.
Collapse
|
21
|
Xu J, Huang K, Han K, Wu X, Li Z, Zheng T, Jiang J, Yan X, Su W, Zhao J. The Plug-Type Patch Results in Immediate and Postoperative Advantages in Graft-to-Bone Integration for Bridging Massive Rotator Cuff Tears in a Chronic Rabbit Model. Am J Sports Med 2022; 50:2497-2507. [PMID: 35722823 DOI: 10.1177/03635465221101416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Various patches have been used to bridge massive rotator cuff tears (MRCTs) by reconnecting the cuff tendons to the humeral head, but the outcomes continue to be suboptimal. Notably, the graft-bone junction is a vulnerable site for failure, which requires optimization in patch design and techniques to enhance initial and postoperative fixation strength at the graft-bone interface. HYPOTHESIS The plug-type patch (Plug-Pat) through intratunnel fixation would optimize mechanical characteristics in initial graft-to-bone fixation and subsequently improve postoperative biomechanical and histological properties in graft-to-bone healing when compared with the routine rectangular patch (Rect-Pat). STUDY DESIGN Controlled laboratory study. METHODS A total of 60 mature male New Zealand White rabbits underwent acute rotator cuff defects to create chronic models with MRCTs. The fascia lata autograft was then harvested to prepare a Plug-Pat, which was distally rooted in the bone tunnel and proximally sutured to native tendons in a horizontal mattress fashion to reconnect the humeral head and cuff tendons. The control group was repaired with a routine Rect-Pat that was secured onto the bone surface for graft-bone fixation. After surgery, the cuff-graft-bone complexes of rabbits in both groups were harvested immediately (0 weeks) for time-zero initial fixation strength and refreshed contact area assessment, and at 6 or 12 weeks for postoperative biomechanical and histological evaluation. RESULTS The Plug-Pat significantly enhanced initial fixation strength in comparison with the Rect-Pat (mean ± SD; failure load, 36.79 ± 4.53 N vs 24.15 ± 2.76 N; P < .001) and decreased failure at the graft-bone interface of the construct at 0 weeks, with a significantly increased refreshed bone bed contact area (52.63 ± 2.97 mm2 vs 18.28 ± 1.60 mm2; P < .001) between the graft and bone. At 6 and 12 weeks postoperatively, the Plug-Pat similarly resulted in greater failure load (43.15 ± 4.53 N vs 33.74 ± 2.58 N at 6 weeks; P = .001; 76.65 ± 5.04 N vs 58.17 ± 5.06 N at 12 weeks; P < .001) and stiffness (10.77 ± 2.67 N/mm vs 8.43 ± 0.86 N/mm at 6 weeks; P = .066; 16.98 ± 2.47 N/mm vs 13.21 ± 1.66 N/mm at 12 weeks; P = .011), with less specimen failure at the graft-bone interface than the Rect-Pat. In histological analyses, the Plug-Pat had a higher postoperative graft-bone integration score than the Rect-Pat, showing a more mature intratunnel healing interface with fibrocartilage tidemark formation, improved collagen properties, and more oriented cells when compared with those at the surface healing interface in the Rect-Pat. CONCLUSION The Plug-Pat enhanced initial fixation strength and enlarged the refreshed contact area for graft-bone connection at time zero and subsequently improved postoperative biomechanical properties and graft-bone integration at the graft-bone healing interface when compared with the Rect-Pat. CLINICAL RELEVANCE The Plug-Pat using intratunnel fixation may be a promising strategy for patch design to optimize its initial and postoperative graft-bone connection for bridging reconstruction of MRCTs.
Collapse
Affiliation(s)
- Junjie Xu
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Kai Huang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Kang Han
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiulin Wu
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ziyun Li
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ting Zheng
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jia Jiang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaoyu Yan
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei Su
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
22
|
Wu IT, Gibbons MC, Esparza MC, Vasquez-Bolanos LS, Hyman SA, Dorn SN, Singh A, Lane JG, Fithian DC, Ruoss S, Ward SR. The “Second Hit” of Repair in a Rabbit Model of Chronic Rotator Cuff Tear. Front Physiol 2022; 13:801829. [PMID: 35350696 PMCID: PMC8958027 DOI: 10.3389/fphys.2022.801829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/28/2022] [Indexed: 01/04/2023] Open
Abstract
The rabbit supraspinatus is a useful translational model for rotator cuff (RC) repair because it recapitulates muscle atrophy and fat accumulation observed in humans after a chronic tear (the “first hit”). However, a timeline of RC tissue response after repair, especially with regard to recent evidence of muscle degeneration and lack of regeneration, is currently unavailable. Thus, the purpose of this study was to characterize the progression of muscle and fat changes over time after the repair of a chronic RC tear in the rabbit model. Two rounds of experiments were conducted in 2017–2018 and 2019–2020 with N = 18 and 16 skeletally mature New Zealand White rabbits, respectively. Animals underwent left supraspinatus tenotomy with repair 8 weeks later. The unoperated right shoulder served as control. The rabbits were sacrificed at 1-, 2-, 4-, and 8-weeks post-repair for histological and biochemical analysis. Atrophy, measured by fiber cross-sectional area and muscle mass, was greatest around 2 weeks after repair. Active muscle degeneration peaked at the same time, involving 8% of slide areas. There was no significant regeneration at any timepoint. Fat accumulation and fibrosis were significantly increased across all time points compared to contralateral. Statement of Clinical Significance: These results demonstrate model reproducibility and a “second hit” phenomenon of repair-induced muscle atrophy and degeneration which partially recovers after a short time, while increased fat and fibrosis persist.
Collapse
Affiliation(s)
- Isabella T. Wu
- Department of Orthopaedic Surgery, University of California, San Diego, San Diego, CA, United States
| | - Michael C. Gibbons
- Department of Orthopaedic Surgery, University of California, San Diego, San Diego, CA, United States
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Mary C. Esparza
- Department of Orthopaedic Surgery, University of California, San Diego, San Diego, CA, United States
| | - Laura S. Vasquez-Bolanos
- Department of Orthopaedic Surgery, University of California, San Diego, San Diego, CA, United States
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Sydnee A. Hyman
- Department of Orthopaedic Surgery, University of California, San Diego, San Diego, CA, United States
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Shanelle N. Dorn
- Department of Orthopaedic Surgery, University of California, San Diego, San Diego, CA, United States
| | - Anshuman Singh
- Department of Orthopaedic Surgery, University of California, San Diego, San Diego, CA, United States
- Department of Orthopaedic Surgery, Kaiser Permanente, San Diego, CA, United States
| | - John G. Lane
- Department of Orthopaedic Surgery, University of California, San Diego, San Diego, CA, United States
| | - Donald C. Fithian
- Department of Orthopaedic Surgery, University of California, San Diego, San Diego, CA, United States
| | - Severin Ruoss
- Department of Orthopaedic Surgery, University of California, San Diego, San Diego, CA, United States
| | - Samuel R. Ward
- Department of Orthopaedic Surgery, University of California, San Diego, San Diego, CA, United States
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
- *Correspondence: Samuel R. Ward,
| |
Collapse
|
23
|
Rhee SM, Youn SM, Ko YW, Kwon TY, Park YK, Rhee YG. Retracted Rotator Cuff Repairs Heal With Disorganized Fibrogenesis Without Affecting Biomechanical Properties: A Comparative Animal Model Study. Arthroscopy 2021; 37:3423-3431. [PMID: 34252560 DOI: 10.1016/j.arthro.2021.06.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/20/2021] [Accepted: 06/29/2021] [Indexed: 02/02/2023]
Abstract
PURPOSE To determine the differences in the scar tissue formation during the healing of the repaired retracted cuff tear from that of the nonretracted tear. METHODS Eighteen right rabbit shoulders received a 1-cm transverse cuff incision over the footprint to simulate "nonretracted cuff tears" before the transosseous repairs (group A). A 1-cm tendinous portion was excised from 18 left shoulders to create defects to simulate "retracted cuff tears" before repairing the defects (group B). At week 12 postrepair, 20 and 16 shoulders underwent histologic and biomechanical analyses, respectively. Eight shoulders were used as a control group for biomechanical analyses. RESULTS All specimens showed good healing and continuity of the repaired tendons. At low magnification, fibrous tissue firmly held the tendon-to-bone junctions in group A; however, all specimens in group B showed medially retracted tendons with fibrous tissue continuity between the tendon stumps and footprints. At medium magnification, more irregular collagen fiber orientation was observed in group B. Polarized light microscopy showed fibrous tissue continuity with medially retracted tendons in group B. When we quantified collagen fiber orientation using ImageJ software, group B had inferior grayscale measurements when compared with group A (P = .001). At week 12, no statistical differences existed in mean loads-to-failure at the repair sites between the groups (P = .783). CONCLUSIONS In the nonretracted cuff tears, fibrous tissue bound the tendon-to-bone junction with healing. After the healing of the retracted cuff tears, continuity of nontendinous tissue was observed adjacent to the medially retracted tendon, which comprised more disorganized immature fibrous tissue than that in the nonretracted cuff tears. CLINICAL RELEVANCE Unlike the healing of nonretracted rotator cuff tear, repairing of the "retracted" tendon end of cuff tear still resulted in retraction of the tendon back to its original position but being held down with fibrous tissue to the footprint.
Collapse
Affiliation(s)
- Sung-Min Rhee
- Shoulder & Elbow Clinic, Department of Orthopaedic Surgery, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Seung-Min Youn
- Shoulder & Elbow Clinic, Department of Orthopaedic Surgery, Myongji Hospital, Goyang-si, Korea
| | - Young Wan Ko
- Shoulder & Elbow Clinic, Department of Orthopaedic Surgery, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Tae Yoon Kwon
- Shoulder & Elbow Clinic, Department of Orthopaedic Surgery, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Yong-Koo Park
- Department of Pathology, Jangwon Medical Foundation, Korea
| | - Yong Girl Rhee
- Shoulder & Elbow Clinic, Department of Orthopaedic Surgery, Myongji Hospital, Goyang-si, Korea.
| |
Collapse
|
24
|
Yoon JY, Park JH, Rhee SM, Jeong HJ, Han J, Lee JH, Jeon S, Oh JH. Safety and Efficacy of Autologous Dermal Fibroblast Injection to Enhance Healing After Full-Thickness Rotator Cuff Repair: First-in-Human Pilot Study. Orthop J Sports Med 2021; 9:23259671211052996. [PMID: 34778485 PMCID: PMC8586194 DOI: 10.1177/23259671211052996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/04/2021] [Indexed: 01/08/2023] Open
Abstract
Background: There is growing interest in various biological supplements to improve tendon healing in patients after arthroscopic rotator cuff repair. The ideal biological supplement to strengthen rotator cuff remains unknown. Purpose: To assess the safety and efficacy of autologous cultured dermal fibroblast (ADF) injection on tendon-to-bone healing in patients after arthroscopic rotator cuff repair. Study Design: Case series; Level of evidence, 4. Methods: Included were 6 patients who underwent arthroscopic rotator cuff repair between June 2018 and March 2020; all patients had a full-thickness rotator cuff tear (>2 cm) involving the supraspinatus and infraspinatus tendons. The patients were injected with ADF between the repaired tendon and footprint during arthroscopic rotator cuff repair using the suture bridge technique. The safety of ADFs and the procedure was evaluated at 5 weeks postoperatively, and the anatomical healing of the repaired tendon was accessed at 6 months postoperatively using magnetic resonance imaging and at 12 months using ultrasonography. Outcomes including shoulder range of motion (ROM), visual analog scale (VAS) for pain, and functional scores were measured at 6 and 12 months postoperatively. Results: Adverse reactions to ADF injection were not observed at 6 months after surgery. VAS and functional scores at 6 and 12 months postoperatively were significantly improved compared with preoperative scores (all P < .05). However, there was no significant difference on any ROM variable between preoperative and postoperative measurements at 6 and 12 months (all P > .05). No healing failure was found at 6 and 12 months postoperatively. Conclusion: There was no adverse reaction to ADF injection, and all patients had successful healing after rotator cuff repair. A simple and easily accessible ADF injection may be a novel treatment option for increasing the healing capacity of torn rotator cuff tendons. Further clinical research is needed to verify the study results.
Collapse
Affiliation(s)
- Ji Young Yoon
- Department of Orthopaedic Surgery, National Police Hospital, Seoul, Republic of Korea
| | - Joo Hyun Park
- Department of Orthopaedic Surgery, Bundang Jesaeng General Hospital, Seongnam, Republic of Korea
| | - Sung-Min Rhee
- Department of Orthopaedic Surgery, Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Republic of Korea
| | - Hyeon Jang Jeong
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jikhyon Han
- Cutigen Research Institute, Tego Science Inc, Seoul, Republic of Korea
| | - Ji-Hye Lee
- Cutigen Research Institute, Tego Science Inc, Seoul, Republic of Korea
| | - Saewha Jeon
- Cutigen Research Institute, Tego Science Inc, Seoul, Republic of Korea
| | - Joo Han Oh
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| |
Collapse
|
25
|
Lee JH, Kim YH, Rhee SM, Han J, Jeong HJ, Park JH, Oh JH, Jeon S. Rotator Cuff Tendon Healing Using Human Dermal Fibroblasts: Histological and Biomechanical Analyses in a Rabbit Model of Chronic Rotator Cuff Tears. Am J Sports Med 2021; 49:3669-3679. [PMID: 34554882 DOI: 10.1177/03635465211041102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Tenocytes derived from tendons have been reported to be effective in the treatment of rotator cuff tears through the expression of extracellular matrix proteins. Human dermal fibroblasts, known to express collagen types I and III as tenocytes do, may likely be substitutes for tenocytes to enhance healing rotator cuff tears. PURPOSE To demonstrate the capability of human dermal fibroblasts to enhance healing of rotator cuff tears. STUDY DESIGN Controlled laboratory study. METHODS The cellular properties and expression profiles of growth factors were compared between human dermal fibroblasts and tenocytes. In both cell types, a series of extracellular matrix proteins were analyzed along with matrix metalloproteinases and tissue inhibitors of metalloproteinases involved in the collagenolytic system. A total of 35 rabbits were divided into 5 groups: normal (n = 2), saline control (n = 9), fibrin control (n = 9), low dose of human fibroblasts (HF-LD; n = 9), and high dose of human fibroblasts (HF-HD; n = 6). Cells were injected into the sutured lesions at 6 weeks after creation of bilateral rotator cuff tears, followed by histological and biomechanical analyses at 12 weeks. RESULTS Human dermal fibroblasts exhibited a protein expression pattern similar to that of tenocytes. More specifically, the expression levels of collagen types I and III were comparable between fibroblasts and tenocytes. The histological analysis of 30 surviving rabbits showed that collagen fibers were more continuous and better oriented with a more mature interface between the tendon and bone in the sutured lesions in the HF-LD and HF-HD groups. Most importantly, biomechanical strength, measured using the load to failure at the injection site, was 58.8 ± 8.9 N/kg in the HF-HD group, increasing by approximately 2-fold (P = .0003) over the saline control group. CONCLUSION Human dermal fibroblasts, showing cellular properties comparable with tenocytes, effectively enhanced healing of chronic rotator cuff tears in rabbits. CLINICAL RELEVANCE Human dermal fibroblasts can be used in place of tenocytes to enhance healing of rotator cuff tears.
Collapse
Affiliation(s)
- Ji-Hye Lee
- Cutigen Research Institute, Tego Science, Seoul, Republic of Korea
| | - Yun Hee Kim
- Cutigen Research Institute, Tego Science, Seoul, Republic of Korea
| | - Sung-Min Rhee
- Department of Orthopedic Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Jikhyon Han
- Cutigen Research Institute, Tego Science, Seoul, Republic of Korea
| | - Hyeon Jang Jeong
- Department of Orthopedic Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Joo Hyun Park
- Department of Orthopedic Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Joo Han Oh
- Department of Orthopedic Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Saewha Jeon
- Cutigen Research Institute, Tego Science, Seoul, Republic of Korea
| |
Collapse
|
26
|
Bao D, Sun J, Gong M, Shi J, Qin B, Deng K, Liu G, Zeng S, Xiang Z, Fu S. Combination of graphene oxide and platelet-rich plasma improves tendon-bone healing in a rabbit model of supraspinatus tendon reconstruction. Regen Biomater 2021; 8:rbab045. [PMID: 34484806 PMCID: PMC8411035 DOI: 10.1093/rb/rbab045] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/13/2021] [Accepted: 08/01/2021] [Indexed: 02/05/2023] Open
Abstract
The treatment of rotator cuff tear is one of the major challenges for orthopedic surgeons. The key to treatment is the reconstruction of the tendon-bone interface (TBI). Autologous platelet-rich plasma (PRP) is used as a therapeutic agent to accelerate the healing of tendons, as it contains a variety of growth factors and is easy to prepare. Graphene oxide (GO) is known to improve the physical properties of biomaterials and promote tissue repair. In this study, PRP gels containing various concentrations of GO were prepared to promote TBI healing and supraspinatus tendon reconstruction in a rabbit model. The incorporation of GO improved the ultrastructure and mechanical properties of the PRP gels. The gels containing 0.5 mg/ml GO (0.5 GO/PRP) continuously released transforming growth factor-β1 (TGF-β1) and platelet-derived growth factor (PDGF)-AB, and the released TGF-β1 and PDGF-AB were still at high concentrations, ∼1063.451 pg/ml and ∼814.217 pg/ml, respectively, on the 14th day. In vitro assays showed that the 0.5 GO/PRP gels had good biocompatibility and promoted bone marrow mesenchymal stem cells proliferation and osteogenic and chondrogenic differentiation. After 12 weeks of implantation, the magnetic resonance imaging, micro-computed tomography and histological results indicated that the newly regenerated tendons in the 0.5 GO/PRP group had a similar structure to natural tendons. Moreover, the biomechanical results showed that the newly formed tendons in the 0.5 GO/PRP group had better biomechanical properties compared to those in the other groups, and had more stable TBI tissue. Therefore, the combination of PRP and GO has the potential to be a powerful advancement in the treatment of rotator cuff injuries.
Collapse
Affiliation(s)
- Dingsu Bao
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China.,Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jiacheng Sun
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Min Gong
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, PR China
| | - Jie Shi
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Bo Qin
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Kai Deng
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Gang Liu
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Shengqiang Zeng
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Zhou Xiang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Shijie Fu
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China
| |
Collapse
|
27
|
Chen W, Sun Y, Gu X, Cai J, Liu X, Zhang X, Chen J, Hao Y, Chen S. Conditioned medium of human bone marrow-derived stem cells promotes tendon-bone healing of the rotator cuff in a rat model. Biomaterials 2021; 271:120714. [PMID: 33610048 DOI: 10.1016/j.biomaterials.2021.120714] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/26/2021] [Accepted: 02/06/2021] [Indexed: 02/05/2023]
Abstract
Rotator cuff repair is a common surgery in sports medicine. During the surgery, torn tendon was re-fixed onto the bony surface. The majority of patients gain good results. However, re-tear occurs in some patients. The reason under this phenomenon is that the normal tendon-bone enthesis cannot be reconstructed. In order to strengthen the tendon-bone healing and promote enthesis regeneration, numerous manners are tested, among which stem cell related therapies are preferred. Stem cells, due to the ability of multi-lineage differentiation, are widely used in regenerative medicine. However, safety and ethics concerns limit its clinical use. Recent studies found that it is the secretome of stem cells that is biologically effective. On ground of this, we, in the current study, collected the conditioned medium of human bone marrow-derived stem cells (hBMSC-CM) and tested whether this acellular method could promote tendon-bone healing in a rat model of rotator cuff repair. By using histological, radiological, and biomechanical methods, we found that hBMSC-CM promoted tendon-bone healing of the rat rotator cuff. Then, we noticed that hBMSC-CM exerted an impact on macrophage polarization both in vivo and in vitro by inhibiting M1 phenotype and promoting M2 phenotype. Further, we proved that the benefit of hBMSC-CM on tendon-bone healing was related to its regulation on macrophage. Finally, we proved that, hBMSC-CM influenced macrophage polarization, which was, at least partially, related to Smad2/3 signaling pathway. Based on the experiments above, we confirmed the benefit of hBMSC-CM on tendon-bone healing, which relied on its immune-regulative property. Considering the accessibility and safety of acellular hBMSC-CM, we believe it is a promising candidate clinically for tendon-bone healing.
Collapse
Affiliation(s)
- Wenbo Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yaying Sun
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xueping Gu
- Department of Orthopedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, 215008, China
| | - Jiangyu Cai
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xingwang Liu
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xingyu Zhang
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jiwu Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yuefeng Hao
- Department of Orthopedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, 215008, China.
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
28
|
Xing SG, Zhou YL, Yang QQ, Ju F, Zhang L, Tang JB. Effects of nanoparticle-mediated growth factor gene transfer to the injured microenvironment on the tendon-to-bone healing strength. Biomater Sci 2020; 8:6611-6624. [PMID: 33231577 DOI: 10.1039/d0bm01222j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The tendon-to-bone healing after trauma is usually slow and weak, and the repair site is easily disrupted during early mobilization exercise. bFGF and VEGFA gene therapy may hold promise in augmenting the tendon-to-bone healing process through enhancing cell proliferation and angiogenesis. This study is conducted to determine the effects of nanoparticle-mediated co-delivery of bFGF and VEGFA genes to the tendon-to-bone repair interface on the healing strength and biological responses in a chicken model. The PLGA nanoparticle/pEGFP-bFGF + pEGFP-VEGFA plasmid complexes were prepared and were characterized in vitro and in vivo. The nanoparticle/plasmid complexes can effectively transfer bFGF and VEGFA genes to the tendon-to-bone interface. Nanoparticle-mediated co-delivery of bFGF and VEGFA genes significantly improved the tendon-to-bone healing in terms of healing strengths and histology in a chicken flexor tendon repair model. Our results suggest a new biological approach to accelerate the tendon-to-bone healing.
Collapse
Affiliation(s)
- Shu Guo Xing
- The Nanomedicine Research Laboratory, Research for Frontier Medicine and Hand Surgery Research Center, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China.
| | | | | | | | | | | |
Collapse
|
29
|
Shin MJ, Shim IK, Kim DM, Choi JH, Lee YN, Jeon IH, Kim H, Park D, Kholinne E, Yang HS, Koh KH. Engineered Cell Sheets for the Effective Delivery of Adipose-Derived Stem Cells for Tendon-to-Bone Healing. Am J Sports Med 2020; 48:3347-3358. [PMID: 33136454 DOI: 10.1177/0363546520964445] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Efforts are being made to treat rotator cuff tears (RCTs) that exhibit poor healing and high retear rates. Tendon-to-bone healing using mesenchymal stem cells is being explored, but research is needed to establish effective delivery options. PURPOSE To evaluate the effects of an adipose-derived stem cell (ADSC) sheet on mesenchymal stem cell delivery for tendon-to-bone healing of a chronic RCT in rats and to demonstrate that ADSC sheets enhance tendon-to-bone healing. STUDY DESIGN Controlled laboratory study. METHODS Mesenchymal stem cells were obtained from rat adipose tissue, and a cell sheet was prepared using a temperature-responsive dish. To evaluate the efficacy of stem cells produced in a sheet for the lesion, the experiment was conducted with 3 groups: repair group, cell sheet transplantation after repair group, and cell sheet-only group. Histological, biomechanical, and micro-computed tomography (micro-CT) results were compared among the groups. RESULTS Hematoxylin and eosin staining for histomorphological analysis revealed that the cell sheet transplantation after repair group (5.75 ± 0.95) showed statistically significant higher scores than the repair (2.75 ± 0.50) and cell sheet-only (3.25 ± 0.50) groups (P < .001). On safranin O staining, the cell sheet transplantation after repair group (0.51 ± 0.04 mm2) had a larger fibrocartilage area than the repair (0.31 ± 0.06 mm2) and cell sheet-only (0.32 ± 0.03 mm2) groups (P = .001). On micro-CT, bone volume/total volume values were significantly higher in the cell sheet transplantation after repair group (23.98% ± 1.75%) than in the other groups (P < .039); there was no significant difference in the other values. On the biomechanical test, the cell sheet transplantation after repair group (4 weeks after repair) showed significantly higher results than the other groups (P < .005). CONCLUSION Our study shows that engineered stem cells are a clinically feasible stem cell delivery tool for rotator cuff repair. CLINICAL RELEVANCE This laboratory study provides evidence that ADSCs are effective in repairing RCTs, which are common sports injuries.
Collapse
Affiliation(s)
- Myung Jin Shin
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - In Kyong Shim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dong Min Kim
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae Hee Choi
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yu Na Lee
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - In-Ho Jeon
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyojune Kim
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dongjun Park
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Erica Kholinne
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Orthopedic Surgery, St Carolus Hospital, Faculty of Medicine, Trisakti University, Jakarta, Indonesia
| | - Ha-Sol Yang
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyoung Hwan Koh
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
30
|
Chu J, Lu M, Pfeifer CG, Alt V, Docheva D. Rebuilding Tendons: A Concise Review on the Potential of Dermal Fibroblasts. Cells 2020; 9:E2047. [PMID: 32911760 PMCID: PMC7563185 DOI: 10.3390/cells9092047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 12/26/2022] Open
Abstract
Tendons are vital to joint movement by connecting muscles to bones. Along with an increasing incidence of tendon injuries, tendon disorders can burden the quality of life of patients or the career of athletes. Current treatments involve surgical reconstruction and conservative therapy. Especially in the elderly population, tendon recovery requires lengthy periods and it may result in unsatisfactory outcome. Cell-mediated tendon engineering is a rapidly progressing experimental and pre-clinical field, which holds great potential for an alternative approach to established medical treatments. The selection of an appropriate cell source is critical and remains under investigation. Dermal fibroblasts exhibit multiple similarities to tendon cells, suggesting they may be a promising cell source for tendon engineering. Hence, the purpose of this review article was in brief, to compare tendon to dermis tissues, and summarize in vitro studies on tenogenic differentiation of dermal fibroblasts. Furthermore, analysis of an open source Gene Expression Omnibus (GEO) data repository was carried out, revealing great overlap in the molecular profiles of both cell types. Lastly, a summary of in vivo studies employing dermal fibroblasts in tendon repair as well as pilot clinical studies in this area is included. Altogether, dermal fibroblasts hold therapeutic potential and are attractive cells for rebuilding injured tendons.
Collapse
Affiliation(s)
- Jin Chu
- Laboratory for Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, 93053 Regensburg, Germany; (J.C.); (C.G.P.); (V.A.)
| | - Ming Lu
- Department of Orthopaedic Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116023, China;
| | - Christian G. Pfeifer
- Laboratory for Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, 93053 Regensburg, Germany; (J.C.); (C.G.P.); (V.A.)
- Department of Trauma Surgery, University Regensburg Medical Centre, 93053 Regensburg, Germany
| | - Volker Alt
- Laboratory for Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, 93053 Regensburg, Germany; (J.C.); (C.G.P.); (V.A.)
- Department of Trauma Surgery, University Regensburg Medical Centre, 93053 Regensburg, Germany
| | - Denitsa Docheva
- Laboratory for Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, 93053 Regensburg, Germany; (J.C.); (C.G.P.); (V.A.)
| |
Collapse
|
31
|
Suprascapular nerve neuropathy leads to supraspinatus tendon degeneration. J Orthop Sci 2020; 25:588-594. [PMID: 31718907 DOI: 10.1016/j.jos.2019.09.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/20/2019] [Accepted: 09/20/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND Nowadays most of attention regarding rotator cuff is payed to how to reduce the failure after rotator cuff surgical repair rather than how to prevent the rotator cuff tear before surgery. The etiologies of rotator cuff tear are still unclear. As we all know, the nerve system include brain, spinal cord, sensory organs and all the neurons allover our body coordinates the homoeostasis of our body. We hypothesis that the nerve injury proximal to suprascapular nerve can leads to rotator cuff degeneration even tear. METHODS Thirty-six SD rats were used. A defect on the suprascapular nerve was made on the right side and a sham surgery on the nerve (expose nerve only) at the left side. The insertion of supraspinatus tendon and supraspinatus muscle were harvested for testing. Twelve rats were sacrificed for biomechanical (six rats) and histological (six rats) properties were evaluated at 3, 6, and 9 weeks after surgery, respectively. RESULTS Significant inferior biomechanical properties of rotator cuff were found in nerve injured side compared to the nerve intact side at 6-9 weeks. Significant muscle atrophy was found at nerve injured side from 3 to 9 weeks. The enthesis of nerve injured side showed significant excessive cell maturity, reduced cellularity, smaller metachromasia area and more type-III collagen especially at 9 weeks after surgery. CONCLUSIONS The neuropathy proximal to suprascapular nerve can leads to rotator cuff degeneration even tear. The nerve dysfunction maybe an important etiology for rotator cuff tear.
Collapse
|
32
|
Wang C, Hu Q, Song W, Yu W, He Y. Adipose Stem Cell-Derived Exosomes Decrease Fatty Infiltration and Enhance Rotator Cuff Healing in a Rabbit Model of Chronic Tears. Am J Sports Med 2020; 48:1456-1464. [PMID: 32272021 DOI: 10.1177/0363546520908847] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Fatty infiltration and poor tendon-bone healing in chronic rotator cuff tears (RCTs) are associated with unsatisfactory prognosis. Adipose stem cell-derived exosomes (ASC-Exos), having multiple biological effects, can prevent muscle degeneration in acute RCTs. However, the effects of ASC-Exos on fatty infiltration and tendon-bone healing in chronic RCTs remain unknown. PURPOSE To study the effects of ASC-Exos on fatty infiltration and tendon-bone healing in a chronic RCT rabbit model. STUDY DESIGN Controlled laboratory study. METHODS At week 0, we randomly allocated 35 rabbits to receive sham surgery (14 rabbits) or establish a bilateral RCT model (21 rabbits, detachment of the supraspinatus tendon). At week 6, a total of 7 rabbits received sham surgery, and 7 rabbits with RCT were sacrificed for fatty infiltration assay. The remaining 14 rabbits with bilateral RCTs were randomly assigned to a saline group (7 rabbits that received local saline injection and rotator cuff repair) or an ASC-Exos group (7 rabbits that received local ASC-Exos injection and rotator cuff repair). At week 18, all rabbits were sacrificed for histological examination and biomechanical testing. RESULTS At week 18, the ASC-Exos group showed significantly lower fatty infiltration (14.01% ± 2.85%) compared with the saline group (21.79% ± 3.07%) (P < .001), and no statistical difference compared with the time of repair (10.88% ± 2.64%) (P = .127). For tendon-bone healing, the ASC-Exos group showed a higher histological score and more newly regenerated fibrocartilage at the repair site than did the saline group. Regarding biomechanical testing, the ASC-Exos group showed significantly higher ultimate load to failure, stiffness, and stress than the saline group. CONCLUSION Local injection of ASC-Exos in chronic RCTs at the time of repair could prevent the progress of fatty infiltration, promote tendon-bone healing, and improve biomechanical properties. CLINICAL RELEVANCE ASC-Exos injection may be used as a cell-free adjunctive therapy to inhibit fatty infiltration and improve rotator cuff healing in the repair of chronic RCTs.
Collapse
Affiliation(s)
- Chongyang Wang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qingxiang Hu
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei Song
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Weilin Yu
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yaohua He
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Department of Orthopedics, Shanghai Sixth People's Hospital, Jinshan Branch, Shanghai, China
| |
Collapse
|
33
|
Sun Y, Kwak JM, Zhou Y, Fu Y, Wang Z, Chen Q, Jeon IH. Suprascapular nerve injury affects rotator cuff healing: A paired controlled study in a rat model. J Orthop Translat 2020; 27:153-160. [PMID: 33981574 PMCID: PMC8071639 DOI: 10.1016/j.jot.2020.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 12/26/2019] [Accepted: 02/10/2020] [Indexed: 11/08/2022] Open
Abstract
Purpose We designed a paired controlled study to investigate the role of the suprascapular nerve (SSN) in rotator cuff healing using a rat tear model, and we hypothesised that rotator cuff healing is impaired in the absence of a healthy SSN. Methods Bilateral supraspinatus tenotomy from the great tuberosity was performed for 36 Wistar rats, which was then repaired immediately. A defect on the SSN was made on the right side, and a sham surgery was performed on the SSN at the left side. Twelve rats were sacrificed for biomechanical (six rats) and histological (six rats) testing, evaluated at 3, 6, and 9 weeks after surgery. Results The bone–tendon junction on the nerve-intact side showed significantly better biomechanical characteristics than the nerve-injured side in terms of maximum load, maximum stress over time, stiffness at 9 weeks, and Young's modulus at 3 and 9 weeks. On the nerve-injured side, significantly smaller fibrocartilage layers and muscle fibres could be obtained over time. In addition, on the nerve-injured side, inferior bone–tendon interface formation was obtained in terms of cell maturity, cell alignment, collagen orientation, and the occurrence of tidemark and Sharpey's fibres through 9 weeks. In addition, neuropeptide Y was secreted in the nerve-intact group at 6 and 9 weeks. Conclusion This study showed the inferior healing of the bone–tendon junction on the nerve-injured side compared with the nerve-intact side, which indicates that the SSN plays an important role in rotator cuff healing. Surgeons should pay more attention to SSN injury when treating patients with rotator cuff tear.
Collapse
Affiliation(s)
- Yucheng Sun
- Department of Hand Surgery, Affiliated Hospital of Nantong University, College of Medicine, University of Nantong, Nantong, China.,Department of Orthopedic Surgery, ASAN Medical Center, College of Medicine, University of Ulsan, Seoul, South Korea
| | - Jae-Man Kwak
- Department of Orthopedic Surgery, ASAN Medical Center, College of Medicine, University of Ulsan, Seoul, South Korea
| | - Youlang Zhou
- Department of Hand Surgery, Affiliated Hospital of Nantong University, College of Medicine, University of Nantong, Nantong, China
| | - Yan Fu
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhe Wang
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qingzhong Chen
- Department of Hand Surgery, Affiliated Hospital of Nantong University, College of Medicine, University of Nantong, Nantong, China
| | - In-Ho Jeon
- Department of Orthopedic Surgery, ASAN Medical Center, College of Medicine, University of Ulsan, Seoul, South Korea
| |
Collapse
|
34
|
Sun Y, Kwak JM, Kholinne E, Zhou Y, Tan J, Koh KH, Jeon IH. Small Subchondral Drill Holes Improve Marrow Stimulation of Rotator Cuff Repair in a Rabbit Model of Chronic Rotator Cuff Tear. Am J Sports Med 2020; 48:706-714. [PMID: 31928410 DOI: 10.1177/0363546519896350] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Microfracture of the greater tuberosity has been proved effective for enhancing tendon-to-bone healing after rotator cuff repair. However, no standard diameter for the microfracture has been established. PURPOSE/HYPOTHESIS This study aimed to assess treatment with large- and small-diameter microfractures to enhance healing during rotator cuff repair surgery in a rabbit model of chronic rotator cuff tear. It was hypothesized that a small-diameter microfracture had advantages in terms of tendon-to-bone integration, bone-tendon interface maturity, microfracture healing, and biomechanical properties compared with a large-diameter microfracture. STUDY DESIGN Controlled laboratory study. METHODS Bilateral supraspinatus tenotomy from the greater tuberosity was performed on 21 New Zealand White rabbits. Bilateral supraspinatus repair was performed 6 weeks later. Small-diameter (0.5 mm) microfracture and large-diameter microfracture (1 mm) were performed on the left side and right side, respectively, in 14 rabbits as a study group, and simple repair without microfracture was performed in 7 rabbits as a control group. At 12 weeks later, 7 of 14 rabbits in the study group were sacrificed for micro-computed tomography evaluation and biomechanical testing. Another 6 rabbits were sacrificed for histological evaluation. In the control group, 3 of the 7 rabbits were sacrificed for histological evaluation and the remaining rabbits were sacrificed for biomechanical testing. RESULTS Significantly better bone-to-tendon integration was observed in the small-diameter microfracture group. Better histological formation and maturity of the bone-tendon interface corresponding to better biomechanical results (maximum load to failure and stiffness) were obtained on the small-diameter microfracture side compared with the large-diameter side and the control group. The large-diameter microfracture showed worse radiographic and histological properties for healing of the microfracture holes on the greater tuberosity. Additionally, the large-diameter microfracture showed inferior biomechanical properties but similar histological results compared with the control group. CONCLUSION Small-diameter microfracture showed advantages with enhanced rotator cuff healing for biomechanical, histological, and radiographic outcomes compared with large-diameter microfracture, and large-diameter microfracture may worsen the rotator cuff healing. CLINICAL RELEVANCE This animal study suggested that a smaller diameter microfracture may be a better choice to enhance healing in clinical rotator cuff repair surgery in humans.
Collapse
Affiliation(s)
- Yucheng Sun
- Department of Hand Surgery, Affiliated Hospital of Nantong University, College of Medicine, University of Nantong, Nantong, China
| | - Jae-Man Kwak
- Department of Orthopedic Surgery, ASAN Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| | - Erica Kholinne
- Department of Orthopedic Surgery, ASAN Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea.,Department of Orthopedic Surgery, St. Carolus Hospital, Jakarta, Indonesia
| | - Youlang Zhou
- Department of Hand Surgery, Affiliated Hospital of Nantong University, College of Medicine, University of Nantong, Nantong, China
| | - Jun Tan
- Department of Hand Surgery, Affiliated Hospital of Nantong University, College of Medicine, University of Nantong, Nantong, China
| | - Kyoung Hwan Koh
- Department of Orthopedic Surgery, ASAN Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| | - In-Ho Jeon
- Department of Orthopedic Surgery, ASAN Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| |
Collapse
|
35
|
Qi F, Deng Z, Ma Y, Wang S, Liu C, Lyu F, Wang T, Zheng Q. From the perspective of embryonic tendon development: various cells applied to tendon tissue engineering. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:131. [PMID: 32175424 DOI: 10.21037/atm.2019.12.78] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There is a high risk of injury from damage to the force-bearing tissue of the tendon. Due to its poor self-healing ability, clinical interventions for tendon injuries are limited and yield unsatisfying results. Tissue engineering might supply an alternative to this obstacle. As one of the key elements of tissue engineering, various cell sources have been used for tendon engineering, but there is no consensue concerning a single optimal source. In this review, we summarized the development of tendon tissue from the embryonic stage and categorized the used cell sources in tendon engineering. By comparing various cell sources as the candidates for tendon regeneration, each cell type was found to have its advantages and limitations; therefore, it is difficult to define the best cell source for tendon engineering. The microenvironment cells located is also crucial for cell growth and differentiation; so, the optimal cells are unlikely to be the same for each patient. In the future, the clinical application of tendon engineering might be more precise and customized in contrast to the current use of a standardized/generic one-size-fits-all procedure. The best cell source for tendon engineering will require a case-based assessment.
Collapse
Affiliation(s)
- Fangjie Qi
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Zhantao Deng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Yuanchen Ma
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Shuai Wang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Chang Liu
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Fengjuan Lyu
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Tao Wang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.,Centre for Orthopaedic Translational Research, School of Biomedical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
| | - Qiujian Zheng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.,Centre for Orthopaedic Translational Research, School of Biomedical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
36
|
Effect of Recombinant Human Parathyroid Hormone on Rotator Cuff Healing After Arthroscopic Repair. Arthroscopy 2019; 35:1064-1071. [PMID: 30857903 DOI: 10.1016/j.arthro.2018.11.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 02/02/2023]
Abstract
PURPOSE To assess the effect of teriparatide, a recombinant human parathyroid hormone, on rotator cuff healing after arthroscopic repair compared with patients who were not treated with teriparatide. METHODS This was a prospective propensity-matched study. Thirty-one patients who underwent arthroscopic rotator cuff repair for tears >2 cm in size between January 2015 and June 2016 were recruited (group I). Daily subcutaneous injections of teriparatide 20 μg were administered for 3 months following surgery. In the same period, propensity score matching (1-to-4) was performed to generate an untreated control group undergoing rotator cuff repair alone (group II) with the same tear size. Magnetic resonance imaging evaluation of tendon healing was performed at least 1 year postoperatively, as well as the range of shoulder motion, American Shoulder and Elbow Surgeons score, Constant score, and simple shoulder test. RESULTS There was no significant difference of the retraction size, the anterior to posterior dimension of torn rotator cuff, or the preoperative bone mineral density in groups I and II (P = .78, .87, and .96, respectively). The rate of retear was significantly lower in group I than in group II (16% vs 33.9%; P = .04). Range of motion and functional scores were not significantly different between the 2 groups (P > .05). CONCLUSIONS Teriparatide, a recombinant human parathyroid hormone, can be a systemic treatment option that significantly enhances the tendon-to-bone healing after arthroscopic rotator cuff repair for patients with rotator cuff tears >2 cm. LEVEL OF EVIDENCE Level III, case-control study.
Collapse
|
37
|
Liu Q, Yu Y, Reisdorf RL, Qi J, Lu CK, Berglund LJ, Amadio PC, Moran SL, Steinmann SP, An KN, Gingery A, Zhao C. Engineered tendon-fibrocartilage-bone composite and bone marrow-derived mesenchymal stem cell sheet augmentation promotes rotator cuff healing in a non-weight-bearing canine model. Biomaterials 2019; 192:189-198. [PMID: 30453215 DOI: 10.1016/j.biomaterials.2018.10.037] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 12/18/2022]
Abstract
Reducing rotator cuff failure after repair remains a challenge due to suboptimal tendon-to-bone healing. In this study we report a novel biomaterial with engineered tendon-fibrocartilage-bone composite (TFBC) and bone marrow-derived mesenchymal stem cell sheet (BMSCS); this construct was tested for augmentation of rotator cuff repair using a canine non-weight-bearing (NWB) model. A total of 42 mixed-breed dogs were randomly allocated to 3 groups (n = 14 each). Unilateral infraspinatus tendon underwent suture repair only (control); augmentation with engineered TFBC alone (TFBC), or augmentation with engineered TFBC and BMSCS (TFBC + BMSCS). Histomorphometric analysis and biomechanical testing were performed at 6 weeks after surgery. The TFBC + BMSCS augmented repairs demonstrated superior histological scores, greater new fibrocartilage formation and collagen fiber organization at the tendon-bone interface compared with the controls. The ultimate failure load and ultimate stress were 286.80 ± 45.02 N and 4.50 ± 1.11 MPa for TFBC + BMSCS group, 163.20 ± 61.21 N and 2.60 ± 0.97 MPa for control group (TFBC + BMSCS vs control, P = 1.12E-04 and 0.003, respectively), 206.10 ± 60.99 N and 3.20 ± 1.31 MPa for TFBC group (TFBC + BMSCS vs TFBC, P = 0.009 and 0.045, respectively). In conclusion, application of an engineered TFBC and BMSCS can enhance rotator cuff healing in terms of anatomic structure, collagen organization and biomechanical strength in a canine NWB model. Combined TFBC and BMSCS augmentation is a promising strategy for rotator cuff tears and has a high potential impact on clinical practice.
Collapse
Affiliation(s)
- Qian Liu
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Yinxian Yu
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Jun Qi
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Chun-Kuan Lu
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Peter C Amadio
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Steven L Moran
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Kai-Nan An
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Anne Gingery
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Chunfeng Zhao
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|