1
|
Transcriptome analysis of immune genes in peripheral blood mononuclear cells of young foals and adult horses. PLoS One 2018; 13:e0202646. [PMID: 30183726 PMCID: PMC6124769 DOI: 10.1371/journal.pone.0202646] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 08/07/2018] [Indexed: 12/14/2022] Open
Abstract
During the neonatal period, the ability to generate immune effector and memory responses to vaccines or pathogens is often questioned. This study was undertaken to obtain a global view of the natural differences in the expression of immune genes early in life. Our hypothesis was that transcriptome analyses of peripheral blood mononuclear cells (PBMCs) of foals (on day 1 and day 42 after birth) and adult horses would show differential gene expression profiles that characterize natural immune processes. Gene ontology enrichment analysis provided assessment of biological processes affected by age, and a list of 897 genes with ≥2 fold higher (p<0.01) expression in day 42 when compared to day 1 foal samples. Up-regulated genes included B cell and T cell receptor diversity genes; DNA replication enzymes; natural killer cell receptors; granzyme B and perforin; complement receptors; immunomodulatory receptors; cell adhesion molecules; and cytokines/chemokines and their receptors. The list of 1,383 genes that had higher (p<0.01) expression on day 1 when compared to day 42 foal samples was populated by genes with roles in innate immunity such as antimicrobial proteins; pathogen recognition receptors; cytokines/chemokines and their receptors; cell adhesion molecules; co-stimulatory molecules; and T cell receptor delta chain. Within the 742 genes with increased expression between day 42 foal and adult samples, B cell immunity was the main biological process (p = 2.4E-04). Novel data on markedly low (p<0.0001) TLR3 gene expression, and high (p≤0.01) expression of IL27, IL13RA1, IREM-1, SIRL-1, and SIRPα on day 1 compared to day 42 foal samples point out potential mechanisms of increased susceptibility to pathogens in early life. The results portray a progression from innate immune gene expression predominance early in life to adaptive immune gene expression increasing with age with a putative overlay of immune suppressing genes in the neonatal phase. These results provide insight to the unique attributes of the equine neonatal and young immune system, and offer many avenues of future investigation.
Collapse
|
2
|
Glaesener S, Jaenke C, Habener A, Geffers R, Hagendorff P, Witzlau K, Imelmann E, Krueger A, Meyer-Bahlburg A. Decreased production of class-switched antibodies in neonatal B cells is associated with increased expression of miR-181b. PLoS One 2018; 13:e0192230. [PMID: 29389970 PMCID: PMC5794184 DOI: 10.1371/journal.pone.0192230] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 01/18/2018] [Indexed: 01/11/2023] Open
Abstract
The increased susceptibility to infections of neonates is caused by an immaturity of the immune system as a result of both qualitative and quantitative differences between neonatal and adult immune cells. With respect to B cells, neonatal antibody responses are known to be decreased. Accountable for this is an altered composition of the neonatal B cell compartment towards more immature B cells. However, it remains unclear whether the functionality of individual neonatal B cell subsets is altered as well. In the current study we therefore compared phenotypical and functional characteristics of corresponding neonatal and adult B cell subpopulations. No phenotypic differences could be identified with the exception of higher IgM expression in neonatal B cells. Functional analysis revealed differences in proliferation, survival, and B cell receptor signaling. Most importantly, neonatal B cells showed severely impaired class-switch recombination (CSR) to IgG and IgA. This was associated with increased expression of miR-181b in neonatal B cells. Deficiency of miR-181b resulted in increased CSR. With this, our results highlight intrinsic differences that contribute to weaker B cell antibody responses in newborns.
Collapse
Affiliation(s)
- Stephanie Glaesener
- Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | - Christine Jaenke
- Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | - Anika Habener
- Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Petra Hagendorff
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Katrin Witzlau
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Esther Imelmann
- Institute for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Andreas Krueger
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Institute for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Almut Meyer-Bahlburg
- Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- * E-mail:
| |
Collapse
|
3
|
Brizić I, Hiršl L, Britt WJ, Krmpotić A, Jonjić S. Immune responses to congenital cytomegalovirus infection. Microbes Infect 2017; 20:543-551. [PMID: 29287989 DOI: 10.1016/j.micinf.2017.12.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 12/15/2022]
Abstract
Human cytomegalovirus (HCMV) is the most common cause of viral infection acquired in utero. Even though the infection has been studied for several decades, immune determinants important for virus control and mechanisms of long-term sequelae caused by infection are still insufficiently characterized. Animal models of congenital HCMV infection provide unique opportunity to study various aspects of human disease. In this review, we summarize current knowledge on the role of immune system in congenital CMV infection, with emphasis on lessons learned from mouse model of congenital CMV infection.
Collapse
Affiliation(s)
- Ilija Brizić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia; Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Lea Hiršl
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia; Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - William J Britt
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Pediatrics Infectious Disease, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Astrid Krmpotić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Stipan Jonjić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia; Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
4
|
Tallmadge RL, Miller SC, Parry SA, Felippe MJB. Antigen-specific immunoglobulin variable region sequencing measures humoral immune response to vaccination in the equine neonate. PLoS One 2017; 12:e0177831. [PMID: 28520789 PMCID: PMC5433778 DOI: 10.1371/journal.pone.0177831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/03/2017] [Indexed: 12/16/2022] Open
Abstract
The value of prophylactic neonatal vaccination is challenged by the interference of passively transferred maternal antibodies and immune competence at birth. Taken our previous studies on equine B cell ontogeny, we hypothesized that the equine neonate generates a diverse immunoglobulin repertoire in response to vaccination, independently of circulating maternal antibodies. In this study, equine neonates were vaccinated with 3 doses of keyhole limpet hemocyanin (KLH) or equine influenza vaccine, and humoral immune responses were assessed using antigen-specific serum antibodies and B cell Ig variable region sequencing. An increase (p<0.0001) in serum KLH-specific IgG level was measured between days 21 and days 28, 35 and 42 in vaccinated foals from non-vaccinated mares. In vaccinated foals from vaccinated mares, serum KLH-specific IgG levels tended to increase at day 42 (p = 0.07). In contrast, serum influenza-specific IgG levels rapidly decreased (p≤0.05) in vaccinated foals from vaccinated mares within the study period. Nevertheless, IGHM and IGHG sequences were detected in KLH- and influenza- sorted B cells of vaccinated foals, independently of maternal vaccination status. Immunoglobulin nucleotide germline identity, IGHV gene usage and CDR length of antigen-specific IGHG sequences in B cells of vaccinated foals revealed a diverse immunoglobulin repertoire with isotype switching that was comparable between groups and to vaccinated mares. The low expression of CD27 memory marker in antigen-specific B cells, and of cytokines in peripheral blood mononuclear cells upon in vitro immunogen stimulation indicated limited lymphocyte population expansion in response to vaccine during the study period.
Collapse
Affiliation(s)
- Rebecca L. Tallmadge
- Equine Immunology Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Steven C. Miller
- Equine Immunology Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Stephen A. Parry
- Cornell Statistical Consulting Unit, Cornell University, Ithaca, New York, United States of America
| | - Maria Julia B. Felippe
- Equine Immunology Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
5
|
High-content cytometry and transcriptomic biomarker profiling of human B-cell activation. J Allergy Clin Immunol 2013; 133:172-80.e1-10. [PMID: 24012209 DOI: 10.1016/j.jaci.2013.06.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 05/31/2013] [Accepted: 06/24/2013] [Indexed: 12/27/2022]
Abstract
BACKGROUND Primary antibody deficiencies represent the most prevalent, although very heterogeneous, group of inborn immunodeficiencies, with a puzzling complexity of cellular and molecular processes involved in disease pathogenesis. OBJECTIVE We aimed to study in detail the kinetics of CD40 ligand/IL-21-induced B-cell differentiation to define new biomarker sets for further research into primary antibody deficiencies. METHODS We applied high-content screening methods to monitor B-cell activation on the cellular (chip cytometry) and transcriptomic (RNA microarray) levels. RESULTS The complete activation process, including stepwise changes in protein and RNA expression patterns, entry into the cell cycle, proliferation and expression of activation-induced cytidine deaminase (AID), DNA repair enzymes, and post-class-switch expression of IgA and IgG, was successfully monitored during in vitro differentiation. We identified a number of unknown pathways engaged during B-cell activation, such as CXCL9/CXCL10 secretion by B cells. Finally, we evaluated a deduced set of biomarkers on a group of 18 patients with putative or proved intrinsic B-cell defects recruited from the European Society for Immunodeficiencies database and successfully predicted 2 AID defects and 1 DNA repair defect. Complete absence of class-switched B cells was a sensitive predictor of AID deficiency and should be further evaluated as a diagnostic biomarker. CONCLUSION The biomarkers found in this study could be used to further study the complex process of B-cell activation and to understand conditions that lead to the development of primary antibody deficiencies.
Collapse
|
6
|
Siebert JN, L'huillier AG, Grillet S, Delhumeau C, Siegrist CA, Posfay-Barbe KM. Memory B cell compartment constitution and susceptibility to recurrent lower respiratory tract infections in young children. J Leukoc Biol 2013; 93:951-62. [PMID: 23530161 DOI: 10.1189/jlb.0312117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A proportion of children have recurrent LRTIs, mostly as a result of Spn, which persist after 2 years of age. Here, we investigate, by flow cytofluorometry, the constitution of the memory B cell compartment in 90 healthy children and 49 children with recurrent LRTIs to determine if an increased susceptibility to recurrent LRTIs results from a delayed or abnormal ontogeny with poor antibody-mediated protection. Total IgA, IgM, IgG, and IgG subclasses were measured by nephelometry, as well as antipneumococcal antibodies by ELISA. Pneumococcal vaccination status was obtained. We show that the memory B cells increase between birth and 2 years of age (1.6% vs. 21.1%, P<0.001) without further significant increase noted per additional years (3-4 years old: 23.3%; 4-5 years old: 22.2%, P>0.40) to reach adult-like values (31.8±11.8%, P=0.08). Proportions of switched and IgM memory B cells were similar in children and adults. Comparatively, LRTI children had no delay in the constitution of their memory B cell compartment (2-3 years old: 26.9%; 3-4 years old: 18.2%; 4-5 years old: 26.8%, P>0.05). Their switched and IgM memory B cells were similar among age categories, and the distribution was overall similar to that of healthy controls. LRTI children had normal total and pneumococcal serotype-specific antibody values but showed a rapid waning of antipneumococcal antibody levels after vaccination. In summary, our results show that the memory B cell compartment is already similarly constituted at 2 years of age in healthy and LRTI children and thus, cannot explain the increased susceptibility to bacterial pneumonia. However, the waning of antibodies might predispose children to recurrent infections in the absence of revaccination.
Collapse
Affiliation(s)
- Johan N Siebert
- Department of Pediatrics, University Hospitals of Geneva and Medical School, University of Geneva, Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
Vaccines for early-life immunization are a crucial biomedical intervention to reduce global morbidity and mortality, yet their developmental path has been largely ad hoc, empiric, and inconsistent. Immune responses of human newborns and infants are distinct and cannot be predicted from those of human adults or animal models. Therefore, understanding and modeling age-specific human immune responses will be vital to the rational design and development of safe and effective vaccines for newborns and infants.
Collapse
|
8
|
di Carlo P, Romano A, Casuccio A, Cillino S, Schimmenti MG, Mancuso G, la Chiusa S, Novara V, Ingrassia D, li Vecchi V, Trizzino M, Titone L. Investigation and management of Toxoplasma gondii infection in pregnancy and infancy: a prospective study. Acta Pharmacol Sin 2011; 32:1063-70. [PMID: 21743484 DOI: 10.1038/aps.2011.55] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AIM Toxoplasma gondii infection during pregnancy poses a serious risk to the fetus, therefore timely and accurate diagnosis is essential. The aim of this study was to estimate the frequency of congenital infection via evaluating mother's immunological status and the possibility to improving the diagnostic and therapeutic approaches. METHODS Eighty five mothers with Toxoplasma seroconversion and their offspring were enrolled (among them, 2 spontaneous abortions were documented in the first trimester). Prenatal PCR diagnosis was carried out on 50 patients (60%), with 7 positive cases (14%). Morphological ultrasound scanning revealed anomalies in one fetus. Long-term follow-up included general physical examinations, serological status tested using Western blot, neuro-radiological, ophthalmologic and neurologic examinations, psychological and developmental tests, visual evoked potential tests and audiology tests, as well as anti-Toxoplasma treatment regimes. RESULTS Fourteen (17%) of the infants were infected at one-year serological follow-up. Chi-square for linear trend of vertical transmission from the first to the third trimester was significant (P=0.009). Western blot analysis showed IgM and IgA in half of the infected infants. In 69 uninfected infants, anti-Toxoplasma IgG immunoblot analysis excluded infection within the 3 months in 18 infants (26%) and in the others within 6 months of life. The most relevant instrumental findings are described. CONCLUSION Western blot analysis may help to evaluate infection within the 6 months of life. The accuracy of ultrasound imaging to determine the brain damage in the fetus and newborns is doubtful, and should be combined with MR imaging. Multistep approaches can improve the timing of postnatal follow-up.
Collapse
|
9
|
Saggini A, Tripodi D, Maccauro G, Castellani M, Anogeianaki A, Teté S, Felaco P, De Luths M, Galzio R, Fulcheri M, Theoharides T, Caraffa A, Antinolfi P, Felaco M, Conti F, Neri G, Pandolfi F, Tomato E, Shaik-Dasthagirisaheb Y. Tumor Necrosis Factor-Alpha and Mast Cells: Revisited Study. EUR J INFLAMM 2011. [DOI: 10.1177/1721727x1100900103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Mast cells reside in connective tissues and are widely recognized as effector cells important in innate and acquired immunity. These cells are the only ones capable of storing preformed TNFα in their cytoplasmatic granules and release upon activation. TNF-alpha is a potent multifunctional cytokine involved in autoimmune diseases, cancer, allergy, and acute and chronic inflammation. In this study, we revisit the interrelationship between TNFα and mast cells.
Collapse
Affiliation(s)
| | - D. Tripodi
- School of Dentistry, University of Chieti, Italy
| | - G. Maccauro
- Department of Orthopaedics, Catholic University of Rome, Italy
| | | | - A. Anogeianaki
- Physiology Department, School of Medicine, Aristotle University of Thessaloniki, Greece
| | - S. Teté
- School of Dentistry, University of Chieti, Italy
| | - P. Felaco
- Department of Human Dynamics, University of Chieti, Italy
| | - M.A. De Luths
- Department of Human Dynamics, University of Chieti, Italy
| | - R. Galzio
- Department of Health Sciences, University of L'Aquila, Italy
| | - M. Fulcheri
- Department of Clinical Psychology, University of Chieti, Italy
| | - T.C. Theoharides
- Department of Pharmacology and Experimental Therapeutics, Biochemistry and Internal Medicine Tufts University School of Medicine, Tufts-New England Medical Center, Boston, MA, USA
| | - A. Caraffa
- Orthopaedics Division, University of Perugia, Perugia, Italy
| | - P. Antinolfi
- Orthopaedics Division, University of Perugia, Perugia, Italy
| | - M. Felaco
- Department of Human Dynamics, University of Chieti, Italy
| | - F. Conti
- Orthopaedics Division, University of Perugia, Perugia, Italy
| | - G. Neri
- Institute of Internal Medicine, University of Chieti, Italy
| | - F. Pandolfi
- Institute of Internal Medicine, Catholic University, Rome, Italy
| | - E. Tomato
- Department of Oncology and Experimental Medicine, University of Chieti, Chieti, Italy
| | | |
Collapse
|