1
|
Pavis GF, Abdelrahman DR, Murton AJ, Wall BT, Stephens FB, Dirks ML. Nasogastric bolus administration of a protein-rich drink augments insulinaemia and aminoacidaemia but not whole-body protein turnover or muscle protein synthesis versus oral administration. Clin Sci (Lond) 2024; 138:43-60. [PMID: 38112515 DOI: 10.1042/cs20231126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023]
Abstract
Nasogastric feeding of protein-rich liquids is a nutritional support therapy that attenuates muscle mass loss. However, whether administration via a nasogastric tube per se augments whole-body or muscle protein anabolism compared with oral administration is unknown. Healthy participants were administered a protein-rich drink (225 ml containing 21 g protein) orally (ORAL; n=13; age 21 ± 1 year; BMI 22.2 ± 0.6 kg·m-2) or via a nasogastric tube (NG; n=13; age 21 ± 1 yr; BMI 23.9 ± 0.9 kg·m-2) in a parallel group design, balanced for sex. L-[ring-2H5]-phenylalanine and L-[3,3-2H2]-tyrosine were infused to measure postabsorptive and postprandial whole-body protein turnover. Skeletal muscle biopsies were collected at -120, 0, 120 and 300 min relative to drink administration to quantify temporal myofibrillar fractional synthetic rates (myoFSR). Drink administration increased serum insulin and plasma amino acid concentrations, and to a greater extent and duration in NG versus ORAL (all interactions P<0.05). Drink administration increased whole-body protein synthesis (P<0.01), suppressed protein breakdown (P<0.001), and created positive net protein balance (P<0.001), but to a similar degree in ORAL and NG (interactions P>0.05). Drink administration increased myoFSR from the postabsorptive state (P<0.01), regardless of route of administration in ORAL and in NG (interaction P>0.05). Nasogastric bolus administration of a protein-rich drink induces insulinaemia and aminoacidaemia to a greater extent than oral administration, but the postprandial increase in whole-body protein turnover and muscle protein synthesis was equivalent between administration routes. Nasogastric administration is a potent intervention to increase postprandial amino acid availability. Future work should assess its utility in overcoming impaired sensitivity to protein feeding, such as that seen in ageing, disuse, and critical care.
Collapse
Affiliation(s)
- George F Pavis
- Nutritional Physiology Group, Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, Devon, U.K
| | - Doaa R Abdelrahman
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, U.S.A
- Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX, U.S.A
| | - Andrew J Murton
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, U.S.A
- Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX, U.S.A
| | - Benjamin T Wall
- Nutritional Physiology Group, Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, Devon, U.K
| | - Francis B Stephens
- Nutritional Physiology Group, Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, Devon, U.K
| | - Marlou L Dirks
- Nutritional Physiology Group, Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, Devon, U.K
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
2
|
Ely IA, Phillips BE, Smith K, Wilkinson DJ, Piasecki M, Breen L, Larsen MS, Atherton PJ. A focus on leucine in the nutritional regulation of human skeletal muscle metabolism in ageing, exercise and unloading states. Clin Nutr 2023; 42:1849-1865. [PMID: 37625315 DOI: 10.1016/j.clnu.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/23/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Muscle protein synthesis (MPS) and muscle protein breakdown (MPB) are influenced through dietary protein intake and physical (in)activity, which it follows, regulate skeletal muscle (SKM) mass across the lifespan. Following consumption of dietary protein, the bio-availability of essential amino acids (EAA), and primarily leucine (LEU), drive a transient increase in MPS with an ensuing refractory period before the next MPS stimulation is possible (due to the "muscle full" state). At the same time, MPB is periodically constrained via reflex insulin actions. Layering exercise on top of protein intake increases the sensitivity of SKM to EAA, therefore extending the muscle full set-point (∼48 h), to permit long-term remodelling (e.g., hypertrophy). In contrast, ageing and physical inactivity are associated with a premature muscle full set-point in response to dietary protein/EAA and contractile activity. Of all the EAA, LEU is the most potent stimulator of the mechanistic target of rapamycin complex 1 (mTORC1)-signalling pathway, with the phosphorylation of mTORC1 substrates increasing ∼3-fold more than with all other EAA. Furthermore, maximal MPS stimulation is also achieved following low doses of LEU-enriched protein/EAA, negating the need for larger protein doses. As a result, LEU supplementation has been of long term interest to maximise muscle anabolism and subsequent net protein accretion, especially when in tandem with resistance exercise. This review highlights current knowledge vis-à-vis the anabolic effects of LEU supplementation in isolation, and in enriched protein/EAA sources (i.e., EAA and/or protein sources with added LEU), in the context of ageing, exercise and unloading states.
Collapse
Affiliation(s)
- Isabel A Ely
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham NIHR Biomedical Research Centre, Derby, DE22 3DT, UK
| | - Bethan E Phillips
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham NIHR Biomedical Research Centre, Derby, DE22 3DT, UK
| | - Kenneth Smith
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham NIHR Biomedical Research Centre, Derby, DE22 3DT, UK
| | - Daniel J Wilkinson
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham NIHR Biomedical Research Centre, Derby, DE22 3DT, UK
| | - Mathew Piasecki
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham NIHR Biomedical Research Centre, Derby, DE22 3DT, UK
| | - Leigh Breen
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | - Philip J Atherton
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham NIHR Biomedical Research Centre, Derby, DE22 3DT, UK.
| |
Collapse
|
3
|
Knebusch N, Mansour M, Vazquez S, Coss-Bu JA. Macronutrient and Micronutrient Intake in Children with Lung Disease. Nutrients 2023; 15:4142. [PMID: 37836425 PMCID: PMC10574027 DOI: 10.3390/nu15194142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
This review article aims to summarize the literature findings regarding the role of micronutrients in children with lung disease. The nutritional and respiratory statuses of critically ill children are interrelated, and malnutrition is commonly associated with respiratory failure. The most recent nutrition support guidelines for critically ill children have recommended an adequate macronutrient intake in the first week of admission due to its association with good outcomes. In children with lung disease, it is important not to exceed the proportion of carbohydrates in the diet to avoid increased carbon dioxide production and increased work of breathing, which potentially could delay the weaning of the ventilator. Indirect calorimetry can guide the process of estimating adequate caloric intake and adjusting the proportion of carbohydrates in the diet based on the results of the respiratory quotient. Micronutrients, including vitamins, trace elements, and others, have been shown to play a role in the structure and function of the immune system, antioxidant properties, and the production of antimicrobial proteins supporting the defense mechanisms against infections. Sufficient levels of micronutrients and adequate supplementation have been associated with better outcomes in children with lung diseases, including pneumonia, cystic fibrosis, asthma, bronchiolitis, and acute respiratory failure.
Collapse
Affiliation(s)
- Nicole Knebusch
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; (N.K.); (M.M.); (S.V.)
- Texas Children’s Hospital, Houston, TX 77030, USA
| | - Marwa Mansour
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; (N.K.); (M.M.); (S.V.)
- Texas Children’s Hospital, Houston, TX 77030, USA
| | - Stephanie Vazquez
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; (N.K.); (M.M.); (S.V.)
- Texas Children’s Hospital, Houston, TX 77030, USA
| | - Jorge A. Coss-Bu
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; (N.K.); (M.M.); (S.V.)
- Texas Children’s Hospital, Houston, TX 77030, USA
| |
Collapse
|
4
|
Ruperto M, Montero-Bravo A, Partearroyo T, Puga AM, Varela-Moreiras G, Samaniego-Vaesken MDL. A Descriptive Analysis of Macronutrient, Fatty Acid Profile, and Some Immunomodulatory Nutrients in Standard and Disease-Specific Enteral Formulae in Europe. Front Nutr 2022; 9:877875. [PMID: 35619966 PMCID: PMC9129913 DOI: 10.3389/fnut.2022.877875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/30/2022] [Indexed: 11/28/2022] Open
Abstract
Foods for special medical purposes (FSMPs) are commercially available formulations used as a source of nutrition when administered orally or by tube feeding. This study examines, for the first time, the nutritional composition of enteral formulae (EFs) according to European nutritional guidelines. We developed a descriptive study on 118 EFs from 2020 to 2021. Formulae were classified as standard (SFs) and disease-specific (DSF). According to the protein-energy content, SFs were classified into G1, normoprotein-normocaloric; G2, normoprotein-hypercaloric; G3, hyperproteic-normocaloric; and G4, hyperproteic-hypercaloric. Disease-related formulae for metabolic stress, renal, cancer, pulmonary, diabetes, malabsorption, and surgery were studied. Macronutrient distribution, fatty acid profile (monounsaturated [MUFA], polyunsaturated [PUFA], saturated [SFA]), derived fat quality indexes, and immuno-modulatory nutrients (omega-3, eicosapentaenoic acid [EPA], docosahexaenoic acid [DHA], arginine and nucleotides) per 1,500 kcal infused were calculated. In total, 53% were SFs, mainly normoproteic (G1, G2) with higher carbohydrate contents in normocaloric vs. hypercaloric SFs. The most balanced fatty acid profiles (MUFA: 17.7%; PUFA: 6.8%; SFA: 9.5%) belonged to G1. The PUFA/MUFA ratio: ≥0.5 was in 85.7% with a higher proportion of EPA+DHA (46%) vs. omega-3 (15.8%) in SFs. In DSFs (46.9%), higher carbohydrate content (>50%) was in malabsorption and surgery, whereas high-fat content (>50%) was in pulmonary and renal formulae. DSFs had higher SFA vs. MUFA content, except for diabetes. EPA and DHA were added in 45.5% (cancer, malabsorption, and surgery). Only 12.7% of DSFs had arginine and nucleotides. A higher proportion of SFs was found, in line with current European guidelines. Results highlighted a wide intra-group variability of nutrients among the formula selected. These findings are useful to evaluate the nutritional composition of EFs from a preventive and/or therapeutic perspective in clinical settings.
Collapse
Affiliation(s)
- Mar Ruperto
- Department of Pharmaceutical and Health Sciences, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain.,Grupo USP-CEU de Excelencia "Nutrición para la vida (Nutrition for life)", ref: E02/0720, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Ana Montero-Bravo
- Department of Pharmaceutical and Health Sciences, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain.,Grupo USP-CEU de Excelencia "Nutrición para la vida (Nutrition for life)", ref: E02/0720, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Teresa Partearroyo
- Department of Pharmaceutical and Health Sciences, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain.,Grupo USP-CEU de Excelencia "Nutrición para la vida (Nutrition for life)", ref: E02/0720, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Ana M Puga
- Department of Pharmaceutical and Health Sciences, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain.,Grupo USP-CEU de Excelencia "Nutrición para la vida (Nutrition for life)", ref: E02/0720, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Gregorio Varela-Moreiras
- Department of Pharmaceutical and Health Sciences, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain.,Grupo USP-CEU de Excelencia "Nutrición para la vida (Nutrition for life)", ref: E02/0720, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Maria de Lourdes Samaniego-Vaesken
- Department of Pharmaceutical and Health Sciences, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain.,Grupo USP-CEU de Excelencia "Nutrición para la vida (Nutrition for life)", ref: E02/0720, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| |
Collapse
|
5
|
Smeuninx B, Elhassan YS, Manolopoulos KN, Sapey E, Rushton AB, Edwards SJ, Morgan PT, Philp A, Brook MS, Gharahdaghi N, Smith K, Atherton PJ, Breen L. The effect of short-term exercise prehabilitation on skeletal muscle protein synthesis and atrophy during bed rest in older men. J Cachexia Sarcopenia Muscle 2021; 12:52-69. [PMID: 33347733 PMCID: PMC7890266 DOI: 10.1002/jcsm.12661] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/19/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Poor recovery from periods of disuse accelerates age-related muscle loss, predisposing individuals to the development of secondary adverse health outcomes. Exercise prior to disuse (prehabilitation) may prevent muscle deterioration during subsequent unloading. The present study aimed to investigate the effect of short-term resistance exercise training (RET) prehabilitation on muscle morphology and regulatory mechanisms during 5 days of bed rest in older men. METHODS Ten healthy older men aged 65-80 years underwent four bouts of high-volume unilateral leg RET over 7 days prior to 5 days of inpatient bed rest. Physical activity and step-count were monitored over the course of RET prehabilitation and bed rest, whilst dietary intake was recorded throughout. Prior to and following bed rest, quadriceps cross-sectional area (CSA), and hormone/lipid profiles were determined. Serial muscle biopsies and dual-stable isotope tracers were used to determine integrated myofibrillar protein synthesis (iMyoPS) over RET prehabilitation and bed rest phases, and acute postabsorptive and postprandial myofibrillar protein synthesis (aMyoPS) rates at the end of bed rest. RESULTS During bed rest, daily step-count and light and moderate physical activity time decreased, whilst sedentary time increased when compared with habitual levels (P < 0.001 for all). Dietary protein and fibre intake during bed rest were lower than habitual values (P < 0.01 for both). iMyoPS rates were significantly greater in the exercised leg (EX) compared with the non-exercised control leg (CTL) over prehabilitation (1.76 ± 0.37%/day vs. 1.36 ± 0.18%/day, respectively; P = 0.007). iMyoPS rates decreased similarly in EX and CTL during bed rest (CTL, 1.07 ± 0.22%/day; EX, 1.30 ± 0.38%/day; P = 0.037 and 0.002, respectively). Postprandial aMyoPS rates increased above postabsorptive values in EX only (P = 0.018), with no difference in delta postprandial aMyoPS stimulation between legs. Quadriceps CSA at 40%, 60%, and 80% of muscle length decreased significantly in EX and CTL over bed rest (0.69%, 3.5%, and 2.8%, respectively; P < 0.01 for all), with no differences between legs. No differences in fibre-type CSA were observed between legs or with bed rest. Plasma insulin and serum lipids did not change with bed rest. CONCLUSIONS Short-term resistance exercise prehabilitation augmented iMyoPS rates in older men but did not offset the relative decline in iMyoPS and muscle mass during bed rest.
Collapse
Affiliation(s)
- Benoit Smeuninx
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamBirminghamUK
| | - Yasir S. Elhassan
- Institute of Metabolism and Systems ResearchUniversity of BirminghamBirminghamUK
- Centre for Endocrinology, Diabetes and MetabolismBirmingham Health PartnersBirminghamUK
| | - Konstantinos N. Manolopoulos
- Institute of Metabolism and Systems ResearchUniversity of BirminghamBirminghamUK
- Centre for Endocrinology, Diabetes and MetabolismBirmingham Health PartnersBirminghamUK
| | - Elizabeth Sapey
- NIHR Clinical Research Facility, University Hospitals Birmingham NHS Foundation Trust and Institute of Inflammation and AgeingUniversity of BirminghamBirminghamUK
| | - Alison B. Rushton
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamBirminghamUK
| | - Sophie J. Edwards
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamBirminghamUK
| | - Paul T. Morgan
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamBirminghamUK
| | - Andrew Philp
- Garvan Institute of Medical ResearchSydneyNSWAustralia
- St Vincents Medical School, UNSW MedicineUNSW SydneySydneyNSWAustralia
| | - Matthew S. Brook
- MRC‐ARUK Centre of Excellence for Musculoskeletal Ageing Research, Clinical, Metabolic and Molecular PhysiologyUniversity of NottinghamDerbyUK
| | - Nima Gharahdaghi
- MRC‐ARUK Centre of Excellence for Musculoskeletal Ageing Research, Clinical, Metabolic and Molecular PhysiologyUniversity of NottinghamDerbyUK
| | - Kenneth Smith
- MRC‐ARUK Centre of Excellence for Musculoskeletal Ageing Research, Clinical, Metabolic and Molecular PhysiologyUniversity of NottinghamDerbyUK
| | - Philip J. Atherton
- MRC‐ARUK Centre of Excellence for Musculoskeletal Ageing Research, Clinical, Metabolic and Molecular PhysiologyUniversity of NottinghamDerbyUK
| | - Leigh Breen
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamBirminghamUK
- MRC‐Arthritis Research UK Centre for Musculoskeletal Ageing ResearchUniversity of BirminghamUK
| |
Collapse
|
6
|
Arentson-Lantz EJ, Galvan E, Ellison J, Wacher A, Paddon-Jones D. Improving Dietary Protein Quality Reduces the Negative Effects of Physical Inactivity on Body Composition and Muscle Function. J Gerontol A Biol Sci Med Sci 2020; 74:1605-1611. [PMID: 30689727 DOI: 10.1093/gerona/glz003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Brief periods of physical inactivity can compromise muscle health. Increasing dietary protein intake is potentially beneficial but complicated by difficulties reconciling anabolic potential with a realistic food volume and energy intake. We sought to determine whether increasing dietary protein quality could reduce the negative effects of physical inactivity. METHODS Twenty healthy, older men and women completed 7 days of bed rest followed by 5 days of rehabilitation. Volunteers consumed a mixed macronutrient diet (MIXED: N = 10; 68 ± 2 years; 1,722 ± 29 kcal/day; 0.97 ± 0.01 g protein/kg/day) or an isoenergetic, whey-augmented, higher protein quality diet (WHEY: N = 10; 69 ± 1 years; 1,706 ± 23 kcal/day; 0.90 ± 0.01 g protein/kg/day). Outcomes included body composition, blood glucose, insulin, and a battery of physical function tests. RESULTS During bed rest, both groups experienced a 20% reduction in knee extension peak torque (p < .05). The WHEY diet partially protected leg lean mass (-1,035 vs. -680 ± 138 g, MIXED vs. WHEY; p = .08) and contributed to a greater loss of body fat (-90 vs. -233 ± 152 g, MIXED vs. WHEY; p < .05). Following rehabilitation, knee extension peak torque in the WHEY group fully recovered (-10.0 vs. 2.2 ± 4.1 Nm, MIXED vs. WHEY; p = .05). Blood glucose, insulin, aerobic capacity, and Short Physical Performance Battery (SPPB) changes were similar in both dietary conditions (p > .05). CONCLUSIONS Improving protein quality without increasing total energy intake has the potential to partially counter some of the negative effects of bed rest in older adults.
Collapse
Affiliation(s)
- Emily J Arentson-Lantz
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston.,Center for Recovery, Physical Activity and Nutrition, University of Texas Medical Branch, Galveston
| | - Elfego Galvan
- Center for Recovery, Physical Activity and Nutrition, University of Texas Medical Branch, Galveston
| | | | - Adam Wacher
- Department of Anesthesiology, University of Texas Medical Branch, Galveston
| | - Douglas Paddon-Jones
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston.,Center for Recovery, Physical Activity and Nutrition, University of Texas Medical Branch, Galveston
| |
Collapse
|
7
|
Marshall RN, Smeuninx B, Morgan PT, Breen L. Nutritional Strategies to Offset Disuse-Induced Skeletal Muscle Atrophy and Anabolic Resistance in Older Adults: From Whole-Foods to Isolated Ingredients. Nutrients 2020; 12:nu12051533. [PMID: 32466126 PMCID: PMC7284346 DOI: 10.3390/nu12051533] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Preserving skeletal muscle mass and functional capacity is essential for healthy ageing. Transient periods of disuse and/or inactivity in combination with sub-optimal dietary intake have been shown to accelerate the age-related loss of muscle mass and strength, predisposing to disability and metabolic disease. Mechanisms underlying disuse and/or inactivity-related muscle deterioration in the older adults, whilst multifaceted, ultimately manifest in an imbalance between rates of muscle protein synthesis and breakdown, resulting in net muscle loss. To date, the most potent intervention to mitigate disuse-induced muscle deterioration is mechanical loading in the form of resistance exercise. However, the feasibility of older individuals performing resistance exercise during disuse and inactivity has been questioned, particularly as illness and injury may affect adherence and safety, as well as accessibility to appropriate equipment and physical therapists. Therefore, optimising nutritional intake during disuse events, through the introduction of protein-rich whole-foods, isolated proteins and nutrient compounds with purported pro-anabolic and anti-catabolic properties could offset impairments in muscle protein turnover and, ultimately, the degree of muscle atrophy and recovery upon re-ambulation. The current review therefore aims to provide an overview of nutritional countermeasures to disuse atrophy and anabolic resistance in older individuals.
Collapse
Affiliation(s)
- Ryan N. Marshall
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (R.N.M.); (B.S.); (P.T.M.)
- Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Benoit Smeuninx
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (R.N.M.); (B.S.); (P.T.M.)
- Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Paul T. Morgan
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (R.N.M.); (B.S.); (P.T.M.)
- Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Leigh Breen
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (R.N.M.); (B.S.); (P.T.M.)
- Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Correspondence: ; Tel.: +44-121-414-4109
| |
Collapse
|
8
|
Marino LV, Eveleens RD, Morton K, Verbruggen SCAT, Joosten KFM. Peptide nutrient-energy dense enteral feeding in critically ill infants: an observational study. J Hum Nutr Diet 2019; 32:400-408. [PMID: 30848864 DOI: 10.1111/jhn.12645] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Enteral feeding is challenging in critically ill infants. Target intakes are often not achieved as a result of fluid restriction, procedural interruptions and perceived enteral feeding intolerance. In those infants perceived to have poor feeding tolerance, the use of a peptide nutrient-energy dense enteral feed (PEF) may improve nutritional intake and minimise feeding interruptions as a result of gastrointestinal symptoms. The aim of this observational study was to characterise the use of a PEF amongst critically ill infants in two paediatric intensive care units (PICUs). METHODS Records from critically ill infants aged <12 months admitted to two PICUs were retrospectively reviewed with a PICU length of stay (LOS) ≥ 7 days. Achievement of nutritional targets for the duration of PEF was reviewed. Gastrointestinal symptoms, including gastric residual volume, constipation and vomiting, were evaluated as tolerance parameters. RESULTS In total, 53 infants were included, with a median age on admission of 2.6 months. Median admission weight was 3.9 kg in PICU-1 and 4.7 kg in PICU-2. Median (interquatile range) energy intake in PICU-1 and PICU-2 was 68 (47-92) and 90 (63-124) kcal kg-1 , respectively, and median (interquatile range) protein intake 1.7 (1.1-2.4) g kg-1 and 2.5 (1.6-3.2) g kg-1 , respectively. Feeding was withheld because of feeding intolerance in one infant (4%) on two occasions in PICU-1 for 2.5 h and in two infants (7%) on two occasions in PICU-2 for 19.5 h. Gastric residual mean (SD) volumes were 3.5 (5.4) mL kg-1 in PICU-1 and 16.9 (15.6) mL kg-1 in PICU-2. CONCLUSIONS Peptide nutrient-energy dense feeding in infants admitted to the PICU is feasible, well tolerated and nutritional targets are met. However, with this study design, it is not possible to draw any conclusions regarding the benefit of PEF over standard PE feed in critically ill children and future work is required to clarify this further.
Collapse
Affiliation(s)
- L V Marino
- Department of Dietetics and Speech & Language Therapy, University of Southampton, Southampton, UK.,NIHR Biomedical Research Centre Southampton, University Hospital Southampton NHS Foundation Trust, University of Southampton, Southampton, UK.,Faculty of Health Sciences, University of Southampton, Southampton, UK
| | - R D Eveleens
- Intensive Care Unit, Department of Paediatrics and Paediatric Surgery, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - K Morton
- Faculty of Health Sciences, University of Southampton, Southampton, UK.,Paediatric Intensive Care, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - S C A T Verbruggen
- Intensive Care Unit, Department of Paediatrics and Paediatric Surgery, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - K F M Joosten
- Intensive Care Unit, Department of Paediatrics and Paediatric Surgery, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
9
|
What Is the Role of Nutritional Supplements in Support of Total Hip Replacement and Total Knee Replacement Surgeries? A Systematic Review. Nutrients 2018; 10:nu10070820. [PMID: 29941852 PMCID: PMC6073268 DOI: 10.3390/nu10070820] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 11/16/2022] Open
Abstract
Nutritional supplements can influence outcomes for individuals undergoing major surgery, particularly in older persons whose functional reserve is limited. Accelerating recovery from total hip replacement (THR) and total knee replacement (TKR) may offer significant benefits. Therefore, we explored the role of nutritional supplements in improving recovery following THR and TKR. A systematic review was conducted to source randomized clinical trials that tested nutritional supplements in cohorts of THR or TKR patients. Our search yielded nine relevant trials. Intake of a carbohydrate-containing fluid is reported to improve insulin-like growth factor levels, reduce hunger, nausea, and length of stay, and attenuate the decrease in whole-body insulin sensitivity and endogenous glucose release. Amino acid supplementation is reported to reduce muscle atrophy and accelerate return of functional mobility. One paper reported a suppressive effect of beta-hydroxy beta-methylbutyrate, L-arginine, and L-glutamine supplementation on muscle strength loss following TKR. There is limited evidence for nutritional supplementation in THR and TKR pathways; however, the low risk profile and potential benefits to adjunctive treatment methods, such as exercise programs, suggest nutritional supplements may have a role. Optimizing nutritional status pre-operatively may help manage the surgical stress response, with a particular benefit for undernourished, frail, or elderly individuals.
Collapse
|
10
|
Giezenaar C, Luscombe-Marsh ND, Hutchison AT, Standfield S, Feinle-Bisset C, Horowitz M, Chapman I, Soenen S. Dose-Dependent Effects of Randomized Intraduodenal Whey-Protein Loads on Glucose, Gut Hormone, and Amino Acid Concentrations in Healthy Older and Younger Men. Nutrients 2018; 10:nu10010078. [PMID: 29329233 PMCID: PMC5793306 DOI: 10.3390/nu10010078] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/05/2017] [Accepted: 01/09/2018] [Indexed: 02/07/2023] Open
Abstract
Protein-rich supplements are used widely for the prevention and management of malnutrition in older people. We have reported that healthy older, compared to younger, adults have less suppression of energy intake by whey-protein-effects on appetite-related hormones are unknown. The objective was to determine the effects of intraduodenally administered whey-protein on glucose, gut hormone, and amino acid concentrations, and their relation to subsequent ad libitum energy intake at a buffet meal, in healthy older and younger men. Hydrolyzed whey-protein (30 kcal, 90 kcal, and 180 kcal) and a saline control (~0 kcal) were infused intraduodenally for 60 min in 10 younger (19-29 years, 73 ± 2 kg, 22 ± 1 kg/m²) and 10 older (68-81 years, 79 ± 2 kg, 26 ± 1 kg/m²) healthy men in a randomized, double-blind fashion. Plasma insulin, glucagon, gastric inhibitory peptide (GIP), glucagon-like peptide-1 (GLP-1), peptide tyrosine-tyrosine (PYY), and amino acid concentrations, but not blood glucose, increased, while ghrelin decreased during the whey-protein infusions. Plasma GIP concentrations were greater in older than younger men. Energy intake correlated positively with plasma ghrelin and negatively with insulin, glucagon, GIP, GLP-1, PYY, and amino acids concentrations (p < 0.05). In conclusion, intraduodenal whey-protein infusions resulted in increased GIP and comparable ghrelin, insulin, glucagon, GIP, GLP-1, PYY, and amino acid responses in healthy older and younger men, which correlated to subsequent energy intake.
Collapse
Affiliation(s)
- Caroline Giezenaar
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, Adelaide 5000, Australia; (C.G.); (N.D.L.-M.); (A.T.H.); (S.S.); (C.F.-B.); (M.H.); (I.C.)
| | - Natalie D Luscombe-Marsh
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, Adelaide 5000, Australia; (C.G.); (N.D.L.-M.); (A.T.H.); (S.S.); (C.F.-B.); (M.H.); (I.C.)
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Food and Nutrition, Adelaide 5000, Australia
| | - Amy T Hutchison
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, Adelaide 5000, Australia; (C.G.); (N.D.L.-M.); (A.T.H.); (S.S.); (C.F.-B.); (M.H.); (I.C.)
| | - Scott Standfield
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, Adelaide 5000, Australia; (C.G.); (N.D.L.-M.); (A.T.H.); (S.S.); (C.F.-B.); (M.H.); (I.C.)
| | - Christine Feinle-Bisset
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, Adelaide 5000, Australia; (C.G.); (N.D.L.-M.); (A.T.H.); (S.S.); (C.F.-B.); (M.H.); (I.C.)
| | - Michael Horowitz
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, Adelaide 5000, Australia; (C.G.); (N.D.L.-M.); (A.T.H.); (S.S.); (C.F.-B.); (M.H.); (I.C.)
| | - Ian Chapman
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, Adelaide 5000, Australia; (C.G.); (N.D.L.-M.); (A.T.H.); (S.S.); (C.F.-B.); (M.H.); (I.C.)
| | - Stijn Soenen
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, Adelaide 5000, Australia; (C.G.); (N.D.L.-M.); (A.T.H.); (S.S.); (C.F.-B.); (M.H.); (I.C.)
- Correspondence: ; Tel.: +61-8-8313-3638
| |
Collapse
|
11
|
Savino P. Knowledge of Constituent Ingredients in Enteral Nutrition Formulas Can Make a Difference in Patient Response to Enteral Feeding. Nutr Clin Pract 2017; 33:90-98. [DOI: 10.1177/0884533617724759] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Patricia Savino
- National Academy of Medicine, Bogotá, Cundinamarca, Colombia
| |
Collapse
|