1
|
Mansour MN, Lendormi T, Drévillon L, Naji A, Louka N, Maroun RG, Hobaika Z, Lanoisellé JL. Influence of substrate/inoculum ratio, inoculum source and ammonia inhibition on anaerobic digestion of poultry waste. ENVIRONMENTAL TECHNOLOGY 2024; 45:1894-1907. [PMID: 36524389 DOI: 10.1080/09593330.2022.2157754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Poultry wastes are rich in organic matter, allowing their use as substrates for biogas production by anaerobic digestion (AD). The major difficulty in the anaerobic digestion of this protein-rich waste is ammonia inhibition. Different results of biochemical methane potential (BMP) were obtained after the mesophilic anaerobic digestion of different avian waste in batch mode. It was shown that using two different inoculum (Liger and Saint-Brieuc) sources and different substrate-to-inoculum (S/I) ratios does not have a significant effect on the biochemical methane potential of organic laying hen droppings (OLHD); an average of 0.272 Nm3 CH4·kg-1·VS was obtained with both inocula. Otherwise, it affects the hydrolysis constant KH, and it decreases when the substrate-to-inoculum ratio increases. Furthermore, Liger is the most suitable inoculum for our substrate because it shows stability during the process even with different organic loads. Comparing the biochemical methane potential of multiple avian wastes such as organic laying hen droppings and different slaughterhouse waste highlights the importance of slaughterhouse waste in the anaerobic digestion process because of the high methane yield observed especially with the viscera (0.779 Nm3 CH4·kg-1 VS, SD = 0.027 Nm3 CH4·kg-1 VS). Moreover, methane production was affected by increasing the ammonia concentrations; when [N-NH3] > 9.8 g·N-NH3·L-1, the biochemical methane potential decreases and the lag phase increases (λ > 30 days); a total inhibition of the process was observed when ammonia concentration is above 21.8 g·L-1.
Collapse
Affiliation(s)
- Marie-Noël Mansour
- Univ. Bretagne Sud, UMR CNRS 6027, IRDL, F-56300 Pontivy, France
- Faculté des Sciences, Centre d'Analyses et de Recherches, Unité de recherche Technologies et Valorisation Alimentaire, Université Saint-Joseph de Beyrouth, Beirut, Lebanon
| | - Thomas Lendormi
- Univ. Bretagne Sud, UMR CNRS 6027, IRDL, F-56300 Pontivy, France
| | - Lucie Drévillon
- Univ. Bretagne Sud, UMR CNRS 6027, IRDL, F-56300 Pontivy, France
| | - Amar Naji
- Univ. Bretagne Sud, UMR CNRS 6027, IRDL, F-56300 Pontivy, France
| | - Nicolas Louka
- Faculté des Sciences, Centre d'Analyses et de Recherches, Unité de recherche Technologies et Valorisation Alimentaire, Université Saint-Joseph de Beyrouth, Beirut, Lebanon
| | - Richard G Maroun
- Faculté des Sciences, Centre d'Analyses et de Recherches, Unité de recherche Technologies et Valorisation Alimentaire, Université Saint-Joseph de Beyrouth, Beirut, Lebanon
| | - Zeina Hobaika
- Faculté des Sciences, Centre d'Analyses et de Recherches, Unité de recherche Technologies et Valorisation Alimentaire, Université Saint-Joseph de Beyrouth, Beirut, Lebanon
| | | |
Collapse
|
2
|
Aili Hamzah AF, Hamzah MH, Che Man H, Jamali NS, Siajam SI, Ismail MH. Effect of organic loading on anaerobic digestion of cow dung: Methane production and kinetic study. Heliyon 2023; 9:e16791. [PMID: 37303543 PMCID: PMC10250787 DOI: 10.1016/j.heliyon.2023.e16791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/13/2023] Open
Abstract
Organic loading influences the effectiveness of producing biogas through anaerobic digestion. This study set out to investigate the effect of organic loading on the anaerobic mesophilic digestion of cow dung, the parameters involved in the digestion process and to evaluate the kinetics. Anaerobic digestion of cow dung at different organic loading (gVS/L) of 14 gVS/L, 18gVS/L, 22 gVS/L, 26 gVS/L and 30 gVS/L were investigated. Increasing the organic loading increased the methane yield of the cow dung. The highest cumulative methane yield was observed at 30 gVS/L with 63.42 mL CH4/gVS while the highest biogas yield was reported at 192.53 mL/gVS with the highest methane content of 89%. In addition, the modified Gompertz model equation with an R2 of 0.9980 demonstrated strong consistency and a good fit between predicted and experimental data. The high number of substrates added to the systems when increasing the organic loading increased the λ and slow down the nutrient transport and hydrolysis. This study provides current information on the effects of organic loading on the anaerobic digestion of cow dung in batch mode, including experimental conditions and operational parameters.
Collapse
Affiliation(s)
- Adila Fazliyana Aili Hamzah
- Department of Biological and Agricultural Engineering, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Muhammad Hazwan Hamzah
- Department of Biological and Agricultural Engineering, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
- Smart Farming Technology Research Centre, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Hasfalina Che Man
- Department of Biological and Agricultural Engineering, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
- Smart Farming Technology Research Centre, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Nur Syakina Jamali
- Department of Chemical and Environmental Engineering, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Shamsul Izhar Siajam
- Department of Chemical and Environmental Engineering, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Muhammad Heikal Ismail
- Department of Chemical and Environmental Engineering, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| |
Collapse
|
3
|
Johnravindar D, Kaur G, Liang J, Lou L, Zhao J, Manu MK, Kumar R, Varjani S, Wong JWC. Impact of total solids content on biochar amended co-digestion of food waste and sludge: Microbial community dynamics, methane production and digestate quality assessment. BIORESOURCE TECHNOLOGY 2022; 361:127682. [PMID: 35882316 DOI: 10.1016/j.biortech.2022.127682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
This study evaluates the impact of biochar addition on the performance of anaerobic co-digestion of food waste (FW) and sewage sludge at different total solids (TS) contents (2.5 %, 5.0 %, and 7.5 %). Biochar co-digestion improved hydrolysis and acidogenesis by neutralizing volatile fatty acids (VFAs) reducing its inhibitions (2.6-fold removal), which elevated the soluble chemical oxygen demand (sCOD) degradation by 2.5 folds leading to a higher cumulative methane production compared to the control. This increase corresponded to an improvement of methane yields by ∼21 %-33 % (242-340 mL/gVSadd) at different TS contents. The biochar surface area offered substantial support for direct interspecies electron transfer (DIET) activity, and biofilm-mediated growth of methanogens i.e., Methanosarcina, Methanosata, and Methanobrevibacter. The biochar-enriched digestate improved the seed germination index, and bioavailability of plant nutrients such as N, P, K, and NH4+-N. This study reports an improved biochar-mediated anaerobic co-digestion for efficient and sustainable FW valorization.
Collapse
Affiliation(s)
- Davidraj Johnravindar
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Guneet Kaur
- Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, Ontario M3J 1P3, Canada
| | - Jialin Liang
- Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention and Control of Guangdong Higher Education Institute, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Liwen Lou
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Jun Zhao
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - M K Manu
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Rajat Kumar
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382 010 Gujarat, India
| | - Jonathan W C Wong
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China.
| |
Collapse
|
4
|
Raj T, Chandrasekhar K, Morya R, Kumar Pandey A, Jung JH, Kumar D, Singhania RR, Kim SH. Critical challenges and technological breakthroughs in food waste hydrolysis and detoxification for fuels and chemicals production. BIORESOURCE TECHNOLOGY 2022; 360:127512. [PMID: 35760245 DOI: 10.1016/j.biortech.2022.127512] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Organic waste has increased as the global population and economy have grown exponentially. Food waste (FW) is posing a severe environmental issue because of mismanaged disposal techniques, which frequently result in the squandering of carbohydrate-rich feedstocks. In an advanced valorization strategy, organic material in FW can be used as a viable carbon source for microbial digestion and hence for the generation of value-added compounds. In comparison to traditional feedstocks, a modest pretreatment of the FW stream utilizing chemical, biochemical, or thermochemical techniques can extract bulk of sugars for microbial digestion. Pretreatment produces a large number of toxins and inhibitors that affect bacterial fuel and chemical conversion processes. Thus, the current review scrutinizes the FW structure, pretreatment methods (e.g., physical, chemical, physicochemical, and biological), and various strategies for detoxification before microbial fermentation into renewable chemical production. Technological and commercial challenges and future perspectives for FW integrated biorefineries have also been outlined.
Collapse
Affiliation(s)
- Tirath Raj
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - K Chandrasekhar
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research, Vadlamudi-522213, Guntur, Andhra Pradesh, India
| | - Raj Morya
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Ashutosh Kumar Pandey
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Ju-Hyeong Jung
- Eco Lab Center, SK ecoplant Co. Ltd., Seoul 03143, Republic of Korea
| | - Deepak Kumar
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
5
|
Metaproteomics reveals enzymatic strategies deployed by anaerobic microbiomes to maintain lignocellulose deconstruction at high solids. Nat Commun 2022; 13:3870. [PMID: 35790765 PMCID: PMC9256739 DOI: 10.1038/s41467-022-31433-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/16/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractEconomically viable production of cellulosic biofuels requires operation at high solids loadings—on the order of 15 wt%. To this end we characterize Nature’s ability to deconstruct and utilize mid-season switchgrass at increasing solid loadings using an anaerobic methanogenic microbiome. This community exhibits undiminished fractional carbohydrate solubilization at loadings ranging from 30 g/L to 150 g/L. Metaproteomic interrogation reveals marked increases in the abundance of specific carbohydrate-active enzyme classes. Significant enrichment of auxiliary activity family 6 enzymes at higher solids suggests a role for Fenton chemistry. Stress-response proteins accompanying these reactions are similarly upregulated at higher solids, as are β-glucosidases, xylosidases, carbohydrate-debranching, and pectin-acting enzymes—all of which indicate that removal of deconstruction inhibitors is important for observed undiminished solubilization. Our work provides insights into the mechanisms by which natural microbiomes effectively deconstruct and utilize lignocellulose at high solids loadings, informing the future development of defined cultures for efficient bioconversion.
Collapse
|
6
|
Choi H, Han J, Lee J. Renewable Butanol Production via Catalytic Routes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182211749. [PMID: 34831504 PMCID: PMC8618088 DOI: 10.3390/ijerph182211749] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022]
Abstract
Fluctuating crude oil price and global environmental problems such as global warming and climate change lead to growing demand for the production of renewable chemicals as petrochemical substitutes. Butanol is a nonpolar alcohol that is used in a large variety of consumer products and as an important industrial intermediate. Thus, the production of butanol from renewable resources (e.g., biomass and organic waste) has gained a great deal of attention from researchers. Although typical renewable butanol is produced via a fermentative route (i.e., acetone-butanol-ethanol (ABE) fermentation of biomass-derived sugars), the fermentative butanol production has disadvantages such as a low yield of butanol and the formation of byproducts, such as acetone and ethanol. To avoid the drawbacks, the production of renewable butanol via non-fermentative catalytic routes has been recently proposed. This review is aimed at providing an overview on three different emerging and promising catalytic routes from biomass/organic waste-derived chemicals to butanol. The first route involves the conversion of ethanol into butanol over metal and oxide catalysts. Volatile fatty acid can be a raw chemical for the production of butanol using porous materials and metal catalysts. In addition, biomass-derived syngas can be transformed to butanol on non-noble metal catalysts promoted by alkali metals. The prospect of catalytic renewable butanol production is also discussed.
Collapse
Affiliation(s)
- Heeyoung Choi
- Department of Environmental and Safety Engineering, Ajou University, Suwon 16499, Korea;
| | - Jeehoon Han
- School of Semiconductor and Chemical Engineering & School of Chemical Engineering, Jeonbuk National University, Jeonju 54896, Korea
- Correspondence: (J.H.); (J.L.)
| | - Jechan Lee
- Department of Environmental and Safety Engineering, Ajou University, Suwon 16499, Korea;
- Department of Energy Systems Research, Ajou University, Suwon 16499, Korea
- Correspondence: (J.H.); (J.L.)
| |
Collapse
|
7
|
Xu S, Wang C, Sun Y, Luo L, Wong JWC. Assessing the stability of co-digesting sewage sludge with pig manure under different mixing ratios. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 114:299-306. [PMID: 32683245 DOI: 10.1016/j.wasman.2020.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 06/08/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
This study assessed the digester stability and overall methane production of co-digestion of sewage sludge (SS) and pig manure (PM). Four different ratios of PM were mixed with SS to reach different final concentrations of total solids (TS), i.e. 4%, 6%, 8% and 10%. Volatile solids (VS) reduction rate decreased along with an increase in TS%, and the maximum cumulative methane yield of 342 mL/g VSrem was obtained in treatment with TS of 6%. When TS was ≥ 8%, accumulation of volatile fatty acids (VFAs), free ammonium nitrogen (FAN) and total ammonium nitrogen (TAN) were observed. At a TS content of 10%, VFAs accumulated to > 20000 mg/L and the highest FAN was 481 mg/L. The suppression of methanogenesis was negatively correlated with FAN and VFA/TIC (P < 0.05). Co-digestion demonstrated to be an effective way to improve the methane yield from SS due to the enriched biodegradable organic substance and more balanced C/N ratio by incorporating PM.
Collapse
Affiliation(s)
- Suyun Xu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Chongyang Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yangyang Sun
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Liwen Luo
- Institute of Bioresource and Agriculture and Sino-Forest Applied Research Centre for Pearl River Delta Environment, Hong Kong Baptist University, Hong Kong SAR, China; Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Jonathan Woon-Chung Wong
- Institute of Bioresource and Agriculture and Sino-Forest Applied Research Centre for Pearl River Delta Environment, Hong Kong Baptist University, Hong Kong SAR, China; Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
8
|
Khadaroo SNBA, Grassia P, Gouwanda D, Poh PE. The influence of different solid-liquid ratios on the thermophilic anaerobic digestion performance of palm oil mill effluent (POME). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 257:109996. [PMID: 31868647 DOI: 10.1016/j.jenvman.2019.109996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
An alternative method was proposed to optimize the treatment process of palm oil mill effluent (POME) in an effort to address the poor removal efficiencies in terms of the chemical and biological oxygen demand (COD and BOD), total suspended solids (TSS) as well as oil and grease (O&G) content in treated POME along with many environmental issues associated with the existing POME treatment process. The elimination of the cooling ponds and the insertion of a dewatering device in the treatment process were recommended. The dewatering device should enhance the anaerobic digestion process by conferring a means of control on the digesters' load. The objective of this study is to identify the optimum solid: liquid ratio (total solids (TS) content) that would generate the maximum amount of biogas with better methane purity consistently throughout the anaerobic digestion of POME, all while improving the treated effluent quality. It was established that a 40S:60L (4.02% TS) was the best performing solid loading in terms of biogas production and methane yield as well as COD, BOD, TSS, and O&G removal efficiencies. Meanwhile, at higher solid loadings, the biogas production is inhibited due to poor transport and mass transfer. It is also speculated that sulfate-reducing bacteria tended to inhibit the biogas production based on the significantly elevated H2S concentration recorded for the 75S:25L and the 100S loadings.
Collapse
Affiliation(s)
- Sabeeha N B A Khadaroo
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Paul Grassia
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Strathclyde, James Weir Building, 75 Montrose St, G1 1XJ, UK
| | - Darwin Gouwanda
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Phaik Eong Poh
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
9
|
Litti Y, Nikitina A, Kovalev D, Ermoshin A, Mahajan R, Goel G, Nozhevnikova A. Influence of cationic polyacrilamide flocculant on high-solids' anaerobic digestion of sewage sludge under thermophilic conditions. ENVIRONMENTAL TECHNOLOGY 2019; 40:1146-1155. [PMID: 29237330 DOI: 10.1080/09593330.2017.1417492] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/08/2017] [Indexed: 06/07/2023]
Abstract
Treatment of sewage sludge (SS) by biodegradable polyacrylamide-based flocculants (PAM) is considered to be an effective way to increase total solids' (TS) content prior to anaerobic digestion (AD). However, data on how PAM addition influences the efficiency of AD process are quite contradictory; moreover, no data are available for thermophilic AD (TAD). This study showed that at an optimal inoculum-to-substrate ratio (ISR, 55/45), PAM addition resulted in some decrease in initial methane production during the TAD of SS due to the formation of large flocs (up to 2-3 mm in diameter), which deteriorated the mass transfer. However, at non-optimal ISR (40/60), which led to the destabilization of TAD, PAM addition (40 mg/g TS) could restore the methanogenesis despite the inhibiting accumulation of volatile fatty acids (14-15 g/l) and pH drop (5.5). The observed positive effect of PAM-forced flocculation proposes a new interesting alternative for recovery of 'soured' reactors.
Collapse
Affiliation(s)
- Yuri Litti
- a Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences , Moscow , Russia
| | - Anna Nikitina
- a Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences , Moscow , Russia
| | - Dmitriy Kovalev
- b Federal Government Budgetary Scientific Institution Federal Scientific Agroengeneering Centre VIM , Moscow , Russia
| | - Artem Ermoshin
- a Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences , Moscow , Russia
| | - Rishi Mahajan
- c Department of Biotechnology and Bioinformatics , Jaypee University of Information Technology , Waknaghat , India
| | - Gunjan Goel
- c Department of Biotechnology and Bioinformatics , Jaypee University of Information Technology , Waknaghat , India
| | - Alla Nozhevnikova
- a Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences , Moscow , Russia
| |
Collapse
|
10
|
Pilot-Scale Anaerobic Co-Digestion of the OFMSW: Improving Biogas Production and Startup. SUSTAINABILITY 2018. [DOI: 10.3390/su10061939] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper presents experimental results regarding anaerobic co-digestion of the organic fraction of municipal solid waste and fruit and vegetable waste in order to establish the efficiency of a 2 m3 volume pilot plant in terms of biogas and methane yield and stability of the process. The research study presents the feasibility of developing anaerobic digestion as an effective method for municipal solid waste management. The experiments were conducted in mesophilic conditions (35 °C). Domestic waste water was used as inoculum. The results showed that the inoculum presence, temperature, and pH control, were essential in order to improve biogas production and its composition. Using liquid inoculum, the CH4 percentage in the biogas oscillated between 44% and 51%, and the biogas production from 0.504 and 0.6 m3/day. Compared to domestic waste water, animal manure increased the CH4 concentration in biogas (up to 63%), while the daily biogas production increased by 26% and varied from 0.693 to 0.786 m3. The cumulative biogas production at the end of the experiments were 11.7 m3 and 15.89 m3, respectively. Using inoculum and co-digestion, the plant startup time was significantly reduced, the total solids content decreased from 22.7% to 19.8%, while the volatile solids decreased from 37.6% to 31.2%.
Collapse
|
11
|
Wang X, Duan X, Chen J, Fang K, Feng L, Yan Y, Zhou Q. Enhancing anaerobic digestion of waste activated sludge by pretreatment: effect of volatile to total solids. ENVIRONMENTAL TECHNOLOGY 2016; 37:1520-1529. [PMID: 26698921 DOI: 10.1080/09593330.2015.1120783] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this study the effect of volatile to total solids (VS/TS) on anaerobic digestion of waste activated sludge (WAS) pretreated by alkaline, thermal and thermal-alkaline strategies was studied. Experimental results showed that the production of methane from sludge was increased with VS/TS. When anaerobic digesters were fed with sludge pretreated by the thermal-alkaline method, the average methane yield was improved from 2.8 L/d at VS/TS 0.35 to 4.7 L/d at VS/TS 0.56. Also, the efficiency of VS reduction during sludge anaerobic digestion varied between 18.9% and 45.6%, and increased gradually with VS/TS. Mechanism investigation of VS/TS on WAS anaerobic digestion suggested that the general activities of anaerobic microorganisms, activities of key enzymes related to sludge hydrolysis, acidification and methanogenesis, and the ratio of Archaea to Bacteria were all increased with VS/TS, showing good agreement with methane production.
Collapse
Affiliation(s)
- Xiao Wang
- a State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering , Tongji University , Shanghai , People's Republic of China
| | - Xu Duan
- a State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering , Tongji University , Shanghai , People's Republic of China
| | - Jianguang Chen
- a State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering , Tongji University , Shanghai , People's Republic of China
| | - Kuo Fang
- a State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering , Tongji University , Shanghai , People's Republic of China
| | - Leiyu Feng
- a State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering , Tongji University , Shanghai , People's Republic of China
- b Research and Service Center for Environmental Protection Industry , Yancheng , Jiangsu Province , People's Republic of China
| | - Yuanyuan Yan
- a State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering , Tongji University , Shanghai , People's Republic of China
- b Research and Service Center for Environmental Protection Industry , Yancheng , Jiangsu Province , People's Republic of China
| | - Qi Zhou
- a State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering , Tongji University , Shanghai , People's Republic of China
| |
Collapse
|
12
|
Chen S, Zhang J, Wang X. Effects of alkalinity sources on the stability of anaerobic digestion from food waste. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2015; 33:1033-1040. [PMID: 26391806 DOI: 10.1177/0734242x15602965] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This study investigated the effects of some alkalinity sources on the stability of anaerobic digestion (AD) from food waste (FW). Four alkalinity sources, namely lime mud from papermaking (LMP), waste eggshell (WES), CaCO3 and NaHCO3, were applied as buffer materials and their stability effects were evaluated in batch AD. The results showed that LMP and CaCO3 had more remarkable effects than NaHCO3 and WES on FW stabilization. The methane yields were 120.2, 197.0, 156.2, 251.0 and 194.8 ml g(-1) VS for the control and synergistic digestions of CaCO3, NaHCO3, LMP and WES added into FW, respectively. The corresponding final alkalinity reached 5906, 7307, 9504, 7820 and 6782 mg l(-1), while the final acidities were determined to be 501, 200, 50, 350 and 250 mg l(-1), respectively. This indicated that the synergism between alkalinity and inorganic micronutrients from different alkalinity sources played an important role in the process stability of AD from FW.
Collapse
Affiliation(s)
- Shujun Chen
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, China
| | - Jishi Zhang
- School of Environmental Science and Engineering, Qilu University of Technology, China
| | - Xikui Wang
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, China
| |
Collapse
|