1
|
Downregulation of genes outside the deleted region in individuals with 22q11.2 deletion syndrome. Hum Genet 2019; 138:93-103. [PMID: 30627818 DOI: 10.1007/s00439-018-01967-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/22/2018] [Indexed: 12/12/2022]
Abstract
The 22q11.2 deletion syndrome (22q11.2DS) is caused by recurrent hemizygous deletions of chromosome 22q11.2. The phenotype of the syndrome is complex and varies widely among individuals. Little is known about the role of the different genes located in 22q11.2, and we hypothesized that genetic risk factors lying elsewhere in the genome might contribute to the phenotype. Here, we present the whole-genome gene expression data of 11 patients with approximately 3 Mb deletions. Apart from the hemizygous genes mapped to the 22q11.2 region, the TUBA8 and GNAZ genes, neighboring the deleted interval but in normal copy number, showed altered expression. When genes mapped to other chromosomes were considered in the gene expression analysis, a genome-wide dysregulation was observed, with increased or decreased expression levels. The enriched pathways of these genes were related to immune response, a deficiency that is frequently observed in 22q11.2DS patients. We also used the hypothesis-free weighted gene co-expression network analysis (WGCNA), which revealed the co-expression gene network modules with clear connection to mechanisms associated with 22q11.2DS such as immune response and schizophrenia. These findings, combined with the traditional gene expression profile, can be used for the identification of potential pathways and genes not previously considered to be related to the 22q11.2 deletion syndrome.
Collapse
|
2
|
Hopkins SE, Chadehumbe M, Blaine Crowley T, Zackai EH, Bilaniuk LT, McDonald-McGinn DM. Neurologic challenges in 22q11.2 deletion syndrome. Am J Med Genet A 2018; 176:2140-2145. [PMID: 30365873 DOI: 10.1002/ajmg.a.38614] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 09/10/2015] [Accepted: 01/11/2016] [Indexed: 01/30/2023]
Abstract
Children with 22q11.2 deletion syndrome often come to medical attention due to signs and symptoms of neurologic dysfunction. It is imperative to understand the expected neurologic development of patients with this diagnosis in order to be alert for the potential neurologic complications, including cortical malformations, tethered cord, epilepsy, and movement disorders. We present an update of brain imaging findings from the CHOP 22q and You Center, a review of the current literature, and our current management practices for neurological issues.
Collapse
Affiliation(s)
- Sarah E Hopkins
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Madeline Chadehumbe
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | - Elaine H Zackai
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Larissa T Bilaniuk
- Division of Neuroradiology, Children's Hospital of Philadelphia, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | | |
Collapse
|
3
|
Bohm LA, Zhou TC, Mingo TJ, Dugan SL, Patterson RJ, Sidman JD, Roby BB. Neuroradiographic findings in 22q11.2 deletion syndrome. Am J Med Genet A 2017; 173:2158-2165. [PMID: 28577347 DOI: 10.1002/ajmg.a.38304] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/20/2017] [Accepted: 05/10/2017] [Indexed: 10/19/2022]
Abstract
22q11.2 deletion syndrome (22q11.2DS) is a common genetic disorder with enormous phenotypic heterogeneity. Despite the established prevalence of developmental and neuropsychiatric issues in this syndrome, its neuroanatomical correlates are not as well understood. A retrospective chart review was performed on 111 patients diagnosed with 22q11.2DS. Of the 111 patients, 24 with genetically confirmed 22q11.2 deletion and brain MRI or MRA were included in this study. The most common indications for imaging were unexplained developmental delay (6/24), seizures of unknown etiology (5/24), and unilateral weakness (3/24). More than half (13/24) of the patients had significant radiographic findings, including persistent cavum septi pellucidi and/or cavum vergae (8/24), aberrant cortical veins (6/24), polymicrogyria or cortical dysplasia (4/24), inner ear deformities (3/24), hypoplastic internal carotid artery (2/24), and hypoplastic cerebellum (1/24). These findings reveal the types and frequencies of brain malformations in this case series, and suggest that the prevalence of neuroanatomical abnormalities in 22q11.2DS may be underestimated. Understanding indications for imaging and frequently encountered brain malformations will result in early diagnosis and intervention in an effort to optimize patient outcomes.
Collapse
Affiliation(s)
- Lauren A Bohm
- University of Minnesota, Minneapolis, Minnesota.,ENT and Facial Plastic Surgery, Children's Minnesota, Children's Specialty Center, Minneapolis, Minnesota.,Division of Pediatric Otolaryngology, University of Michigan, Ann Arbor, Michigan
| | - Tom C Zhou
- University of Minnesota, Minneapolis, Minnesota
| | | | - Sarah L Dugan
- Medical Genetics, Children's Minnesota, Minneapolis, Minnesota.,Division of Pediatric Genetics, University of Utah, Salt Lake City, Utah
| | | | - James D Sidman
- University of Minnesota, Minneapolis, Minnesota.,ENT and Facial Plastic Surgery, Children's Minnesota, Children's Specialty Center, Minneapolis, Minnesota
| | - Brianne B Roby
- University of Minnesota, Minneapolis, Minnesota.,ENT and Facial Plastic Surgery, Children's Minnesota, Children's Specialty Center, Minneapolis, Minnesota
| |
Collapse
|
4
|
Barkovich AJ, Guerrini R, Kuzniecky RI, Jackson GD, Dobyns WB. A developmental and genetic classification for malformations of cortical development: update 2012. Brain 2012; 135:1348-69. [PMID: 22427329 PMCID: PMC3338922 DOI: 10.1093/brain/aws019] [Citation(s) in RCA: 698] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Malformations of cerebral cortical development include a wide range of developmental disorders that are common causes of neurodevelopmental delay and epilepsy. In addition, study of these disorders contributes greatly to the understanding of normal brain development and its perturbations. The rapid recent evolution of molecular biology, genetics and imaging has resulted in an explosive increase in our knowledge of cerebral cortex development and in the number and types of malformations of cortical development that have been reported. These advances continue to modify our perception of these malformations. This review addresses recent changes in our perception of these disorders and proposes a modified classification based upon updates in our knowledge of cerebral cortical development.
Collapse
Affiliation(s)
- A James Barkovich
- Neuroradiology, University of California at San Francisco, 505 Parnassus Avenue, San Francisco, CA 94913-0628, USA.
| | | | | | | | | |
Collapse
|
5
|
Kunwar A, Ramanathan S, Nelson J, Antshel KM, Fremont W, Higgins AM, Shprintzen RJ, Kates WR. Cortical gyrification in velo-cardio-facial (22q11.2 deletion) syndrome: a longitudinal study. Schizophr Res 2012; 137:20-5. [PMID: 22365148 PMCID: PMC3414250 DOI: 10.1016/j.schres.2012.01.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 01/21/2012] [Accepted: 01/24/2012] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Velo-cardio-facial syndrome (VCFS) has been identified as an important risk factor for psychoses, with up to 32% of individuals with VCFS developing a psychotic illness. Individuals with VCFS thus form a unique group to identify and explore early symptoms and biological correlates of psychosis. In this study, we examined if cortical gyrification pattern, i.e. gyrification index (GI) can be a potential neurobiological marker for psychosis. METHOD GIs of 91 individuals with VCFS were compared with 29 siblings and 54 controls. Further, 58 participants with VCFS, 21 siblings and 18 normal controls were followed up after 3 years and longitudinal changes in GI were compared. Additionally, we also correlated longitudinal changes in GI in individuals with VCFS with prodromal symptoms of psychosis on the Scale of Prodromal Symptoms (SOPS). RESULT Individuals with VCFS had significantly lower GIs as compared to their siblings and normal controls. Longitudinal examination of GI did not reveal any significant group-time interactions between the three groups. Further, longitudinal change in GI scores in the VCFS group was negatively correlated with positive prodromal symptoms, with the left occipital region reaching statistical significance. CONCLUSION The study confirms previous reports that individuals with VCFS have reduced cortical folding as compared to normal controls. However over a period of three years, there is no difference in the rate of change of GI among both individuals with VCFS and normal controls. Finally, our results suggest that neuroanatomical alterations in areas underlying visual processing may be an early marker for psychosis.
Collapse
Affiliation(s)
- Arun Kunwar
- Department of Psychiatry and Behavioral Sciences, State University of New York at Upstate Medical University, Syracuse, New York
| | - Seethalakshmi Ramanathan
- Department of Psychiatry and Behavioral Sciences, State University of New York at Upstate Medical University, Syracuse, New York
| | - Joshua Nelson
- Department of Psychiatry and Behavioral Sciences, State University of New York at Upstate Medical University, Syracuse, New York
| | - Kevin M. Antshel
- Department of Psychiatry and Behavioral Sciences, State University of New York at Upstate Medical University, Syracuse, New York
| | - Wanda Fremont
- Department of Psychiatry and Behavioral Sciences, State University of New York at Upstate Medical University, Syracuse, New York
| | - Anne Marie Higgins
- Department of Otolaryngology, State University of New York at Upstate Medical University, Syracuse, New York
| | | | - Wendy R. Kates
- Department of Psychiatry and Behavioral Sciences, State University of New York at Upstate Medical University, Syracuse, New York
| |
Collapse
|
6
|
Gerkes EH, Hordijk R, Dijkhuizen T, Sival DA, Meiners LC, Sikkema-Raddatz B, van Ravenswaaij-Arts CMA. Bilateral polymicrogyria as the indicative feature in a child with a 22q11.2 deletion. Eur J Med Genet 2010; 53:344-6. [PMID: 20553986 DOI: 10.1016/j.ejmg.2010.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Accepted: 05/16/2010] [Indexed: 11/26/2022]
Abstract
Polymicrogyria (PMG) is a brain malformation due to abnormal cortical organisation. It is a heterogeneous disorder associated with 22q11.2 deletion syndrome (also known as velocardiofacial (VCF) syndrome) amongst others. Since this association was first recognised in 1996, over 30 patients with PMG and 22q11.2 deletion have been described. In 22q11.2 deletion syndrome, PMG is mainly located in the perisylvian areas; it frequently has an asymmetrical presentation with a striking predisposition for the right hemisphere. Neurological features of perisylvian PMG include developmental delay/mental retardation, seizures, microcephaly, spasticity and oromotor dysfunction. Thus in children diagnosed with 22q11.2 deletion syndrome, a finding of PMG has important prognostic value. We present a seven-month old boy with microcephaly, short stature and developmental delay. A cerebral MRI showed slightly enlarged ventricles and symmetrical perisylvian polymicrogyria. A 22q11.2 deletion was revealed by array-based comparative genomic hybridization. Remarkably the boy had no other manifestations of VCF syndrome. Paediatricians, child neurologists and clinical geneticists should be aware that the presence of PMG (especially in the perisylvian areas) needs investigating for 22q11.2 deletion, even if other more common VCF syndrome features are absent.
Collapse
Affiliation(s)
- Erica H Gerkes
- Department of Genetics, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
7
|
Bearden CE, van Erp TGM, Dutton RA, Lee AD, Simon TJ, Cannon TD, Emanuel BS, McDonald-McGinn D, Zackai EH, Thompson PM. Alterations in midline cortical thickness and gyrification patterns mapped in children with 22q11.2 deletions. Cereb Cortex 2009; 19:115-26. [PMID: 18483006 PMCID: PMC2733329 DOI: 10.1093/cercor/bhn064] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The 22q11.2 deletion syndrome (velocardiofacial/DiGeorge syndrome) is a neurogenetic condition associated with visuospatial deficits, as well as elevated rates of attentional disturbance, mood disorder, and psychosis. Previously, we detected pronounced cortical thinning in superior parietal and right parieto-occipital cortices in patients with this syndrome, regions critical for visuospatial processing. Here we applied cortical pattern-matching algorithms to structural magnetic resonance images obtained from 21 children with confirmed 22q11.2 deletions (ages 8-17) and 13 demographically matched comparison subjects, in order to map cortical thickness across the medial hemispheric surfaces. In addition, cortical models were remeshed in frequency space to compute their surface complexity. Cortical maps revealed a pattern of localized thinning in the ventromedial occipital-temporal cortex, critical for visuospatial representation, and the anterior cingulate, a key area for attentional control. However, children with 22q11.2DS showed significantly increased gyral complexity bilaterally in occipital cortex. Regional gray matter volumes, particularly in medial frontal cortex, were strongly correlated with both verbal and nonverbal cognitive functions. These findings suggest that aberrant parieto-occipital brain development, as evidenced by both increased complexity and cortical thinning in these regions, may be a neural substrate for the deficits in visuospatial and numerical understanding characteristic of this syndrome.
Collapse
Affiliation(s)
- Carrie E Bearden
- Department of Psychiatry & Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California-Los Angeles, Los Angeles, CA 90024, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Dobyns WB, Mirzaa G, Christian SL, Petras K, Roseberry J, Clark GD, Curry CJR, McDonald-McGinn D, Medne L, Zackai E, Parsons J, Zand DJ, Hisama FM, Walsh CA, Leventer RJ, Martin CL, Gajecka M, Shaffer LG. Consistent chromosome abnormalities identify novel polymicrogyria loci in 1p36.3, 2p16.1-p23.1, 4q21.21-q22.1, 6q26-q27, and 21q2. Am J Med Genet A 2008; 146A:1637-54. [PMID: 18536050 PMCID: PMC2801020 DOI: 10.1002/ajmg.a.32293] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Polymicrogyria is a malformation of cortical development characterized by loss of the normal gyral pattern, which is replaced by many small and infolded gyri separated by shallow, partly fused sulci, and loss of middle cortical layers. The pathogenesis is unknown, yet emerging data supports the existence of several loci in the human genome. We report on the clinical and brain imaging features, and results of cytogenetic and molecular genetic studies in 29 patients with polymicrogyria associated with structural chromosome rearrangements. Our data map new polymicrogyria loci in chromosomes 1p36.3, 2p16.1-p23, 4q21.21-q22.1, 6q26-q27, and 21q21.3-q22.1, and possible loci in 1q44 and 18p as well. Most and possibly all of these loci demonstrate incomplete penetrance and variable expressivity. We anticipate that these data will serve as the basis for ongoing efforts to identify the causal genes located in these regions.
Collapse
MESH Headings
- Abnormalities, Multiple/genetics
- Abnormalities, Multiple/pathology
- Adolescent
- Adult
- Aneuploidy
- Brain/pathology
- Child
- Child, Preschool
- Chromosome Aberrations
- Chromosome Breakage
- Chromosome Deletion
- Chromosomes, Artificial, Bacterial/genetics
- Chromosomes, Human, Pair 1/genetics
- Chromosomes, Human, Pair 2/genetics
- Chromosomes, Human, Pair 21/genetics
- Chromosomes, Human, Pair 4/genetics
- Chromosomes, Human, Pair 6/genetics
- Female
- Humans
- In Situ Hybridization, Fluorescence
- Infant
- Infant, Newborn
- Karyotyping
- Male
- Malformations of Cortical Development/genetics
- Malformations of Cortical Development/pathology
- Phenotype
- Translocation, Genetic
Collapse
Affiliation(s)
- William B Dobyns
- Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Robin NH, Taylor CJ, McDonald-McGinn DM, Zackai EH, Bingham P, Collins KJ, Earl D, Gill D, Granata T, Guerrini R, Katz N, Kimonis V, Lin JP, Lynch DR, Mohammed SN, Massey RF, McDonald M, Rogers RC, Splitt M, Stevens CA, Tischkowitz MD, Stoodley N, Leventer RJ, Pilz DT, Dobyns WB. Polymicrogyria and deletion 22q11.2 syndrome: window to the etiology of a common cortical malformation. Am J Med Genet A 2007; 140:2416-25. [PMID: 17036343 DOI: 10.1002/ajmg.a.31443] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Several brain malformations have been described in rare patients with the deletion 22q11.2 syndrome (DEL22q11) including agenesis of the corpus callosum, pachygyria or polymicrogyria (PMG), cerebellar anomalies and meningomyelocele, with PMG reported most frequently. In view of our interest in the causes of PMG, we reviewed clinical data including brain-imaging studies on 21 patients with PMG associated with deletion 22q11.2 and another 11 from the literature. We found that the cortical malformation consists of perisylvian PMG of variable severity and frequent asymmetry with a striking predisposition for the right hemisphere (P = 0.008). This and other observations suggest that the PMG may be a sequela of abnormal embryonic vascular development rather than a primary brain malformation. We also noted mild cerebellar hypoplasia or mega-cisterna magna in 8 of 24 patients. Although this was not the focus of the present study, mild cerebellar anomalies are probably the most common brain malformation associated with DEL22q11.
Collapse
|
10
|
Abstract
Polymicrogyria is a relatively common malformation of cortical development, characterised by multiple small gyri with abnormal cortical lamination. The different forms of polymicrogyria encompass a wide range of clinical, aetiological, and histological findings. Advances in imaging have improved the diagnosis and classification of the condition. The molecular basis of polymicrogyria is beginning to be elucidated with the identification of a gene, GPR56, for bilateral frontoparietal polymicrogyria. Functional studies of the GPR56 gene product will yield insights not only into the causes of polymicrogyria but also into the mechanisms of normal cortical development and the regional patterning of the cerebral cortex. Based on imaging studies, several other region specific patterns of polymicrogyria have been identified, and there is increasing evidence that these may also have a significant genetic component to their aetiology. This paper reviews current knowledge of the different polymicrogyria syndromes, with discussion of clinical and imaging features, patterns of inheritance, currently mapped loci, candidate genes, chromosomal abnormalities, and implications for genetic counselling.
Collapse
Affiliation(s)
- A Jansen
- Montreal Neurological Hospital and Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
11
|
Schaer M, Schmitt JE, Glaser B, Lazeyras F, Delavelle J, Eliez S. Abnormal patterns of cortical gyrification in velo-cardio-facial syndrome (deletion 22q11.2): an MRI study. Psychiatry Res 2006; 146:1-11. [PMID: 16388934 DOI: 10.1016/j.pscychresns.2005.10.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Revised: 09/29/2005] [Accepted: 10/01/2005] [Indexed: 11/19/2022]
Abstract
Velo-cardio-facial syndrome (VCFS), also known as 22q11.2 deletion syndrome, is a common genetic condition associated with increased risk for developing schizophrenia. Given that cortical malformations play an integral role in the pattern of neuroanatomical alterations associated with VCFS, the aim of the present study was to quantify and localize gyral abnormalities. Magnetic resonance images were obtained on a 1.5 T scanner. The gyrification index (GI), a measure of the degree of cortical complexity, was differentially calculated for each lobe using a semi-automated protocol. The GI was calculated for 37 patients affected by VCFS as well as for 36 comparison individuals group-matched for age, handedness, and gender. The subjects affected by VCFS showed a significant decrease in the GI in the frontal and parietal lobes compared with the control group. The pattern of decreased gyrification in the frontal and parietal lobes further defines the structural changes associated with the syndrome and suggests underlying abnormalities in neural connectivity. Aberrant connectivity may be partially responsible for the cognitive and behavioral impairments in the syndrome, as well as the high incidence of schizophrenia among affected individuals.
Collapse
Affiliation(s)
- Marie Schaer
- Service Médico-Pédagogique, Department of Psychiatry, University of Geneva School of Medicine, Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
12
|
Sztriha L, Guerrini R, Harding B, Stewart F, Chelloug N, Johansen JG. Clinical, MRI, and pathological features of polymicrogyria in chromosome 22q11 deletion syndrome. ACTA ACUST UNITED AC 2004; 127A:313-7. [PMID: 15150787 DOI: 10.1002/ajmg.a.30014] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Polymicrogyria is a brain malformation due to abnormal cortical organization. Two histological types, unlayered or four-layered can be distinguished. Polymicrogyria is a rare manifestation of chromosome 22q11 deletion syndrome. We report two boys with chromosome 22q11 deletion syndrome and polymicrogyria, and describe the neuropathological features of the malformation in one of them. Clinical examinations, EEG, brain MRI, chromosomal analysis with FISH, and neuropathological studies of surgically resected cortical tissue were performed. Both patients showed severe developmental delay with cardiovascular malformations and one of them had drug resistant epilepsy. Polymicrogyria was found in the frontal, parietal, and temporal areas, unilaterally in one patient and bilaterally in the other. Histology revealed four-layered polymicrogyria. The pathogenesis of polymicrogyria in 22q11 deletion syndrome is discussed.
Collapse
Affiliation(s)
- László Sztriha
- Department of Pediatrics, Faculty of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| | | | | | | | | | | |
Collapse
|
13
|
Ehara H, Maegaki Y, Takeshita K. Pachygyria and polymicrogyria in 22q11 deletion syndrome. Am J Med Genet A 2003; 117A:80-2. [PMID: 12548745 DOI: 10.1002/ajmg.a.10508] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Maharasingam M, Ostman-Smith I, Pike MG. A cohort study of neurodevelopmental outcome in children with DiGeorge syndrome following cardiac surgery. Arch Dis Child 2003; 88:61-4. [PMID: 12495965 PMCID: PMC1719289 DOI: 10.1136/adc.88.1.61] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AIMS To examine whether the learning difficulties seen in a proportion of children with DGS are secondary to cardiac pathology and treatment, or a feature of the DGS phenotype. METHODS Cohort study of all patients with DGS and coexisting cardiac lesions within a region. Ten children with 22q11 deletion were assigned two controls each, matched for age, sex, cardiac lesion, and preoperative hemodynamic status but without DGS. The neurodevelopmental status was evaluated with the Ruth Griffiths test for babies and young children. RESULTS Children with the 22q11 deletion showed a wide range of developmental quotient (DQ; mean 71, 95% CI 47 to 95) and subscale scores, but these as a group were significantly lower than those of the control group (DQ 113, 95% CI 108 to 118). Four of the DGS children had DQs below 60. Hypocalcaemia, prolonged postoperative ventilation, and abnormal neurology perioperatively were associated with a low DQ. CONCLUSIONS A proportion of children with DGS have a very poor developmental outcome following cardiac surgery. This outcome is not attributable to the cardiac condition and its treatment alone, but represents either a pre-existing component of the syndrome or an interaction between the syndrome and its treatment.
Collapse
Affiliation(s)
- M Maharasingam
- Department of Paediatrics, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | | | | |
Collapse
|
15
|
Abstract
Magnetic resonance imaging (MRI) has had an enormous impact on the practice of medicine, and especially, on the clinical neurosciences. One area in which MRI has had a particularly large impact has been on the analysis and understanding of cerebral malformations. This manuscript describes the manner in which MRI in conjunction with modern molecular biology has helped to shed new light on our understanding and classification of cerebral malformations.
Collapse
Affiliation(s)
- A James Barkovich
- Neuroradiology Section, University of California San Francisco, Room L-371, 505 Parnassus Avenue, San Francisco, CA 94143-0628, USA.
| |
Collapse
|
16
|
Abstract
A brief description is given of two patients with gyral abnormalities associated with neurogenic limb abnormalities.
Collapse
|
17
|
Abstract
Two patients with chromosome 22q11 deletion and cortical dysgenesis (gyral abnormalities) are reported in this study. One had unilateral clubfoot in addition to multiple features suggestive of the Di George syndrome (DGS), and the other presented with leg asymmetry and seizures, with subsequent recognition of the velo-cardio-facial syndrome (VCFS). In each patient, gyral abnormalities were identified in the hemisphere contralateral to the limb abnormality. A wide range of central nervous system abnormalities have been reported in DGS and VCFS, including three prior reports of gyral abnormalities (lissencephaly, microgyria). The 2 patients reported herein strengthen the association between the 22q11 deletion spectrum and cortical dysgenesis, but the underlying pathogenetic mechanism (primary neural migration vs. vascular disruption) remains unclear.
Collapse
Affiliation(s)
- L M Bird
- Children's Hospital and Health Center, Department of Pediatrics, University of California, San Diego 92123, USA.
| | | |
Collapse
|