1
|
Steindl A, Zach C, Berchtold L, Grisold A, Gatterbauer B, Eckert F, Bago-Horvath Z, Hainfellner JA, Exner R, Fitzal F, Pfeiler G, Singer CF, Widhalm G, Bartsch R, Preusser M, Berghoff AS. Prognostic relevance of the neurological symptom burden in brain metastases from breast cancer. Br J Cancer 2025; 132:733-743. [PMID: 40025253 PMCID: PMC11997164 DOI: 10.1038/s41416-025-02967-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 12/18/2024] [Accepted: 02/20/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Existing prognostic models for breast cancer (BC) brain metastases (BM) overlook neurological symptoms. Thus, we explored the incidence and prognostic relevance of neurological symptoms in a real-world cohort of BC patients with BM. METHODS The Vienna Brain Metastasis Registry identified BC patients with BM between 1992 and 2020, categorised by subtype: hormone receptor-positive/human epidermal growth factor receptor 2-negative (HR+/HER2-), HER2 overexpressing (HER2+), and triple-negative (TN). RESULTS A total of 716 patients with BM from BC were included. In total, 80% (573/716) of the patients presented with neurological symptoms at BM diagnosis. Across all BC subtypes, asymptomatic patients presented with a significantly longer median OS from diagnosis of BM compared to symptomatic patients (p < 0.05; log-rank test; HR+ BC 29 vs. 9 months; HER2+ BC 24 vs. 12 months; TN 12 vs. 6 months). In multivariate analysis with the BC-specific Graded Prognostic Assessment (Breast-GPA: HR:1.4; 95% CI:1.3-1.5; p < 0.001), the presence of neurological symptoms at diagnosis (HR:1.6; 95% CI: 1.4-1.9; p < 0.001) presented as independently associated with OS from time of BM diagnosis, respectively. CONCLUSIONS Neurological burden at BM diagnosis independently predicts survival in BC patients. Our findings emphasise incorporating the symptom status in the prognostic evaluation and reassessing BM screening in high-risk patients during prospective clinical trials.
Collapse
Affiliation(s)
- Ariane Steindl
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Personalized Immunotherapy, Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Clara Zach
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Luzia Berchtold
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Institute of Medical Statistics, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Anna Grisold
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | | | - Franziska Eckert
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | | | - Johannes A Hainfellner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Ruth Exner
- Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Florian Fitzal
- Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Georg Pfeiler
- Department of Obstetrics and Gynecology, and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Christian F Singer
- Department of Obstetrics and Gynecology, and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Rupert Bartsch
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Personalized Immunotherapy, Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Anna S Berghoff
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
- Christian Doppler Laboratory for Personalized Immunotherapy, Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
van Straten D, Bimbo JF, Hennink WE, Vermonden T, Schiffelers RM. Nanoparticle-in-Hydrogel Delivery System for the Sequential Release of Two Drugs. Pharmaceutics 2025; 17:127. [PMID: 39861774 PMCID: PMC11768762 DOI: 10.3390/pharmaceutics17010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Glioblastoma is the most common and lethal primary brain tumor. Patients often suffer from tumor- and treatment induced vasogenic edema, with devastating neurological consequences. Intracranial edema is effectively treated with dexamethasone. However, systemic dexamethasone requires large doses to surpass the blood brain barrier in therapeutic quantities, which is associated with significant side effects. The aim of this study was to investigate a biodegradable, dextran-hydroxyethyl methacrylate (dex-HEMA) based hydrogel, containing polymeric micelles loaded with dexamethasone and liposomes encapsulating dexamethasone phosphate for localized and prolonged delivery. METHODS Poly(ethylene glycol)-b-poly(N-2-benzoyloxypropyl methacrylamide (mPEG-b-p(HPMA-Bz)) micelles were loaded with dexamethasone and characterized. The dexamethasone micelles, together with dexamethasone phosphate liposomes, were dispersed in an aqueous dex-HEMA solution followed by radical polymerization using a photoinitiator in combination with light. The kinetics and mechanisms of drug release from this hydrogel were determined. RESULTS The diameter of the nanoparticles was larger than the mesh size of the hydrogel, rendering them immobilized in the polymer network. The micelles immediately released free dexamethasone from the hydrogel for two weeks. The dexamethasone phosphate loaded in the liposomes was not released until the gel degraded and intact liposomes were released, starting after 15 days. The different modes of release result in a biphasic and sequential release profile of dexamethasone followed by dexamethasone phosphate liposomes. CONCLUSIONS The results show that this hydrogel system loaded with both dexamethasone polymeric micelles and dexamethasone phosphate loaded liposomes has potential as a local delivery platform for the sequential release of dexamethasone and dexamethasone phosphate, for the intracranial treatment of glioblastoma associated edema.
Collapse
Affiliation(s)
- Demian van Straten
- CDL Research, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands; (J.F.B.); (R.M.S.)
| | - Jaime Fernández Bimbo
- CDL Research, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands; (J.F.B.); (R.M.S.)
| | - Wim E. Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584CG Utrecht, The Netherlands; (W.E.H.); (T.V.)
| | - Tina Vermonden
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584CG Utrecht, The Netherlands; (W.E.H.); (T.V.)
| | - Raymond M. Schiffelers
- CDL Research, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands; (J.F.B.); (R.M.S.)
| |
Collapse
|
3
|
Orešković D, Blažević A, Kaštelančić A, Konstantinović I, Lakić M, Murn F, Puljiz M, Štenger M, Barač P, Chudy D, Marinović T. Radiographic predictors of peritumoral brain edema in intracranial meningiomas: a review of current controversies and illustrative cases. Chin Neurosurg J 2024; 10:31. [PMID: 39465412 PMCID: PMC11514783 DOI: 10.1186/s41016-024-00383-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 10/18/2024] [Indexed: 10/29/2024] Open
Abstract
Meningiomas are among the most common primary tumors of the central nervous system. In the past several decades, many researchers have emphasized the importance of radiographic findings and their possible role in predicting the various aspects of the meningioma biology. One of the factors most commonly analyzed with respect to the lesions' clinical behavior is peritumoral brain edema (PTBE), not only one of the most common signs associated with meningiomas, but also a significant clinical problem. Radiographic predictors of PTBE are usually noted as being the size of the tumor, its location, irregular margins, heterogeneity, and the peritumoral arachnoid plane with its pial vascular recruitment. Here, we review the available literature on the topic of these radiographic predictors of PTBE formation, we analyze the methodology of the research conducted, and we highlight the many controversies still present. Indeed, the evidence about PTBE pathogenesis, predictive factors, and clinical significance still seems to be mostly inconclusive, despite intense research in the area. We believe that by highlighting the many inconsistencies in the methodology used, we can showcase how little is actually known about the pathogenesis of PTBE, which in turn has important clinical implications. Additionally, we provide several MR images of intracranial meningiomas from our own practice which, we believe, showcase the unpredictable nature of PTBE, and demonstrate vividly the topics we discuss.
Collapse
Affiliation(s)
- Darko Orešković
- Department of Neurosurgery, Clinical Hospital Dubrava, Zagreb, Croatia.
| | - Andrea Blažević
- Department of Neurosurgery, Clinical Hospital Dubrava, Zagreb, Croatia
| | | | - Ivan Konstantinović
- Department of Neurosurgery, Clinical Hospital Dubrava, Zagreb, Croatia
- Department of Neurosurgery, University Hospital Center Split, Split, Croatia
| | - Marin Lakić
- Department of Neurosurgery, Clinical Hospital Dubrava, Zagreb, Croatia
- Department of Neurosurgery, General Hospital Dubrovnik, Dubrovnik, Croatia
| | - Filip Murn
- Department of Radiology, Children's Hospital Zagreb, Zagreb, Croatia
- Department of Radiology, Clinical Hospital Dubrava, Zagreb, Croatia
| | - Marko Puljiz
- Department of Neurosurgery, Clinical Hospital Dubrava, Zagreb, Croatia
- Department of Neurosurgery, General Hospital Dubrovnik, Dubrovnik, Croatia
| | - Martina Štenger
- Department of Neurosurgery, Children's Hospital Zagreb, Zagreb, Croatia
| | - Pia Barač
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Darko Chudy
- Department of Neurosurgery, Clinical Hospital Dubrava, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Tonko Marinović
- Department of Neurosurgery, Clinical Hospital Dubrava, Zagreb, Croatia
- Medicine of Sports and Exercise, Faculty of Kinesiology, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
4
|
González-Cruz RD, Wan Y, Burgess A, Calvao D, Renken W, Vecchio F, Franck C, Kesari H, Hoffman-Kim D. Cortical spheroids show strain-dependent cell viability loss and neurite disruption following sustained compression injury. PLoS One 2024; 19:e0295086. [PMID: 39159236 PMCID: PMC11332998 DOI: 10.1371/journal.pone.0295086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 07/15/2024] [Indexed: 08/21/2024] Open
Abstract
Sustained compressive injury (SCI) in the brain is observed in numerous injury and pathological scenarios, including tumors, ischemic stroke, and traumatic brain injury-related tissue swelling. Sustained compressive injury is characterized by tissue loading over time, and currently, there are few in vitro models suitable to study neural cell responses to strain-dependent sustained compressive injury. Here, we present an in vitro model of sustained compressive neural injury via centrifugation. Spheroids were made from neonatal rat cortical cells seeded at 4000 cells/spheroid and cultured for 14 days in vitro. A subset of spheroids was centrifuged at 104, 209, 313 or 419 rads/s for 2 minutes. Modeling the physical deformation of the spheroids via finite element analyses, we found that spheroids centrifuged at the aforementioned angular velocities experienced pressures of 10, 38, 84 and 149 kPa, respectively, and compressive (resp. tensile) strains of 10% (5%), 18% (9%), 27% (14%) and 35% (18%), respectively. Quantification of LIVE-DEAD assay and Hoechst 33342 nuclear staining showed that centrifuged spheroids subjected to pressures above 10 kPa exhibited significantly higher DNA damage than control spheroids at 2, 8, and 24 hours post-injury. Immunohistochemistry of β3-tubulin networks at 2, 8, and 24 hours post-centrifugation injury showed increasing degradation of microtubules over time with increasing strain. Our findings show that cellular injuries occur as a result of specific levels and timings of sustained tissue strains. This experimental SCI model provides a high throughput in vitro platform to examine cellular injury, to gain insights into brain injury that could be targeted with therapeutic strategies.
Collapse
Affiliation(s)
- Rafael D. González-Cruz
- Department of Neuroscience, Brown University, Providence, RI, United States of America
- Carney Institute for Brain Science, Brown University, Providence, RI, United States of America
- School of Engineering, Brown University, Providence, RI, United States of America
| | - Yang Wan
- School of Engineering, Brown University, Providence, RI, United States of America
| | - Amina Burgess
- Institute for Biology, Engineering, and Medicine, Brown University Providence, RI, United States of America
| | - Dominick Calvao
- Institute for Biology, Engineering, and Medicine, Brown University Providence, RI, United States of America
| | - William Renken
- Department of Neuroscience, Brown University, Providence, RI, United States of America
| | - Francesca Vecchio
- Institute for Biology, Engineering, and Medicine, Brown University Providence, RI, United States of America
| | - Christian Franck
- Center for Traumatic Brain Injury, University of Wisconsin-Madison, Madison, WI, United States of America
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Haneesh Kesari
- School of Engineering, Brown University, Providence, RI, United States of America
| | - Diane Hoffman-Kim
- Department of Neuroscience, Brown University, Providence, RI, United States of America
- Carney Institute for Brain Science, Brown University, Providence, RI, United States of America
- Institute for Biology, Engineering, and Medicine, Brown University Providence, RI, United States of America
| |
Collapse
|
5
|
Rabin EE, Huang J, Kim M, Mozny A, Lauing KL, Penco-Campillo M, Zhai L, Bommi P, Mi X, Power EA, Prabhu VC, Anderson DE, Barton KP, Walunas TL, Schiltz GE, Amidei C, Sanchez-Gomez P, Thakkar JP, Lukas RV, Wainwright DA. Age-stratified comorbid and pharmacologic analysis of patients with glioblastoma. Brain Behav Immun Health 2024; 38:100753. [PMID: 38600951 PMCID: PMC11004500 DOI: 10.1016/j.bbih.2024.100753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/13/2024] [Accepted: 03/08/2024] [Indexed: 04/12/2024] Open
Abstract
Background Increased age is a strong and unfavorable prognostic factor for patients with glioblastoma (GBM). However, the relationships between stratified patient age, comorbidities, and medications have yet to be explored in GBM patient survival analyses. Objective To evaluate co-morbid conditions, tumor-related symptoms, medication prescriptions, and subject age for patients with GBM and to establish potential targets for prospective studies. Methods Electronic health records for 565 patients with IDHwt GBM were evaluated at a single center between January 1, 2000 and August 9, 2021 were retrospectively assessed. Data were stratified by MGMT promoter methylation status when available and were used to construct multivariable time-dependent cox models and intra-cohort hazards. Results Younger (<65 years of age) but not older (≥65 years) GBM patients demonstrated a worse prognosis with movement related disabilities (P < 0.0001), gait/balance difficulty (P = 0.04) and weakness (P = 0.007), as well as psychiatric conditions, mental health disorders (P = 0.002) and anxiety (P = 0.001). In contrast, older but not younger GBM patients demonstrated a worse prognosis with epilepsy (P = 0.039). Both groups had worse survival with confusion/altered mental status (P = 0.023 vs < 0.000) and an improved survival with a Temozolomide prescription. Older but not younger GBM patients experienced an improved hazard with a prescription of ace-inhibitor medications (P = 0.048). Conclusion Age-dependent novel associations between clinical symptoms and medications prescribed for co-morbid conditions were demonstrated in patients with GBM. The results of the current work support future mechanistic studies that investigate the negative relationship(s) between increased age, comorbidities, and drug therapies for differential clinical decision-making across the lifespan of patients with GBM.
Collapse
Affiliation(s)
- Erik E. Rabin
- Department of Neurological Surgery at Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jonathan Huang
- Department of Neurological Surgery at Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Miri Kim
- Department of Neurological Surgery at Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Andreas Mozny
- Department of Neurological Surgery at Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kristen L. Lauing
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Manon Penco-Campillo
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Lijie Zhai
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Prashant Bommi
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Xinlei Mi
- Department of Preventive Medicine-Division of Biostatistics at Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Erica A. Power
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Vikram C. Prabhu
- Department of Neurological Surgery at Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Douglas E. Anderson
- Department of Neurological Surgery at Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Kevin P. Barton
- Department of Medicine - Hematology/Oncology at Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Theresa L. Walunas
- Department of Medicine - Division of General Internal Medicine and Geriatrics at Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Preventive Medicine-Division of Health and Biomedical Informatics at Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Gary E. Schiltz
- Department of Chemistry at Northwestern University, Evanston, IL, USA
| | - Christina Amidei
- Department of Neurological Surgery at Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Pilar Sanchez-Gomez
- Neurooncology Unit, Unidad Funcional de Investigación en Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Jigisha P. Thakkar
- Department of Neurology at Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Rimas V. Lukas
- Department of Neurology at Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Derek A. Wainwright
- Department of Neurological Surgery at Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
- Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| |
Collapse
|
6
|
Fletcher SMP, Chisholm A, Lavelle M, Guthier R, Zhang Y, Power C, Berbeco R, McDannold N. A study combining microbubble-mediated focused ultrasound and radiation therapy in the healthy rat brain and a F98 glioma model. Sci Rep 2024; 14:4831. [PMID: 38413663 PMCID: PMC10899261 DOI: 10.1038/s41598-024-55442-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/23/2024] [Indexed: 02/29/2024] Open
Abstract
Focused Ultrasound (FUS) has been shown to sensitize tumors outside the brain to Radiotherapy (RT) through increased ceramide-mediated apoptosis. This study investigated the effects of FUS + RT in healthy rodent brains and F98 gliomas. Tumors, or striata in healthy rats, were targeted with microbubble-mediated, pulsed FUS (220 kHz, 102-444 kPa), followed by RT (4, 8, 15 Gy). FUS + RT (8, 15 Gy) resulted in ablative lesions, not observed with FUS or RT only, in healthy tissue. Lesions were visible using Magnetic Resonance Imaging (MRI) within 72 h and persisted until 21 days post-treatment, indicating potential applications in ablative neurosurgery. In F98 tumors, at 8 and 15 Gy, where RT only had significant effects, FUS + RT offered limited improvements. At 4 Gy, where RT had limited effects compared with untreated controls, FUS + RT reduced tumor volumes observed on MRI by 45-57%. However, survival benefits were minimal (controls: 27 days, RT: 27 days, FUS + RT: 28 days). Histological analyses of tumors 72 h after FUS + RT (4 Gy) showed 93% and 396% increases in apoptosis, and 320% and 336% increases in vessel-associated ceramide, compared to FUS and RT only. Preliminary evidence shows that FUS + RT may improve treatment of glioma, but additional studies are required to optimize effect size.
Collapse
Affiliation(s)
- Stecia-Marie P Fletcher
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Radiology, Harvard Medical School, Boston, MA, USA.
| | - Amanda Chisholm
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Michael Lavelle
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Radiation Oncology, Brigham and Women's Hospital, Boston, MA, USA
| | - Romy Guthier
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Radiation Oncology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Radiation Oncology, Harvard Medical School, Boston, MA, USA
| | - Yongzhi Zhang
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Chanikarn Power
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Ross Berbeco
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Radiation Oncology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Radiation Oncology, Harvard Medical School, Boston, MA, USA
| | - Nathan McDannold
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Aumiller M, Arazar A, Sroka R, Dietrich O, Rühm A. Investigations on correlations between changes of optical tissue properties and NMR relaxation times. Photodiagnosis Photodyn Ther 2024; 45:103968. [PMID: 38215958 DOI: 10.1016/j.pdpdt.2024.103968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
BACKGROUND Accurate light dosimetry is a complex remaining challenge in interstitial photodynamic therapy (iPDT) for malignant gliomas. The light dosimetry should ideally be based on the tissue morphology and the individual optical tissue properties of each tissue type in the target region. First investigations are reported on using NMR information to estimate changes of individual optical tissue properties. METHODS Porcine brain tissue and optical tissue phantoms were investigated. To the porcine brain, supplements were added to simulate an edema or high blood content. The tissue phantoms were based on agar, Lipoveneous, ink, blood and gadobutrol (Gd-based MRI contrast agent). The concentrations of phantom ingredients and tissue additives are varied to compare concentration-dependent effects on optical and NMR properties. A 3-tesla whole-body MRI system was used to determine T1 and T2 relaxation times. Optical tissue properties, i.e., the spectrally resolved absorption and reduced scattering coefficient, were obtained using a single integrating sphere setup. The observed changes of NMR and optical properties were compared to each other. RESULTS By adjusting the NMR relaxation times and optical tissue properties of the tissue phantoms to literature values, recipes for human brain tumor, white matter and grey matter tissue phantoms were obtained that mimic these brain tissues simultaneously in both properties. For porcine brain tissue, it was observed that with increasing water concentration in the tissue, both NMR-relaxation times increased, while µa decreased and µs' increased at 635 nm. The addition of blood to porcine brain samples showed a constant T1, while T2 shortened and the absorption coefficient at 635 nm increased. CONCLUSIONS In this investigation, by changing sample contents, notable changes of both NMR relaxation times and optical tissue properties have been observed and their relations examined. The developed dual NMR/optical tissue phantoms can be used in iPDT research, clinical training and demonstrations.
Collapse
Affiliation(s)
- Maximilian Aumiller
- Laser-Forschungslabor, LIFE Center, LMU University Hospital, LMU Munich, Planegg 82152, Germany; Department of Urology, LMU University Hospital, LMU Munich, Munich 81377, Germany.
| | - Asmerom Arazar
- Laser-Forschungslabor, LIFE Center, LMU University Hospital, LMU Munich, Planegg 82152, Germany
| | - Ronald Sroka
- Laser-Forschungslabor, LIFE Center, LMU University Hospital, LMU Munich, Planegg 82152, Germany; Department of Urology, LMU University Hospital, LMU Munich, Munich 81377, Germany
| | - Olaf Dietrich
- Department of Radiology, LMU University Hospital, LMU Munich, Munich 81377, Germany
| | - Adrian Rühm
- Laser-Forschungslabor, LIFE Center, LMU University Hospital, LMU Munich, Planegg 82152, Germany; Department of Urology, LMU University Hospital, LMU Munich, Munich 81377, Germany
| |
Collapse
|
8
|
Ohmura K, Tomita H, Hara A. Peritumoral Edema in Gliomas: A Review of Mechanisms and Management. Biomedicines 2023; 11:2731. [PMID: 37893105 PMCID: PMC10604286 DOI: 10.3390/biomedicines11102731] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Treating malignant glioma is challenging owing to its highly invasive potential in healthy brain tissue and the formation of intense surrounding edema. Peritumoral edema in gliomas can lead to severe symptoms including neurological dysfunction and brain herniation. For the past 50 years, the standard treatment for peritumoral edema has been steroid therapy. However, the discovery of cerebral lymphatic vessels a decade ago prompted a re-evaluation of the mechanisms involved in brain fluid regulation and the formation of cerebral edema. This review aimed to describe the clinical features of peritumoral edema in gliomas. The mechanisms currently known to cause glioma-related edema are summarized, the limitations in current cerebral edema therapies are discussed, and the prospects for future cerebral edema therapies are presented. Further research concerning edema surrounding gliomas is needed to enhance patient prognosis and improve treatment efficacy.
Collapse
Affiliation(s)
- Kazufumi Ohmura
- Department of Tumor Pathology, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan; (K.O.)
- Department of Neurosurgery, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan; (K.O.)
- Center for One Medicine Innovative Translational Research, Institute for Advanced Study, Gifu University, Gifu 501-1193, Japan
| | - Akira Hara
- Department of Tumor Pathology, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan; (K.O.)
| |
Collapse
|
9
|
Consoli S, Dono F, Evangelista G, Corniello C, Onofrj M, Thomas A, Sensi SL. Case Report: Brain tumor's pitfalls: two cases of high-grade brain tumors mimicking autoimmune encephalitis with positive onconeuronal antibodies. Front Oncol 2023; 13:1254674. [PMID: 37692853 PMCID: PMC10484219 DOI: 10.3389/fonc.2023.1254674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/18/2023] [Indexed: 09/12/2023] Open
Abstract
Background Glioblastoma (GBM) is the most common primary brain tumor in adulthood. Initial diagnosis is generally based on clinical and MRI findings, which may be misinterpreted as other neurological pictures, including autoimmune encephalitis (AE). AE is a heterogeneous group of neuroinflammatory diseases due to the presence of auto-antibodies targeting antigens on neuronal synaptic or cell surface. In the present report, we describe two peculiar cases of GBM initially misdiagnosed as AE, focusing on the diagnostic pitfalls and the treatment strategies. Methods We report the case of two patients with high-grade brain tumors, initially misdiagnosed and treated for AE. Clinical, laboratory, and neuroradiological data are discussed in terms of differential diagnosis between AE and GBM. Results The presence of atypical brain MRI findings and the unresponsiveness to immunosuppressive treatment are major red flags in the differential diagnosis between AE and GBM. In these cases, a brain biopsy is necessary to confirm the diagnosis. Conclusions Atypical brain tumor presentation causes a diagnostic and therapeutic delay. A positive onconeural autoantibodies result should always be interpreted cautiously, considering the possibility of a false-positive test. A brain biopsy is mandatory for a definite diagnosis.
Collapse
Affiliation(s)
- Stefano Consoli
- Department of Neuroscience, Imaging and Clinical Science, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Epilepsy Center, “SS Annunziata” Hospital, Chieti, Italy
| | - Fedele Dono
- Department of Neuroscience, Imaging and Clinical Science, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Epilepsy Center, “SS Annunziata” Hospital, Chieti, Italy
| | - Giacomo Evangelista
- Department of Neuroscience, Imaging and Clinical Science, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Epilepsy Center, “SS Annunziata” Hospital, Chieti, Italy
| | - Clarissa Corniello
- Department of Neuroscience, Imaging and Clinical Science, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Epilepsy Center, “SS Annunziata” Hospital, Chieti, Italy
| | - Marco Onofrj
- Department of Neuroscience, Imaging and Clinical Science, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Astrid Thomas
- Department of Neuroscience, Imaging and Clinical Science, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Stefano L. Sensi
- Department of Neuroscience, Imaging and Clinical Science, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies, University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
10
|
Yakubov E, Schmid S, Hammer A, Chen D, Dahlmanns JK, Mitrovic I, Zurabashvili L, Savaskan N, Steiner HH, Dahlmanns M. Ferroptosis and PPAR-gamma in the limelight of brain tumors and edema. Front Oncol 2023; 13:1176038. [PMID: 37554158 PMCID: PMC10406130 DOI: 10.3389/fonc.2023.1176038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/04/2023] [Indexed: 08/10/2023] Open
Abstract
Human malignant brain tumors such as gliomas are devastating due to the induction of cerebral edema and neurodegeneration. A major contributor to glioma-induced neurodegeneration has been identified as glutamate. Glutamate promotes cell growth and proliferation in variety of tumor types. Intriguently, glutamate is also an excitatory neurotransmitter and evokes neuronal cell death at high concentrations. Even though glutamate signaling at the receptor and its downstream effectors has been extensively investigated at the molecular level, there has been little insight into how glutamate enters the tumor microenvironment and impacts on metabolic equilibration until recently. Surprisingly, the 12 transmembrane spanning tranporter xCT (SLC7A11) appeared to be a major player in this process, mediating glutamate secretion and ferroptosis. Also, PPARγ is associated with ferroptosis in neurodegeneration, thereby destroying neurons and causing brain swelling. Although these data are intriguing, tumor-associated edema has so far been quoted as of vasogenic origin. Hence, glutamate and PPARγ biology in the process of glioma-induced brain swelling is conceptually challenging. By inhibiting xCT transporter or AMPA receptors in vivo, brain swelling and peritumoral alterations can be mitigated. This review sheds light on the role of glutamate in brain tumors presenting the conceptual challenge that xCT disruption causes ferroptosis activation in malignant brain tumors. Thus, interfering with glutamate takes center stage in forming the basis of a metabolic equilibration approach.
Collapse
Affiliation(s)
- Eduard Yakubov
- Department of Neurosurgery, Paracelsus Medical University, Nuremberg, Germany
| | - Sebastian Schmid
- Department of Trauma, Orthopaedics, Plastic and Hand Surgery, University Hospital Augsburg, Augsburg, Germany
| | - Alexander Hammer
- Department of Neurosurgery, Paracelsus Medical University, Nuremberg, Germany
- Center for Spine and Scoliosis Therapy, Malteser Waldkrankenhaus St. Marien, Erlangen, Germany
| | - Daishi Chen
- Department of Otorhinolaryngology, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| | - Jana Katharina Dahlmanns
- Institute for Physiology and Pathophysiology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Ivana Mitrovic
- Department of Cardiac Surgery, Bogenhausen Hospital, Munich, Germany
| | | | - Nicolai Savaskan
- Department of Neurosurgery, University Medical School Hospital Universitätsklinikum Erlangen (UKER), Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Department of Public Health Neukölln, District Office Neukölln of Berlin Neukölln, Berlin, Germany
| | | | - Marc Dahlmanns
- Institute for Physiology and Pathophysiology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
11
|
Kareemi H, Pratte M, English S, Hendin A. Initial Diagnosis and Management of Acutely Elevated Intracranial Pressure. J Intensive Care Med 2023; 38:643-650. [PMID: 36802976 PMCID: PMC10302390 DOI: 10.1177/08850666231156589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/22/2023]
Abstract
Acutely elevated intracranial pressure (ICP) may have devastating effects on patient mortality and neurologic outcomes, yet its initial detection remains difficult because of the variety of manifestations that it can cause disease states it is associated with. Several treatment guidelines exist for specific disease processes such as trauma or ischemic stroke, but their recommendations may not apply to other causes. In the acute setting, management decisions must often be made before the underlying cause is known. In this review, we present an organized, evidence-based approach to the recognition and management of patients with suspected or confirmed elevated ICP in the first minutes to hours of resuscitation. We explore the utility of invasive and noninvasive methods of diagnosis, including history, physical examination, imaging, and ICP monitors. We synthesize various guidelines and expert recommendations and identify core management principles including noninvasive maneuvers, neuroprotective intubation and ventilation strategies, and pharmacologic therapies such as ketamine, lidocaine, corticosteroids, and the hyperosmolar agents mannitol and hypertonic saline. Although an in-depth discussion of the definitive management of each etiology is beyond the scope of this review, our goal is to provide an empirical approach to these time-sensitive, critical presentations in their initial stages.
Collapse
Affiliation(s)
- Hashim Kareemi
- Department of Emergency Medicine, The Ottawa Hospital, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael Pratte
- Department of Internal Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Shane English
- Department of Medicine (Critical Care), University of Ottawa, Ottawa, Ontario, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Ariel Hendin
- Department of Emergency Medicine, The Ottawa Hospital, University of Ottawa, Ottawa, Ontario, Canada
- Department of Medicine (Critical Care), University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
12
|
Yao J, Li S, Cui Q, Ren Y, Li M, Wang J, Zeng M, Ji N, Peng Y, Sessler DI. Intraoperative Hypotension and Postoperative Stroke in Older Patients Who Had Brain Tumor Resections: A Retrospective Cohort Analysis. World Neurosurg 2023; 174:e72-e81. [PMID: 36878404 DOI: 10.1016/j.wneu.2023.02.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND At some level, intraoperative hypotension causes strokes. Elderly neurosurgical patients are presumably at especially high risk. We tested the primary hypothesis that intraoperative hypotension is associated with postoperative stroke in older patients undergoing brain tumor resection. METHODS Patients >65 years old who had elective craniotomy for tumor resections were included. The primary exposure was the area under the threshold of intraoperative hypotension. The primary outcome was newly diagnosed ischemic stroke within 30 days, confirmed by scheduled brain imaging. RESULTS Among 724 eligible patients, 98 (13.5%) had strokes within 30 days after surgery, 86% of which were clinically silent. Curves of lowest mean arterial pressure versus stroke incidence suggested a threshold at 75 mm Hg. Area under the threshold of mean arterial pressure below 75 mm Hg was therefore incorporated into multivariable modeling. There was no association of area below 75 mm Hg and stroke (adjusted odds ratio, 1.00; 95% confidence interval, 1.00-1.00). The adjusted odds ratio for area below 75 mm Hg between 1 and 148 mm Hg × minutes was 1.21 (95% confidence interval, 0.23-6.23). When the area below 75 mm Hg exceeded 1117 mm Hg × minutes, the association remained insignificant. In contrast, malignant tumor and history of previous stroke or myocardial ischemia were associated with strokes. CONCLUSIONS Postoperative strokes were common in older patients who underwent brain tumor resection, with about 14% having ischemic cerebrovascular events within 30 days, of which 86% were clinically silent. Malignant brain tumors and previous ischemic vascular events were associated with postoperative strokes, but area under 75 mm Hg was not.
Collapse
Affiliation(s)
- Jingxin Yao
- Department of Anaesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shu Li
- Department of Anaesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qianyu Cui
- Department of Anaesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yue Ren
- Department of Anaesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Muhan Li
- Department of Anaesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Juan Wang
- Department of Anaesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Min Zeng
- Department of Anaesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Nan Ji
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuming Peng
- Department of Anaesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Daniel I Sessler
- Department of Outcomes Research, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
13
|
Kim JH, Jeong H, Choo YH, Kim M, Ha EJ, Oh J, Shim Y, Kim SB, Jung HG, Park SH, Kim JO, Kim J, Kim HS, Lee S. Optimizing Mannitol Use in Managing Increased Intracranial Pressure: A Comprehensive Review of Recent Research and Clinical Experiences. Korean J Neurotrauma 2023; 19:162-176. [PMID: 37431377 PMCID: PMC10329884 DOI: 10.13004/kjnt.2023.19.e25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 07/12/2023] Open
Abstract
Mannitol, derived from mannose sugar, is crucial in treating patients with elevated intracranial pressure (ICP). Its dehydrating properties at the cellular and tissue levels increase plasma osmotic pressure, which is studied for its potential to reduce ICP through osmotic diuresis. While clinical guidelines support mannitol use in these cases, the best approach for its application continues to be debated. Important aspects needing further investigation include: 1) bolus administration versus continuous infusion, 2) ICP-based dosing versus scheduled bolus, 3) identifying the optimal infusion rate, 4) determining the appropriate dosage, 5) establishing fluid replacement plans for urinary loss, and 6) selecting monitoring techniques and thresholds to assess effectiveness and ensure safety. Due to the lack of adequate high-quality prospective research data, a comprehensive review of recent studies and clinical trials is crucial. This assessment aims to bridge the knowledge gap, improve understanding of effective mannitol use in elevated ICP patients, and provide insights for future research. In conclusion, this review aspires to contribute to the ongoing discourse on mannitol application. By integrating the latest findings, this review will offer valuable insights into the function of mannitol in decreasing ICP, thereby informing better therapeutic approaches and enhancing patient outcomes.
Collapse
Affiliation(s)
- Jae Hyun Kim
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Heewon Jeong
- Department of Neurosurgery, Chungnam National University Hospital, Daejeon, Korea
| | - Yoon-Hee Choo
- Department of Neurosurgery, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Moinay Kim
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun Jin Ha
- Department of Critical Care Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jiwoong Oh
- Division of Neurotrauma & Neurocritical Care Medicine, Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Youngbo Shim
- Department of Critical Care Medicine, Kangbuk Samsung Hospital, Seoul, Korea
| | - Seung Bin Kim
- Department of Critical Care Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea
| | - Han-Gil Jung
- Department of Neurosurgery and Neurology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - So Hee Park
- Department of Neurosurgery, Yeungnam University Medical Center, Daegu, Korea
| | - Jung Ook Kim
- Gachon University Gil Hospital Regional Trauma Center, Incheon, Korea
| | - Junhyung Kim
- Department of Neurosurgery, Gangnam Severance Hospital, Seoul, Korea
| | - Hye Seon Kim
- Department of Neurosurgery, Incheon St. Mary’s Hospital, The Catholic University of Korea, Incheon, Korea
| | - Seungjoo Lee
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
14
|
Rao R, Patel A, Hanchate K, Robinson E, Edwards A, Shah S, Higgins D, Haworth KJ, Lucke-Wold B, Pomeranz Krummel D, Sengupta S. Advances in Focused Ultrasound for the Treatment of Brain Tumors. Tomography 2023; 9:1094-1109. [PMID: 37368542 PMCID: PMC10301958 DOI: 10.3390/tomography9030090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Employing the full arsenal of therapeutics to treat brain tumors is limited by the relative impermeability of the blood-brain and blood-tumor barriers. In physiologic states, the blood-brain barrier serves a protective role by passively and actively excluding neurotoxic compounds; however, this functionality limits the penetrance of therapeutics into the tumor microenvironment. Focused ultrasound technology provides a method for overcoming the blood-brain and blood-tumor barriers through ultrasound frequency to transiently permeabilize or disrupt these barriers. Concomitant delivery of therapeutics has allowed for previously impermeable agents to reach the tumor microenvironment. This review details the advances in focused ultrasound in both preclinical models and clinical studies, with a focus on its safety profile. We then turn towards future directions in focused ultrasound-mediated therapies for brain tumors.
Collapse
Affiliation(s)
- Rohan Rao
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Anjali Patel
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| | - Kunal Hanchate
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| | - Eric Robinson
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| | - Aniela Edwards
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| | - Sanjit Shah
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Dominique Higgins
- Department of Neurosurgery, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Kevin J. Haworth
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH 45267, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| | - Daniel Pomeranz Krummel
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Soma Sengupta
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| |
Collapse
|
15
|
Parvaze PS, Bhattacharjee R, Verma YK, Singh RK, Yadav V, Singh A, Khanna G, Ahlawat S, Trivedi R, Patir R, Vaishya S, Shah TJ, Gupta RK. Quantification of Radiomics features of Peritumoral Vasogenic Edema extracted from fluid-attenuated inversion recovery images in glioblastoma and isolated brain metastasis, using T1-dynamic contrast-enhanced Perfusion analysis. NMR IN BIOMEDICINE 2023; 36:e4884. [PMID: 36453877 DOI: 10.1002/nbm.4884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/11/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The peritumoral vasogenic edema (PVE) in brain tumors exhibits varied characteristics. Brain metastasis (BM) and meningioma barely have tumor cells in PVE, while glioblastoma (GB) show tumor cell infiltration in most subjects. The purpose of this study was to investigate the PVE of these three pathologies using radiomics features in FLAIR images, with the hypothesis that the tumor cells might influence textural variation. Ex vivo experimentation of radiomics analysis of T1-weighted images of the culture medium with and without suspended tumor cells was also attempted to infer the possible influence of increasing tumor cells on radiomics features. This retrospective study involved magnetic resonance (MR) images acquired using a 3.0-T MR machine from 83 patients with 48 GB, 21 BM, and 14 meningioma. The 93 radiomics features were extracted from each subject's PVE mask from three pathologies using T1-dynamic contrast-enhanced MR imaging. Statistically significant (< 0.05, independent samples T-test) features were considered. Features maps were also computed for qualitative investigation. The same was carried out for T1-weighted cell line images but group comparison was carried out using one-way analysis of variance. Further, a random forest (RF)-based machine learning model was designed to classify the PVE of GB and BM. Texture-based variations, especially higher nonuniformity values, were observed in the PVE of GB. No significance was observed between BM and meningioma PVE. In cell line images, the culture medium had higher nonuniformity and was considerably reduced with increasing cell densities in four features. The RF model implemented with highly significant features provided improved area under the curve results. The possible infiltrative tumor cells in the PVE of the GB are likely influencing the texture values and are higher in comparison with BM PVE and may be of value in the differentiation of solitary metastasis from GB. However, the robustness of the features needs to be investigated with a larger cohort and across different scanners in the future.
Collapse
Affiliation(s)
| | - Rupsa Bhattacharjee
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, California, USA
| | - Yogesh Kumar Verma
- Stem Cell & Gene Therapy Research Group, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi, India
| | - Rakesh Kumar Singh
- Department of Radiology and Imaging, Fortis Memorial, Research Institute, Gurugram, India
| | - Virendra Yadav
- Medical Image and Signal Processing Lab, CBME, Indian Institute of Technology, Delhi, India
| | - Anup Singh
- Medical Image and Signal Processing Lab, CBME, Indian Institute of Technology, Delhi, India
| | - Gaurav Khanna
- SRL Diagnostics, Fortis Memorial Research Institute, Gurugram, India
| | - Sunita Ahlawat
- SRL Diagnostics, Fortis Memorial Research Institute, Gurugram, India
| | - Richa Trivedi
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi, India
| | - Rana Patir
- Department of Neurosurgery, Fortis Memorial Research Institute, Gurugram, India
| | - Sandeep Vaishya
- Department of Neurosurgery, Fortis Memorial Research Institute, Gurugram, India
| | | | - Rakesh K Gupta
- Department of Radiology and Imaging, Fortis Memorial, Research Institute, Gurugram, India
| |
Collapse
|
16
|
Radiomics-based evaluation and possible characterization of dynamic contrast enhanced (DCE) perfusion derived different sub-regions of Glioblastoma. Eur J Radiol 2023; 159:110655. [PMID: 36577183 DOI: 10.1016/j.ejrad.2022.110655] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Glioblastoma (GB) is among the most devastative brain tumors, which usually comprises sub-regions like enhancing tumor (ET), non-enhancing tumor (NET), edema (ED), and necrosis (NEC) as described on MRI. Semi-automated algorithms to extract these tumor subpart volumes and boundaries have been demonstrated using dynamic contrast-enhanced (DCE) perfusion imaging. We aim to characterize these sub-regions derived from DCE perfusion MRI using routine 3D post-contrast-T1 (T1GD) and FLAIR images with the aid of Radiomics analysis. We also explored the possibility of separating edema from tumor sub-regions by extracting the most influential radiomics features. METHODS A total of 89 patients with histopathological confirmed IDH wild type GB were considered, who underwent the MR imaging with DCE perfusion-MRI. Perfusion and kinetic indices were computed and further used to segment tumor sub-regions. Radiomics features were extracted from FLAIR and T1GD images with PyRadiomics tool. Statistical analysis of the features was carried out using two approaches as well as machine learning (ML) models were constructed separately, i) within different tumor sub-regions and ii) ED as one category and the remaining sub-regions combined as another category. ML based predictive feature maps was also constructed. RESULTS Seven features found to be statistically significant to differentiate tumor sub-regions in FLAIR and T1GD images, with p-value < 0.05 and AUC values in the range of 0.72 to 0.93. However, the edema features stood out in the analysis. In the second approach, the ML model was able to categorize the ED from the rest of the tumor sub-regions in FLAIR and T1GD images with AUC of 0.95 and 0.89 respectively. CONCLUSION Radiomics-based specific feature values and maps help to characterize different tumor sub-regions. However, the GLDM_DependenceNonUniformity feature appears to be most specific for separating edema from the remaining tumor sub-regions using conventional FLAIR images. This may be of value in the segmentation of edema from tumors using conventional MRI in the future.
Collapse
|
17
|
Comparison of Equiosmolar Doses of 7.5% Hypertonic Saline and 20% Mannitol on Cerebral Oxygenation Status and Release of Brain Injury Markers During Supratentorial Craniotomy: A Randomized Controlled Trial. J Neurosurg Anesthesiol 2023; 35:56-64. [PMID: 34267156 DOI: 10.1097/ana.0000000000000791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hyperosmolar therapy is the mainstay of treatment to reduce brain bulk and optimize surgical exposure during craniotomy. This study investigated the effect of equiosmolar doses of 7.5% hypertonic saline (HTS) and 20% mannitol on intraoperative cerebral oxygenation and metabolic status, systemic hemodynamics, brain relaxation, markers of cerebral injury, and perioperative craniotomy outcomes. METHODS A total of 51 patients undergoing elective supratentorial craniotomy were randomly assigned to receive 7.5% HTS (2 mL/kg) or 20% mannitol (4.6 mL/kg) at scalp incision. Intraoperative arterial and jugular bulb blood samples were collected at predefined time intervals for assessment of various indices of cerebral oxygenation; multiple hemodynamic variables were concomitantly recorded. S100B protein and neuron-specific enolase levels were determined at baseline, and at 6 and 12 hours after surgery for assessment of neuronal injury. Brain relaxation and perioperative outcomes were also assessed. RESULTS Demographic and intraoperative data, brain relaxation score, and perioperative outcomes were comparable between groups. Jugular bulb oxygen saturation and partial pressure of oxygen, arterial-jugular oxygen and carbon dioxide differences, and brain oxygen extraction ratio were favorably affected by 7.5% HTS up to 240 minutes postinfusion ( P <0.05), whereas mannitol was associated with only a short-lived (up to 15 min) improvement of these indices ( P <0.05). The changes in cerebral oxygenation corresponded to transient expansion of intravascular volume and improvements of cardiovascular performance. Increases in S100B and neuron-specific enolase levels at 6 and 12 hours after surgery ( P <0.0001) were comparable between groups. CONCLUSIONS The conclusion is that 7.5% HTS has a more beneficial effect on cerebral oxygenation than an equiosmolar dose of 20% mannitol during supratentorial craniotomy, yet no clear-cut clinical superiority of either solution could be demonstrated.
Collapse
|
18
|
Liu J, Chu C, Zhang J, Bie C, Chen L, Aafreen S, Xu J, Kamson DO, van Zijl PCM, Walczak P, Janowski M, Liu G. Label-Free Assessment of Mannitol Accumulation Following Osmotic Blood-Brain Barrier Opening Using Chemical Exchange Saturation Transfer Magnetic Resonance Imaging. Pharmaceutics 2022; 14:pharmaceutics14112529. [PMID: 36432721 PMCID: PMC9695341 DOI: 10.3390/pharmaceutics14112529] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/02/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
PURPOSE Mannitol is a hyperosmolar agent for reducing intracranial pressure and inducing osmotic blood-brain barrier opening (OBBBO). There is a great clinical need for a non-invasive method to optimize the safety of mannitol dosing. The aim of this study was to develop a label-free Chemical Exchange Saturation Transfer (CEST)-based MRI approach for detecting intracranial accumulation of mannitol following OBBBO. METHODS In vitro MRI was conducted to measure the CEST properties of D-mannitol of different concentrations and pH. In vivo MRI and MRS measurements were conducted on Sprague-Dawley rats using a Biospec 11.7T horizontal MRI scanner. Rats were catheterized at the internal carotid artery (ICA) and randomly grouped to receive either 1 mL or 3 mL D-mannitol. CEST MR images were acquired before and at 20 min after the infusion. RESULTS In vitro MRI showed that mannitol has a strong, broad CEST contrast at around 0.8 ppm with a mM CEST MRI detectability. In vivo studies showed that CEST MRI could effectively detect mannitol in the brain. The low dose mannitol treatment led to OBBBO but no significant mannitol accumulation, whereas the high dose regimen resulted in both OBBBO and mannitol accumulation. The CEST MRI findings were consistent with 1H-MRS and Gd-enhanced MRI assessments. CONCLUSION We demonstrated that CEST MRI can be used for non-invasive, label-free detection of mannitol accumulation in the brain following BBBO treatment. This method may be useful as a rapid imaging tool to optimize the dosing of mannitol-based OBBBO and improve its safety and efficacy.
Collapse
Affiliation(s)
- Jing Liu
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Chengyan Chu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Jia Zhang
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Chongxue Bie
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Lin Chen
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Safiya Aafreen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jiadi Xu
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - David O. Kamson
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Peter C. M. van Zijl
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Piotr Walczak
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Miroslaw Janowski
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Guanshu Liu
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21218, USA
- Correspondence: ; Tel.: +1-443-923-9500; Fax: +1-410-614-3147
| |
Collapse
|
19
|
Gould Rothberg BE, Quest TE, Yeung SCJ, Pelosof LC, Gerber DE, Seltzer JA, Bischof JJ, Thomas CR, Akhter N, Mamtani M, Stutman RE, Baugh CW, Anantharaman V, Pettit NR, Klotz AD, Gibbs MA, Kyriacou DN. Oncologic emergencies and urgencies: A comprehensive review. CA Cancer J Clin 2022; 72:570-593. [PMID: 35653456 DOI: 10.3322/caac.21727] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/15/2022] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
Patients with advanced cancer generate 4 million visits annually to emergency departments (EDs) and other dedicated, high-acuity oncology urgent care centers. Because of both the increasing complexity of systemic treatments overall and the higher rates of active therapy in the geriatric population, many patients experiencing acute decompensations are frail and acutely ill. This article comprehensively reviews the spectrum of oncologic emergencies and urgencies typically encountered in acute care settings. Presentation, underlying etiology, and up-to-date clinical pathways are discussed. Criteria for either a safe discharge to home or a transition of care to the inpatient oncology hospitalist team are emphasized. This review extends beyond familiar conditions such as febrile neutropenia, hypercalcemia, tumor lysis syndrome, malignant spinal cord compression, mechanical bowel obstruction, and breakthrough pain crises to include a broader spectrum of topics encompassing the syndrome of inappropriate antidiuretic hormone secretion, venous thromboembolism and malignant effusions, as well as chemotherapy-induced mucositis, cardiomyopathy, nausea, vomiting, and diarrhea. Emergent and urgent complications associated with targeted therapeutics, including small molecules, naked and drug-conjugated monoclonal antibodies, as well as immune checkpoint inhibitors and chimeric antigen receptor T-cells, are summarized. Finally, strategies for facilitating same-day direct admission to hospice from the ED are discussed. This article not only can serve as a point-of-care reference for the ED physician but also can assist outpatient oncologists as well as inpatient hospitalists in coordinating care around the ED visit.
Collapse
Affiliation(s)
- Bonnie E Gould Rothberg
- Yale Cancer Center Innovations Laboratory, Yale Comprehensive Cancer Center, New Haven, Connecticut
| | - Tammie E Quest
- Department of Emergency Medicine, Emory University, Atlanta, Georgia
| | - Sai-Ching J Yeung
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lorraine C Pelosof
- Office of Oncologic Diseases, US Food and Drug Administration, Silver Spring, Maryland
| | - David E Gerber
- Division of Hematology-Oncology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical School, Dallas, Texas
| | - Justin A Seltzer
- Department of Emergency Medicine, University of California San Diego, San Diego, California
| | - Jason J Bischof
- Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Charles R Thomas
- Department of Radiation Oncology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, New Hampshire
| | - Nausheen Akhter
- Department of Medicine, Division of Cardiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Mira Mamtani
- Department of Emergency Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Robin E Stutman
- Department of Medicine, Division of Urgent Care Services, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christopher W Baugh
- Department of Emergency Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Venkataraman Anantharaman
- Department of Emergency Medicine, Singapore General Hospital, SingHealth Duke-National University of Singapore Academic Medical Center, Singapore, Singapore
| | - Nicholas R Pettit
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Adam D Klotz
- Department of Medicine, Division of Urgent Care Services, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael A Gibbs
- Department of Emergency Medicine, Atrium Health-Carolinas Medical Center, Charlotte, North Carolina
| | - Demetrios N Kyriacou
- Department of Emergency Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
20
|
Goldman M, Lucke-Wold B, Martinez-Sosa M, Katz J, Mehkri Y, Valisno J, Quintin S. Steroid utility, immunotherapy, and brain tumor management: an update on conflicting therapies. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:659-675. [PMID: 36338521 PMCID: PMC9630032 DOI: 10.37349/etat.2022.00106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/17/2022] [Indexed: 11/05/2022] Open
Abstract
Steroid use is a widely accepted practice for both the treatment and prevention of tumor-induced edema, but there are many unknowns regarding their current clinical utility with modern anti-tumor therapies. This decreases edema and relieves the symptomatic mass effect. There are clearly understood benefits and commonly accepted complications of methylprednisolone (MP) use, but the topic is recently controversial. With immunotherapy advancing, a robust immune response is crucial for full therapeutic efficacy. The immunosuppression of MP may interfere with future and current therapeutics relying on the integrity of the patient's immune system. This further emphasizes the need for alternative agents to effectively treat tumor-induced cerebral edema. This review highlights the current clinical utility of steroids to treat brain tumor-related edema and the underlying pathophysiology. It also reviews details regarding different steroid formulations and dosing. Research available regarding concurrent steroid use with immunotherapy is detailed next, followed by alternatives to steroids and barriers to their adoption. Finally, this paper discusses pre-clinical findings and emerging treatments aimed to augment or replace steroid use.
Collapse
Affiliation(s)
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| | | | | | | | | | | |
Collapse
|
21
|
Pérez de Arriba N, Antuña Ramos A, Martin Fernandez V, Rodriguez Sanchez MDC, Gonzalez Alarcon JR, Alvarez Vega MA. Risk Factors Associated With Inadequate Brain Relaxation in Craniotomy for Surgery of Supratentorial Tumors. Cureus 2022; 14:e25544. [PMID: 35800792 PMCID: PMC9246399 DOI: 10.7759/cureus.25544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction: Cerebral swelling often occurs during craniotomy for cerebral tumors. Poor brain relaxation can increase the risk of cerebral ischemia, possibly worsening the outcome. The surgical team should identify any risk factors that could cause perioperative brain swelling and decide which therapies are indicated for improving it. The present investigation aimed to elucidate the risk factors associated with brain swelling during elective craniotomy for supratentorial brain tumors. Methods: This prospective, nonrandomized, observational study included 52 patients scheduled for elective supratentorial tumor surgery. The degree of brain relaxation was classified upon the opening of the dura according to a four-point scale (brain relaxation score: 1, perfectly relaxed; 2, satisfactorily relaxed; 3, firm brain; and 4, bulging brain). Moreover, hemodynamic and respiratory parameters, arterial blood gas, and plasma osmolality were recorded after the removal of the bone flap. Results: This study showed that the use of preoperative dexamethasone was associated with a brain relaxation score of ≤2 (p = 0.005). The median midline shift of 6 (3-0) mm and median hemoglobin level of >13 g/dL were associated with a brain relaxation score of ≥3 (p = 0.02 and p = 0.01, respectively). The dosage of mannitol (0.25 g/kg versus 0.5 g/kg), physical status, intraoperative position, tumor diameter and volume, peritumoral edema and mass effect, World Health Organization (WHO) grading, mean arterial pressure, PaCO2, osmolality, and core temperature were not identified as risk factors associated with poor relaxation. Conclusion: The use of preoperative dexamethasone was associated with improved brain relaxation, whereas the presence of a preoperative midline shift and a higher level of hemoglobin were associated with poor brain relaxation.
Collapse
|
22
|
Suarez-Meade P, Marenco-Hillembrand L, Sherman WJ. Neuro-oncologic Emergencies. Curr Oncol Rep 2022; 24:975-984. [PMID: 35353348 DOI: 10.1007/s11912-022-01259-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Patients with brain and spine tumors are at high risk of presenting cancer-related complications at disease presentation or during active treatment and are usually related to the type and location of the lesion. Here, we discuss presentation and management of the most common emergencies affecting patients with central nervous system neoplastic lesions. RECENT FINDINGS Tumor-related emergencies encompass complications in patients with central nervous system neoplasms, as well as neurologic complications in patients with systemic malignancies. Brain tumor patients are at high risk of developing multiple complications such as intracranial hypertension, brain herniation, intracranial bleeding, spinal cord compression, and others. Neuro-oncologic emergencies require immediate attention and multi-disciplinary care. These emergent situations usually need rapid decision-making and management on an inpatient basis.
Collapse
Affiliation(s)
| | | | - Wendy J Sherman
- Department of Neurology and Neurosurgery, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
23
|
Efficient Radiomics-Based Classification of Multi-Parametric MR Images to Identify Volumetric Habitats and Signatures in Glioblastoma: A Machine Learning Approach. Cancers (Basel) 2022; 14:cancers14061475. [PMID: 35326626 PMCID: PMC8945893 DOI: 10.3390/cancers14061475] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Glioblastomas carry a poor prognosis and usually presents with heterogeneous regions in the brain tumor. Multi-parametric MR images can show morphological characteristics. Radiomics features refer to the extraction of a large number of quantitative measurements that describe the geometry, intensity, and texture which were extracted from contrast-enhanced T1-weighted images from anatomical MRI and metabolic features from PET. It also provides a qualitative image interpretation as well as cellular, molecular, and tumor properties. Thus, it derives additional information about the entire tumor volume which is generally of irregular shape and size from routinely evaluated “non-invasive” imaging biomarkers techniques. We demonstrated volumetric habitats and signatures in necrosis, solid tumor, peritumoral tissue, and edema with key biological processes and phenotype features. This provides physicians with key information on how the disease is progressing in the brain and can also give an indication of how well treatment is working. Abstract Glioblastoma (GBM) is a fast-growing and aggressive brain tumor of the central nervous system. It encroaches on brain tissue with heterogeneous regions of a necrotic core, solid part, peritumoral tissue, and edema. This study provided qualitative image interpretation in GBM subregions and radiomics features in quantitative usage of image analysis, as well as ratios of these tumor components. The aim of this study was to assess the potential of multi-parametric MR fingerprinting with volumetric tumor phenotype and radiomic features to underlie biological process and prognostic status of patients with cerebral gliomas. Based on efficiently classified and retrieved cerebral multi-parametric MRI, all data were analyzed to derive volume-based data of the entire tumor from local cohorts and The Cancer Imaging Archive (TCIA) cohorts with GBM. Edema was mainly enriched for homeostasis whereas necrosis was associated with texture features. The proportional volume size of the edema was about 1.5 times larger than the size of the solid part tumor. The volume size of the solid part was approximately 0.7 times in the necrosis area. Therefore, the multi-parametric MRI-based radiomics model reveals efficiently classified tumor subregions of GBM and suggests that prognostic radiomic features from routine MRI examination may also be significantly associated with key biological processes as a practical imaging biomarker.
Collapse
|
24
|
|
25
|
Chumbala Na Ayudhaya A, Morrison SR, Kaliaperumal C, Gallo P. A 10-year retrospective observational study on the utility and prescription standards of dexamethasone in pediatric neuro-oncosurgery in a tertiary care center. Childs Nerv Syst 2022; 38:1707-1715. [PMID: 35674829 PMCID: PMC9463277 DOI: 10.1007/s00381-022-05569-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 05/20/2022] [Indexed: 11/28/2022]
Abstract
OBJECT This study aimed to retrospectively assess dexamethasone utility in pediatric CNS tumor patients over a 10-year period, to better understand dosing variability, and highlight optimal practice. METHODS All pediatric CNS tumor cases managed operatively for a 10-year period at a single center were reviewed. Information was gathered on demographics, dexamethasone doses, course durations, weaning regimes, PPI co-prescription, adverse events, and route of administration. Comparison within these groups was analyzed through use of statistical testing. RESULTS One hundred twenty-seven patients received 193 dexamethasone courses. Median age was 7 years, with a median weight of 27.9 kg. Most common tumor type was astrocytoma (24.8%). Median daily dose was 8 mg, with twice-daily dosing most common. Median course duration was 8 days, ranging from 1 to 1103 days. Median weaning duration was 11.5 days. Daily dose was not correlated with patient weight and the median daily dose per kg was 0.2319 mg/kg. Incidence of adverse effects was 14.5% across all course lengths, with weight gain most common. The short-term course duration (<14 days) had the lowest adverse event incidence, with direct correlation between course length and adverse effect incidence. Dexamethasone dose per kg was not significantly different between patients with and without adverse effects. No relationship was noted between adverse effects incidence and administration route (intravenous compared to oral). 64.2% of patients received concurrent PPI with 35.8% receiving no PPI, with 1 gastrointestinal side effect noted in the PPI-receiving population. CONCLUSIONS Large variation was seen in practice, with prescriptions appearing based on clinician preference and symptom severity rather than patient age or weight. Future guidelines should consider lower dose regimens than are currently presented with less frequent dosing as these may benefit quality of life. Weaning period can be relatively rapid for most patients, taking place in 2-3 days. PPI co-prescription does not seem to add significant benefit. We recommend using a standardized guideline of 0.2 mg/kg/day (max 8 mg/day) given OD or BD, with PPI cover where necessary. For acute presentations, we recommend limiting dexamethasone treatment to <14 days. These recommendations can be adjusted for individual cases to yield optimal results.
Collapse
Affiliation(s)
| | | | - Chandrasekaran Kaliaperumal
- Consultant Adult and Paediatric Neurosurgeon, Department of Clinical Neuroscience, NHS Lothian, Edinburgh, Scotland
| | - Pasquale Gallo
- Consultant Adult and Paediatric Neurosurgeon, Department of Clinical Neuroscience, NHS Lothian, Edinburgh, Scotland
| |
Collapse
|
26
|
Haslund-Vinding J, Møller JR, Ziebell M, Vilhardt F, Mathiesen T. The role of systemic inflammatory cells in meningiomas. Neurosurg Rev 2021; 45:1205-1215. [PMID: 34716512 DOI: 10.1007/s10143-021-01642-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/27/2021] [Accepted: 09/05/2021] [Indexed: 12/16/2022]
Abstract
The aim of this review is to describe the inflammatory systemic cell infiltrate and its role in pathophysiology and prognostic implications of meningiomas. Articles from PubMed describing inflammation and immune cells in meningioma were systematically selected and reviewed. Infiltrating inflammatory cells are common in meningiomas and correlate with tumor behavior and peritumoral edema. The immune cell infiltrate mainly comprised macrophages, CD4 + T cells of the Th1 and Th2 subtype, CD8 + cytotoxic T cells, mast cells, and to a lesser degree B cells. The polarization of macrophages to M1 or M2 states, as well as the differentiation of T-helper cells to Th1 or Th2 subsets, is of prognostic value, but whether or not the presence of macrophages is associated with the degree of malignancy of the tumor is controversial. The best documented immunosuppressive and tumor-promoting mechanism is the expression of programmed cell death protein 1 (PD-1/PD-1L) which is found on both tumor cells and tumor-infiltrating immune cells. The immune cell infiltration varies between different meningiomas. It contributes to a microenvironment with potential contradictory effects on tumor growth and edema. The immune mechanisms are potential therapeutic targets provided that their effects can be comprehensively understood.
Collapse
Affiliation(s)
- Jeppe Haslund-Vinding
- Department of Neurosurgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
| | - Jens Riis Møller
- Department of Neurosurgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Morten Ziebell
- Department of Neurosurgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Frederik Vilhardt
- Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Tiit Mathiesen
- Department of Neurosurgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
27
|
Medikonda R, Patel K, Jackson C, Saleh L, Srivastava S, Feghali J, Mohan A, Pant A, Jackson CM, Weingart J, Mukherjee D, Bettegowda C, Gallia GL, Brem H, Lim M. The safety and efficacy of dexamethasone in the perioperative management of glioma patients. J Neurosurg 2021; 136:1062-1069. [PMID: 34560653 DOI: 10.3171/2021.4.jns204127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/01/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE In this single-institution retrospective cohort study, the authors evaluated the effect of dexamethasone on postoperative complications and overall survival in patients with glioma undergoing resection. METHODS A total of 435 patients who underwent resection of a primary glioma were included in this retrospective cohort study. The inclusion criterion was all patients who underwent resection of a primary glioma at a tertiary medical center between 2014 and 2019. RESULTS The use of both pre- and postoperative dexamethasone demonstrated a trend toward the development of postoperative wound infections (3% vs 0% in single use or no use, p = 0.082). No association was detected between dexamethasone use and the development of new-onset hyperglycemia (p = 0.149). On multivariable Cox proportional hazards analysis, dexamethasone use was associated with a greater hazard of death (overall p = 0.017); this effect was most pronounced for preoperative (only) dexamethasone use (hazard ratio 3.0, p = 0.062). CONCLUSIONS Combined pre- and postoperative dexamethasone use may increase the risk of postoperative wound infection, and dexamethasone use, specifically preoperative use, may negatively impact survival. These findings highlight the potential for serious negative consequences with dexamethasone use.
Collapse
Affiliation(s)
- Ravi Medikonda
- 1Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kisha Patel
- 1Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christina Jackson
- 1Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Laura Saleh
- 1Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Siddhartha Srivastava
- 1Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - James Feghali
- 1Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Aditya Mohan
- 1Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ayush Pant
- 1Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christopher M Jackson
- 1Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jon Weingart
- 1Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Debraj Mukherjee
- 1Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chetan Bettegowda
- 1Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gary L Gallia
- 1Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Henry Brem
- 1Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael Lim
- 1Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
28
|
Delayed cerebral edema: Possible association with an inflammatory foreign body reaction. INTERDISCIPLINARY NEUROSURGERY 2021. [DOI: 10.1016/j.inat.2021.101207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
29
|
Deshmukh KP, Rahmani Dabbagh S, Jiang N, Tasoglu S, Yetisen AK. Recent Technological Developments in the Diagnosis and Treatment of Cerebral Edema. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Karthikeya P. Deshmukh
- Department of Chemical Engineering Imperial College London Imperial College Road, Kensington London SW7 2AZ UK
| | - Sajjad Rahmani Dabbagh
- Department of Mechanical Engineering Koc University Rumelifeneri Yolu, Sariyer Istanbul 34450 Turkey
| | - Nan Jiang
- West China School of Basic Medical Sciences & Forensic Medicine Sichuan University Chengdu 610041 China
| | - Savas Tasoglu
- Department of Mechanical Engineering Koc University Rumelifeneri Yolu, Sariyer Istanbul 34450 Turkey
- Boğaziçi Institute of Biomedical Engineering Boğaziçi University Istanbul 34684 Turkey
| | - Ali K. Yetisen
- Department of Chemical Engineering Imperial College London Imperial College Road, Kensington London SW7 2AZ UK
| |
Collapse
|
30
|
Jo SW, Choi SH, Lee EJ, Yoo RE, Kang KM, Yun TJ, Kim JH, Sohn CH. Prognostic Prediction Based on Dynamic Contrast-Enhanced MRI and Dynamic Susceptibility Contrast-Enhanced MRI Parameters from Non-Enhancing, T2-High-Signal-Intensity Lesions in Patients with Glioblastoma. Korean J Radiol 2021; 22:1369-1378. [PMID: 33987994 PMCID: PMC8316772 DOI: 10.3348/kjr.2020.1272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/15/2020] [Accepted: 01/08/2021] [Indexed: 01/14/2023] Open
Abstract
Objective Few attempts have been made to investigate the prognostic value of dynamic contrast-enhanced (DCE) MRI or dynamic susceptibility contrast (DSC) MRI of non-enhancing, T2-high-signal-intensity (T2-HSI) lesions of glioblastoma multiforme (GBM) in newly diagnosed patients. This study aimed to investigate the prognostic values of DCE MRI and DSC MRI parameters from non-enhancing, T2-HSI lesions of GBM. Materials and Methods A total of 76 patients with GBM who underwent preoperative DCE MRI and DSC MRI and standard treatment were retrospectively included. Six months after surgery, the patients were categorized into early progression (n = 15) and non-early progression (n = 61) groups. We extracted and analyzed the permeability and perfusion parameters of both modalities for the non-enhancing, T2-HSI lesions of the tumors. The optimal percentiles of the respective parameters obtained from cumulative histograms were determined using receiver operating characteristic (ROC) curve and univariable Cox regression analyses. The results were compared using multivariable Cox proportional hazards regression analysis of progression-free survival. Results The 95th percentile value (PV) of Ktrans, mean Ktrans, and median Ve were significant predictors of early progression as identified by the ROC curve analysis (area under the ROC curve [AUC] = 0.704, p = 0.005; AUC = 0.684, p = 0.021; and AUC = 0.670, p = 0.0325, respectively). Univariable Cox regression analysis of the above three parametric values showed that the 95th PV of Ktrans and the mean Ktrans were significant predictors of early progression (hazard ratio [HR] = 1.06, p = 0.009; HR = 1.25, p = 0.017, respectively). Multivariable Cox regression analysis, which also incorporated clinical parameters, revealed that the 95th PV of Ktrans was the sole significant independent predictor of early progression (HR = 1.062, p < 0.009). Conclusion The 95th PV of Ktrans from the non-enhancing, T2-HSI lesions of GBM is a potential prognostic marker for disease progression.
Collapse
Affiliation(s)
- Sang Won Jo
- Department of Radiology, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Korea
| | - Seung Hong Choi
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Center for Nanoparticle Research, Institute for Basic Science, and School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea.
| | - Eun Jung Lee
- Department of Radiology, Human Medical Imaging & Intervention Center, Seoul, Korea
| | - Roh Eul Yoo
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Koung Mi Kang
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Tae Jin Yun
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Ji Hoon Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Chul Ho Sohn
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
31
|
Robinson K, Zerfoss C, Nicholas J, Rolfs J. Brain metastasis in a patient with multiple malignancies. JAAPA 2021; 34:28-31. [PMID: 33470718 DOI: 10.1097/01.jaa.0000731496.45248.a6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Brain metastases originate from other primary cancers within the body, most commonly lung, breast, and melanoma. Because patients with brain metastasis, stroke, or intracranial hemorrhage may present with similar acute neurologic symptoms, clinicians must have a high suspicion for brain metastasis and perform an immediate workup to rule out life-threatening conditions. This case report focuses on the clinical symptoms, diagnostics, and treatment options for brain metastasis in a patient with multiple malignancies.
Collapse
Affiliation(s)
- Kevlin Robinson
- At the time this article was written, Kevlin Robinson was a student in the PA program at the University of Lynchburg in Lynchburg, Va. Cindy Zerfoss is an acute care NP in the department of neuroscience-neurosurgery at Centra in Lynchburg, Va. Joyce Nicholas is director of evaluation, assessment, and compliance and a professor in the PA program at the University of Lynchburg. Jenna Rolfs is program director and an assistant professor in the PA program at the University of Lynchburg and practices at the Free Clinic of Central Virginia. The authors have disclosed no potential conflicts of interest, financial or otherwise
| | | | | | | |
Collapse
|
32
|
Pergakis M, Badjatia N, Simard JM. An update on the pharmacological management and prevention of cerebral edema: current therapeutic strategies. Expert Opin Pharmacother 2021; 22:1025-1037. [PMID: 33467932 DOI: 10.1080/14656566.2021.1876663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Cerebral edema is a common complication of multiple neurological diseases and is a strong predictor of outcome, especially in traumatic brain injury and large hemispheric infarction.Areas Covered: Traditional and current treatments of cerebral edema include treatment with osmotherapy or decompressive craniectomy at the time of clinical deterioration. The authors discuss preclinical and clinical models of a variety of neurological disease states that have identified receptors, ion transporters, and channels involved in the development of cerebral edema as well as modulation of these receptors with promising agents.Expert opinion: Further study is needed on the safety and efficacy of the agents discussed. IV glibenclamide has shown promise in preclinical and clinical trials of cerebral edema in large hemispheric infarct and traumatic brain injury. Consideration of underlying pathophysiology and pharmacodynamics is vital, as the synergistic use of agents has the potential to drastically mitigate cerebral edema and secondary brain injury thusly transforming our treatment paradigms.
Collapse
Affiliation(s)
- Melissa Pergakis
- Program in Trauma Department of Neurology University of Maryland School of Medicine,Baltimore MD USA
| | - Neeraj Badjatia
- Program in Trauma Department of Neurology University of Maryland School of Medicine,Baltimore MD USA
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
33
|
Morrison K, Parmentier T, Bienzle D. Questioning the Use of Zika Virus Injection in Dogs with Advanced-Stage Brain Tumors. Mol Ther 2021; 29:4-6. [PMID: 33333008 DOI: 10.1016/j.ymthe.2020.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Katherine Morrison
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Thomas Parmentier
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Dorothee Bienzle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
34
|
Ardizzone A, Scuderi SA, Giuffrida D, Colarossi C, Puglisi C, Campolo M, Cuzzocrea S, Esposito E, Paterniti I. Role of Fibroblast Growth Factors Receptors (FGFRs) in Brain Tumors, Focus on Astrocytoma and Glioblastoma. Cancers (Basel) 2020; 12:E3825. [PMID: 33352931 PMCID: PMC7766440 DOI: 10.3390/cancers12123825] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022] Open
Abstract
Despite pharmacological treatments and surgical practice options, the mortality rate of astrocytomas and glioblastomas remains high, thus representing a medical emergency for which it is necessary to find new therapeutic strategies. Fibroblast growth factors (FGFs) act through their associated receptors (FGFRs), a family of tyrosine kinase receptors consisting of four members (FGFR1-4), regulators of tissue development and repair. In particular, FGFRs play an important role in cell proliferation, survival, and migration, as well as angiogenesis, thus their gene alteration is certainly related to the development of the most common diseases, including cancer. FGFRs are subjected to multiple somatic aberrations such as chromosomal amplification of FGFR1; mutations and multiple dysregulations of FGFR2; and mutations, translocations, and significant amplifications of FGFR3 and FGFR4 that correlate to oncogenesis process. Therefore, the in-depth study of these receptor systems could help to understand the etiology of both astrocytoma and glioblastoma so as to achieve notable advances in more effective target therapies. Furthermore, the discovery of FGFR inhibitors revealed how these biological compounds improve the neoplastic condition by demonstrating efficacy and safety. On this basis, this review focuses on the role and involvement of FGFRs in brain tumors such as astrocytoma and glioblastoma.
Collapse
Affiliation(s)
- Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.A.); (S.A.S.); (M.C.); (S.C.); (E.E.)
| | - Sarah A. Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.A.); (S.A.S.); (M.C.); (S.C.); (E.E.)
| | - Dario Giuffrida
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande (CT), Italy; (D.G.); (C.C.)
| | - Cristina Colarossi
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande (CT), Italy; (D.G.); (C.C.)
| | - Caterina Puglisi
- IOM Ricerca Srl, Via Penninazzo 11, 95029 Viagrande (CT), Italy;
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.A.); (S.A.S.); (M.C.); (S.C.); (E.E.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.A.); (S.A.S.); (M.C.); (S.C.); (E.E.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.A.); (S.A.S.); (M.C.); (S.C.); (E.E.)
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.A.); (S.A.S.); (M.C.); (S.C.); (E.E.)
| |
Collapse
|
35
|
Brachi G, Ruiz-Ramírez J, Dogra P, Wang Z, Cristini V, Ciardelli G, Rostomily RC, Ferrari M, Mikheev AM, Blanco E, Mattu C. Intratumoral injection of hydrogel-embedded nanoparticles enhances retention in glioblastoma. NANOSCALE 2020; 12:23838-23850. [PMID: 33237080 PMCID: PMC8062960 DOI: 10.1039/d0nr05053a] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/24/2020] [Indexed: 05/07/2023]
Abstract
Intratumoral drug delivery is a promising approach for the treatment of glioblastoma multiforme (GBM). However, drug washout remains a major challenge in GBM therapy. Our strategy, aimed at reducing drug clearance and enhancing site-specific residence time, involves the local administration of a multi-component system comprised of nanoparticles (NPs) embedded within a thermosensitive hydrogel (HG). Herein, our objective was to examine the distribution of NPs and their cargo following intratumoral administration of this system in GBM. We hypothesized that the HG matrix, which undergoes rapid gelation upon increases in temperature, would contribute towards heightened site-specific retention and permanence of NPs in tumors. BODIPY-containing, infrared dye-labeled polymeric NPs embedded in a thermosensitive HG (HG-NPs) were fabricated and characterized. Retention and distribution dynamics were subsequently examined over time in orthotopic GBM-bearing mice. Results demonstrate that the HG-NPs system significantly improved site-specific, long-term retention of both NPs and BODIPY, with co-localization analyses showing that HG-NPs covered larger areas of the tumor and the peri-tumor region at later time points. Moreover, NPs released from the HG were shown to undergo uptake by surrounding GBM cells. Findings suggest that intratumoral delivery with HG-NPs has immense potential for GBM treatment, as well as other strategies where site-specific, long-term retention of therapeutic agents is warranted.
Collapse
Affiliation(s)
- Giulia Brachi
- Politecnico di Torino
, DIMEAS
,
C.so Duca degli Abruzzi 24
, 10129 Torino
, Italy
.
; Tel: +390110906792
- Department of Nanomedicine
, Houston Methodist Research Institute
,
6670 Bertner Ave
, Houston
, TX 77030
, USA
| | - Javier Ruiz-Ramírez
- Mathematics in Medicine Program
, Houston Methodist Research Institute
,
6670 Bertner Ave
, Houston
, TX 77030
, USA
| | - Prashant Dogra
- Mathematics in Medicine Program
, Houston Methodist Research Institute
,
6670 Bertner Ave
, Houston
, TX 77030
, USA
| | - Zhihui Wang
- Mathematics in Medicine Program
, Houston Methodist Research Institute
,
6670 Bertner Ave
, Houston
, TX 77030
, USA
| | - Vittorio Cristini
- Mathematics in Medicine Program
, Houston Methodist Research Institute
,
6670 Bertner Ave
, Houston
, TX 77030
, USA
| | - Gianluca Ciardelli
- Politecnico di Torino
, DIMEAS
,
C.so Duca degli Abruzzi 24
, 10129 Torino
, Italy
.
; Tel: +390110906792
| | - Robert C. Rostomily
- Department of Neurosurgery
, Houston Methodist Research Institute
,
6670 Bertner Ave
, Houston
, TX 77030
, USA
| | - Mauro Ferrari
- Department of Nanomedicine
, Houston Methodist Research Institute
,
6670 Bertner Ave
, Houston
, TX 77030
, USA
| | - Andrei M. Mikheev
- Department of Neurosurgery
, Houston Methodist Research Institute
,
6670 Bertner Ave
, Houston
, TX 77030
, USA
| | - Elvin Blanco
- Department of Nanomedicine
, Houston Methodist Research Institute
,
6670 Bertner Ave
, Houston
, TX 77030
, USA
| | - Clara Mattu
- Politecnico di Torino
, DIMEAS
,
C.so Duca degli Abruzzi 24
, 10129 Torino
, Italy
.
; Tel: +390110906792
- Department of Nanomedicine
, Houston Methodist Research Institute
,
6670 Bertner Ave
, Houston
, TX 77030
, USA
| |
Collapse
|
36
|
Dono A, Husein N, Ybarra C, Hasbun R, Choi HA, Ballester LY, Esquenazi Y. Real-time intracranial pressure monitoring during high-dose methotrexate treatment for primary central nervous system lymphoma. Cancer Treat Res Commun 2020; 25:100234. [PMID: 33161322 DOI: 10.1016/j.ctarc.2020.100234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Primary central nervous system lymphoma (PCNSL) is an aggressive non-Hodgkin lymphoma with exclusive central nervous system (CNS) and/or ocular involvement. Increased intracranial pressure (ICP) from cerebral edema can commonly presents secondary to the mass effect of PCNSL. Methotrexate-based induction chemotherapy is the gold standard for treatment, however, several neurotoxic complications have been associated with high-dose methotrexate (HD-MTX) treatment. Tumor lysis and other biochemical disruptions following administration of HD-MTX are postulated to increase cerebral edema and ICP in predisposed patients, therefore, in the setting of ring-enhancing lesions with significant mass effect, monitoring of ICP to prevent cerebral herniation may be necessary. PRESENTATION OF CASE We present the case of a patient with diffuse cerebral edema secondary to PCNSL, who was treated with methotrexate-based induction chemotherapy and underwent real-time ICP monitoring to allow for early recognition, and management with aggressive medical therapy to prevent worsening cerebral edema and potential fatal herniation. DISCUSSION AND CONCLUSIONS Treatment of patients with high tumor burden PCNSL can prove to be challenging, particularly at the time of initiation of methotrexate based induction chemotherapy in the setting of impending cerebral herniation, as in the case presented. Close monitoring of the patient's ICP proved advantageous in rapidly recognizing, and successfully treating elevations in ICP that could have worsened mass effect and lead to fatal herniation.
Collapse
Affiliation(s)
- Antonio Dono
- Vivian L. Smith Department of Neurosurgery, the University of Texas Health Science Center at Houston - McGovern Medical School, 6431 Fannin St. Houston, TX, 77030, United States
| | - Nuruddin Husein
- Vivian L. Smith Department of Neurosurgery, the University of Texas Health Science Center at Houston - McGovern Medical School, 6431 Fannin St. Houston, TX, 77030, United States; Memorial Hermann Hospital-Texas Medical Center, 6411 Fannin St. Houston, TX, 77030, United States
| | - Cristian Ybarra
- Vivian L. Smith Department of Neurosurgery, the University of Texas Health Science Center at Houston - McGovern Medical School, 6431 Fannin St. Houston, TX, 77030, United States
| | - Rodrigo Hasbun
- Department of Internal Medicine - Division of Infectious Diseases, the University of Texas Health Science Center at Houston - McGovern Medical School, 6431 Fannin St. Houston, TX, 77030, United States
| | - H Alex Choi
- Vivian L. Smith Department of Neurosurgery, the University of Texas Health Science Center at Houston - McGovern Medical School, 6431 Fannin St. Houston, TX, 77030, United States; Memorial Hermann Hospital-Texas Medical Center, 6411 Fannin St. Houston, TX, 77030, United States
| | - Leomar Y Ballester
- Vivian L. Smith Department of Neurosurgery, the University of Texas Health Science Center at Houston - McGovern Medical School, 6431 Fannin St. Houston, TX, 77030, United States; Memorial Hermann Hospital-Texas Medical Center, 6411 Fannin St. Houston, TX, 77030, United States; Department of Pathology and Laboratory Medicine, the University of Texas Health Science Center at Houston - McGovern Medical School, 6431 Fannin St. Houston, TX, 77030, United States.
| | - Yoshua Esquenazi
- Vivian L. Smith Department of Neurosurgery, the University of Texas Health Science Center at Houston - McGovern Medical School, 6431 Fannin St. Houston, TX, 77030, United States; Memorial Hermann Hospital-Texas Medical Center, 6411 Fannin St. Houston, TX, 77030, United States; Center for Precision Health, School of Biomedical Informatics, the University of Texas Health Science Center at Houston - McGovern Medical School, 6431 Fannin St. Houston, TX, 77030, United States.
| |
Collapse
|
37
|
Steindl A, Yadavalli S, Gruber K, Seiwald M, Gatterbauer B, Dieckmann K, Frischer JM, Klikovits T, Zöchbauer‐Müller S, Grisold A, Hoda MAR, Marosi C, Widhalm G, Preusser M, Berghoff AS. Neurological symptom burden impacts survival prognosis in patients with newly diagnosed non-small cell lung cancer brain metastases. Cancer 2020; 126:4341-4352. [PMID: 32678971 PMCID: PMC7540353 DOI: 10.1002/cncr.33085] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/24/2020] [Accepted: 06/02/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND Brain metastases (BM) are a frequent complication of advanced cancer and are characterized by a variety of neurological symptoms. Although the presence of neurological symptoms is included in the response assessment in patients with primary brain tumors, to the authors' knowledge little is known regarding the prognostic impact of neurological symptoms in patients with BM. METHODS Patients with newly diagnosed BM from non-small cell lung cancer were identified from the Vienna Brain Metastasis Registry and were evaluated according to the incidence, distribution, and prognostic impact of neurological symptoms at the time of diagnosis of BM. RESULTS A total of 1608 patients (57.3% male and 42.7% female; median age, 62 years) were available for further analyses. Neurological symptoms including focal deficits (985 patients; 61.3%), signs of increased intracranial pressure (483 patients; 30.0%), epileptic seizures (224 patients; 13.9%), and neuropsychological symptoms (233 patients; 14.5%) were documented in 1186 of the 1608 patients (73.8%). Patients with asymptomatic BM presented with a longer median overall survival after the diagnosis of BM compared with patients with symptomatic BM (11 months vs 7 months; P < .001). In multivariate analysis with a diagnosis-specific graded prognostic assessment (hazard ratio, 1.41; 95% CI, 1.33-1.50 [P < .001]), the presence of neurological symptoms (hazard ratio, 1.39; 95% CI, 1.23-1.57 [P < .001]) was found to be independently associated with survival prognosis from the time of diagnosis of BM. CONCLUSIONS Neurological symptoms at the time of BM diagnosis demonstrated a strong and independent association with survival prognosis. The results of the current study have highlighted the need for the integration of the presence of neurological symptoms into the prognostic assessment of patients with BM from non-small cell lung cancer. LAY SUMMARY Neurological symptom evaluation is included regularly in the assessment of patients with primary brain tumors. However, to the authors' knowledge, little is known regarding the prognostic impact in patients with newly diagnosed brain metastases (BM). The current study has provided a detailed clinical characterization of the incidence, distribution, and prognostic impact of neurological symptoms in a large, real-life cohort of patients with BM from non-small cell lung cancer. In this cohort, neurological symptoms at the time of diagnosis of BM demonstrated a strong, independent prognostic impact on the survival prognosis. The results of the current study have highlighted the need for the integration of neurological symptom burden into the prognostic assessment of patients with BM from non-small cell lung cancer.
Collapse
Affiliation(s)
- Ariane Steindl
- Division of OncologyDepartment of Medicine IMedical University of ViennaViennaAustria
- Comprehensive Cancer CenterMedical University of ViennaViennaAustria
| | - Sarah Yadavalli
- Division of OncologyDepartment of Medicine IMedical University of ViennaViennaAustria
- Comprehensive Cancer CenterMedical University of ViennaViennaAustria
| | - Katharina‐Anna Gruber
- Division of OncologyDepartment of Medicine IMedical University of ViennaViennaAustria
- Comprehensive Cancer CenterMedical University of ViennaViennaAustria
| | - Maria Seiwald
- Division of OncologyDepartment of Medicine IMedical University of ViennaViennaAustria
- Comprehensive Cancer CenterMedical University of ViennaViennaAustria
| | - Brigitte Gatterbauer
- Comprehensive Cancer CenterMedical University of ViennaViennaAustria
- Department of NeurosurgeryMedical University of ViennaViennaAustria
| | - Karin Dieckmann
- Comprehensive Cancer CenterMedical University of ViennaViennaAustria
- Department of RadiotherapyMedical University of ViennaViennaAustria
| | - Josa M. Frischer
- Comprehensive Cancer CenterMedical University of ViennaViennaAustria
- Department of NeurosurgeryMedical University of ViennaViennaAustria
| | - Thomas Klikovits
- Comprehensive Cancer CenterMedical University of ViennaViennaAustria
- Division of Thoracic SurgeryMedical University of ViennaViennaAustria
| | - Sabine Zöchbauer‐Müller
- Division of OncologyDepartment of Medicine IMedical University of ViennaViennaAustria
- Comprehensive Cancer CenterMedical University of ViennaViennaAustria
| | - Anna Grisold
- Department of NeurologyMedical University of ViennaViennaAustria
| | - Mir Ali Reza Hoda
- Comprehensive Cancer CenterMedical University of ViennaViennaAustria
- Division of Thoracic SurgeryMedical University of ViennaViennaAustria
| | - Christine Marosi
- Division of OncologyDepartment of Medicine IMedical University of ViennaViennaAustria
- Comprehensive Cancer CenterMedical University of ViennaViennaAustria
| | - Georg Widhalm
- Comprehensive Cancer CenterMedical University of ViennaViennaAustria
- Department of NeurosurgeryMedical University of ViennaViennaAustria
| | - Matthias Preusser
- Division of OncologyDepartment of Medicine IMedical University of ViennaViennaAustria
- Comprehensive Cancer CenterMedical University of ViennaViennaAustria
| | - Anna Sophie Berghoff
- Division of OncologyDepartment of Medicine IMedical University of ViennaViennaAustria
- Comprehensive Cancer CenterMedical University of ViennaViennaAustria
| |
Collapse
|
38
|
Guo H, Yin A, Ma Y, Fan Z, Tao L, Tang W, Ma Y, Hou W, Cai G, Zhuo L, Zhang J, Li Y, Xiong L. Astroglial N-myc downstream-regulated gene 2 protects the brain from cerebral edema induced by stroke. Glia 2020; 69:281-295. [PMID: 32652708 PMCID: PMC7754347 DOI: 10.1002/glia.23888] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 06/16/2020] [Accepted: 06/26/2020] [Indexed: 01/14/2023]
Abstract
Brain edema is a grave complication of brain ischemia and is the main cause of herniation and death. Although astrocytic swelling is the main contributor to cytotoxic edema, the molecular mechanism involved in this process remains elusive. N‐myc downstream‐regulated gene 2 (NDRG2), a well‐studied tumor suppressor gene, is mainly expressed in astrocytes in mammalian brains. Here, we found that NDRG2 deficiency leads to worsened cerebral edema, imbalanced Na+ transfer, and astrocyte swelling after ischemia. We also found that NDRG2 deletion in astrocytes dramatically changed the expression and distribution of aquaporin‐4 and Na+‐K+‐ATPase β1, which are strongly associated with cell polarity, in the ischemic brain. Brain edema and astrocyte swelling were significantly alleviated by rescuing the expression of astrocytic Na+‐K+‐ATPase β1 in NDRG2‐knockout mouse brains. In addition, the upregulation of astrocytic NDRG2 by lentiviral constructs notably attenuated brain edema, astrocytic swelling, and blood–brain barrier destruction. Our results indicate a particular role of NDRG2 in maintaining astrocytic polarization to facilitate Na+ and water transfer balance and to protect the brain from ischemic edema. These findings provide insight into NDRG2 as a therapeutic target in cerebral edema.
Collapse
Affiliation(s)
- Hang Guo
- Department of Anesthesiology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China.,Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Air Force Military Medical University, Xi'an, China
| | - Anqi Yin
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Air Force Military Medical University, Xi'an, China.,Department of Anesthesiology, Jinling Hospital, Nanjing, China
| | - Yulong Ma
- Anesthesia and Operation Center, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ze Fan
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Air Force Military Medical University, Xi'an, China
| | - Liang Tao
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Air Force Military Medical University, Xi'an, China
| | - Wenhong Tang
- Department of Anesthesiology, The 960th Hospital of PLA, Jinan, China
| | - Yaqun Ma
- Department of Anesthesiology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wugang Hou
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Air Force Military Medical University, Xi'an, China
| | - Guohong Cai
- Institute of Neuroscience, The Air Force Military Medical University, Xi'an, China
| | - Lixia Zhuo
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jian Zhang
- Department of Biochemistry and Molecular Biology, The Air Force Military Medical University, Xi'an, China
| | - Yan Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Air Force Military Medical University, Xi'an, China.,Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lize Xiong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Air Force Military Medical University, Xi'an, China.,Department of Anesthesiology & Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
39
|
Provider views on perioperative steroid use for patients with newly diagnosed pediatric brain tumors. J Neurooncol 2020; 147:205-212. [PMID: 32026434 DOI: 10.1007/s11060-020-03416-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/29/2020] [Indexed: 10/25/2022]
Abstract
PURPOSE Cerebral edema from brain tumors can cause neurological impairment. Steroids treat edema but with possible adverse effects. We surveyed providers regarding steroid use in newly diagnosed patients with brain tumors to determine if practices are standard or markedly variable. METHODS An anonymous voluntary online survey was sent to members of neuro-oncology consortiums. Four clinical scenarios were provided and questions regarding initiation of steroids, type, dose, formulation, and duration were asked. Demographic information was collected. RESULTS 369 providers received the survey, 76 responded (20.6% response rate). The proportion of providers who would start steroids significantly differed among scenarios (scenario 1 vs 2, p < 0.001; 2 vs 3, p < 0.001; 1 vs 3, p < 0.001). 75 (98.7%) providers would start steroids for vasogenic edema (scenario 1) and 55 (72.4%) for obstructive hydrocephalus (scenario 2). 16 (21.1%) would start steroids for vasogenic edema but not obstructive hydrocephalus. The odds of choosing to start steroids in patients with obstructive hydrocephalus were 7.59 times more (95% CI: 2.29, 25.13) if providers felt symptoms would improve within 24 h. All would use dexamethasone. A significant difference was seen between the proportion of providers who would give a loading dose if vasogenic edema with neurological deficits were noted versus vasogenic edema alone (57.9% vs 43.4%; p = 0.002). CONCLUSIONS These results suggest that providers recommend dexamethasone for patients with vasogenic edema and obstructive hydrocephalus. Variability remains with dosing schedule. Further studies are needed to identify the most appropriate use of steroids for newly diagnosed CNS tumor patients with the goal to create steroid management guidelines.
Collapse
|
40
|
Maksimenko O, Malinovskaya J, Shipulo E, Osipova N, Razzhivina V, Arantseva D, Yarovaya O, Mostovaya U, Khalansky A, Fedoseeva V, Alekseeva A, Vanchugova L, Gorshkova M, Kovalenko E, Balabanyan V, Melnikov P, Baklaushev V, Chekhonin V, Kreuter J, Gelperina S. Doxorubicin-loaded PLGA nanoparticles for the chemotherapy of glioblastoma: Towards the pharmaceutical development. Int J Pharm 2019; 572:118733. [PMID: 31689481 DOI: 10.1016/j.ijpharm.2019.118733] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/31/2019] [Accepted: 09/24/2019] [Indexed: 10/25/2022]
Abstract
Brain delivery of drugs by nanoparticles is a promising strategy that could open up new possibilities for the chemotherapy of brain tumors. As demonstrated in previous studies, the loading of doxorubicin in poly(lactide-co-glycolide) nanoparticles coated with poloxamer 188 (Dox-PLGA) enabled the brain delivery of this cytostatic that normally cannot penetrate across the blood-brain barrier in free form. The Dox-PLGA nanoparticles produced a very considerable anti-tumor effect against the intracranial 101.8 glioblastoma in rats, thus representing a promising candidate for the chemotherapy of brain tumors that warrants clinical evaluation. The objective of the present study, therefore, was the optimization of the Dox-PLGA formulation and the development of a pilot scale manufacturing process. Optimization of the preparation procedure involved the alteration of the technological parameters such as replacement of the particle stabilizer PVA 30-70 kDa with a presumably safer low molecular mass PVA 9-10 kDa as well as the modification of the external emulsion medium and the homogenization conditions. The optimized procedure enabled an increase of the encapsulation efficiency from 66% to >90% and reduction of the nanoparticle size from 250 nm to 110 nm thus enabling the sterilization by membrane filtration. The pilot scale process was characterized by an excellent reproducibility with very low inter-batch variations. The in vitro hematotoxicity of the nanoparticles was negligible at therapeutically relevant concentrations. The anti-tumor efficacy of the optimized formulation and the ability of the nanoparticles to penetrate into the intracranial tumor and normal brain tissue were confirmed by in vivo experiments.
Collapse
Affiliation(s)
- Olga Maksimenko
- Drugs Technology LLC, Rabochaya ul. 2A, 141400 Khimki, Moscow Region, Russia
| | - Julia Malinovskaya
- Drugs Technology LLC, Rabochaya ul. 2A, 141400 Khimki, Moscow Region, Russia; Lomonosov Moscow State University, ul. Leninskiye Gory, 119991 Moscow, Russia
| | - Elena Shipulo
- Drugs Technology LLC, Rabochaya ul. 2A, 141400 Khimki, Moscow Region, Russia
| | - Nadezhda Osipova
- Drugs Technology LLC, Rabochaya ul. 2A, 141400 Khimki, Moscow Region, Russia
| | - Victoria Razzhivina
- Drugs Technology LLC, Rabochaya ul. 2A, 141400 Khimki, Moscow Region, Russia
| | - Diana Arantseva
- Drugs Technology LLC, Rabochaya ul. 2A, 141400 Khimki, Moscow Region, Russia
| | - Oksana Yarovaya
- D. Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, 125047 Moscow, Russia
| | - Ulyana Mostovaya
- D. Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, 125047 Moscow, Russia
| | - Alexander Khalansky
- Institute of Human Morphology, Russian Academy of Sciences, ul. Tsurupy 3, 117418 Moscow, Russia
| | - Vera Fedoseeva
- Institute of Human Morphology, Russian Academy of Sciences, ul. Tsurupy 3, 117418 Moscow, Russia
| | - Anna Alekseeva
- Institute of Human Morphology, Russian Academy of Sciences, ul. Tsurupy 3, 117418 Moscow, Russia; I.M. Sechenov First Moscow State Medical University, B. Pirogovskaya ul., 19-1, 119146 Moscow, Russia
| | - Ludmila Vanchugova
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky pr. 29, 19991 Moscow, Russia
| | - Marina Gorshkova
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky pr. 29, 19991 Moscow, Russia
| | - Elena Kovalenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, bldg 7, 117198 Moscow, Russia
| | - Vadim Balabanyan
- Drugs Technology LLC, Rabochaya ul. 2A, 141400 Khimki, Moscow Region, Russia; Lomonosov Moscow State University, ul. Leninskiye Gory, 119991 Moscow, Russia
| | - Pavel Melnikov
- V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Health of the Russian Federation, Kropotkinskiy per. 23, 119034 Moscow, Russia
| | - Vladimir Baklaushev
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, Federal Biomedical Agency of the Russian Federation, Orekhoviy blvd. 28, 115682 Moscow, Russia
| | - Vladimir Chekhonin
- V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Health of the Russian Federation, Kropotkinskiy per. 23, 119034 Moscow, Russia
| | - Jörg Kreuter
- I.M. Sechenov First Moscow State Medical University, B. Pirogovskaya ul., 19-1, 119146 Moscow, Russia; Institute of Pharmaceutical Technology, Biocenter, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt/Main, Germany
| | - Svetlana Gelperina
- Drugs Technology LLC, Rabochaya ul. 2A, 141400 Khimki, Moscow Region, Russia.
| |
Collapse
|
41
|
Sanomachi T, Suzuki S, Togashi K, Sugai A, Seino S, Okada M, Yoshioka T, Kitanaka C, Yamamoto M. Spironolactone, a Classic Potassium-Sparing Diuretic, Reduces Survivin Expression and Chemosensitizes Cancer Cells to Non-DNA-Damaging Anticancer Drugs. Cancers (Basel) 2019; 11:cancers11101550. [PMID: 31614999 PMCID: PMC6826935 DOI: 10.3390/cancers11101550] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/22/2019] [Accepted: 10/10/2019] [Indexed: 02/06/2023] Open
Abstract
Spironolactone, a classical diuretic drug, is used to treat tumor-associated complications in cancer patients. Spironolactone was recently reported to exert anti-cancer effects by suppressing DNA damage repair. However, it currently remains unclear whether spironolactone exerts combinational effects with non-DNA-damaging anti-cancer drugs, such as gemcitabine and epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). Using the cancer cells of lung cancer, pancreatic cancer, and glioblastoma, the combinational effects of spironolactone with gemcitabine and osimertinib, a third-generation EGFR-TKI, were examined in vitro with cell viability assays. To elucidate the underlying mechanisms, we investigated alterations induced in survivin, an anti-apoptotic protein, by spironolactone as well as the chemosensitization effects of the suppression of survivin by YM155, an inhibitor of survivin, and siRNA. We also examined the combinational effects in a mouse xenograft model. The results obtained revealed that spironolactone augmented cell death and the suppression of cell growth by gemcitabine and osimertinib. Spironolactone also reduced the expression of survivin in these cells, and the pharmacological and genetic suppression of survivin sensitized cells to gemcitabine and osimertinib. This combination also significantly suppressed tumor growth without apparent adverse effects in vivo. In conclusion, spironolactone is a safe candidate drug that exerts anti-cancer effects in combination with non-DNA-damaging drugs, such as gemcitabine and osimertinib, most likely through the suppression of survivin.
Collapse
Affiliation(s)
- Tomomi Sanomachi
- Department of Molecular Cancer Science, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan.
- Department of Clinical Oncology, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan.
| | - Shuhei Suzuki
- Department of Molecular Cancer Science, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan.
- Department of Clinical Oncology, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan.
| | - Keita Togashi
- Department of Molecular Cancer Science, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan.
- Department of Ophthalmology and Visual Sciences, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan.
| | - Asuka Sugai
- Department of Molecular Cancer Science, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan.
| | - Shizuka Seino
- Department of Molecular Cancer Science, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan.
| | - Masashi Okada
- Department of Molecular Cancer Science, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan.
| | - Takashi Yoshioka
- Department of Clinical Oncology, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan.
| | - Chifumi Kitanaka
- Department of Molecular Cancer Science, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan.
- Research Institute for Promotion of Medical Sciences, Yamagata University Faculty of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan.
| | - Masahiro Yamamoto
- Department of Molecular Cancer Science, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan.
| |
Collapse
|
42
|
Vaidya AR, Pujara MS, Petrides M, Murray EA, Fellows LK. Lesion Studies in Contemporary Neuroscience. Trends Cogn Sci 2019; 23:653-671. [PMID: 31279672 PMCID: PMC6712987 DOI: 10.1016/j.tics.2019.05.009] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023]
Abstract
Studies of humans with focal brain damage and non-human animals with experimentally induced brain lesions have provided pivotal insights into the neural basis of behavior. As the repertoire of neural manipulation and recording techniques expands, the utility of studying permanent brain lesions bears re-examination. Studies on the effects of permanent lesions provide vital data about brain function that are distinct from those of reversible manipulations. Focusing on work carried out in humans and nonhuman primates, we address the inferential strengths and limitations of lesion studies, recent methodological developments, the integration of this approach with other methods, and the clinical and ecological relevance of this research. We argue that lesion studies are essential to the rigorous assessment of neuroscience theories.
Collapse
Affiliation(s)
- Avinash R Vaidya
- Department of Cognitive, Linguistic, and Psychological Sciences, Carney Institute for Brain Sciences, Brown University, Providence, RI, USA.
| | - Maia S Pujara
- Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Michael Petrides
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Elisabeth A Murray
- Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Lesley K Fellows
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
43
|
Meyer M, Niemöller U, Stein T, Schmetsdorf S, Arnold A, El-Sheik M, Schuster A, Adarkwah CC, Schramm P, Tanislav C. Positive Effect of Steroids in Posterior Reversible Encephalopathy Syndrome. Case Rep Neurol 2019; 11:173-177. [PMID: 31543799 PMCID: PMC6738275 DOI: 10.1159/000500410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/12/2019] [Indexed: 01/23/2023] Open
Abstract
We present a case of posterior reversible encephalopathy syndrome with severe clinical manifestation. Apart from initial aphasia, hemiparesis, and a generalized seizure, the patient had a prolonged loss of consciousness. Although blood pressure was normalized, the clinical status deteriorated continuously. After adding steroids to the therapy, the patient recovered rapidly, suggesting that this could have been a useful therapeutic approach. Even the vasogenic edema in the cerebral magnetic resonance imaging disappeared shortly within 6 days.
Collapse
Affiliation(s)
- Marco Meyer
- Department of Geriatrics, Jung-Stilling Hospital Siegen, Siegen, Germany
| | - Ulrich Niemöller
- Department of Geriatrics, Jung-Stilling Hospital Siegen, Siegen, Germany
| | - Thomas Stein
- Department of Geriatrics, Jung-Stilling Hospital Siegen, Siegen, Germany
| | | | - Andreas Arnold
- Department of Geriatrics, Jung-Stilling Hospital Siegen, Siegen, Germany
| | - Michael El-Sheik
- Department of Radiology, Jung-Stilling Hospital Siegen, Siegen, Germany
| | | | - Charles Christian Adarkwah
- Department of Health Services Research and General Practice, Faculty of Life Sciences, University of Siegen, Siegen, Germany.,Department of General Practice and Family Medicine, Philipps University, Marburg, Germany.,Department of Health Services, CAPHRI School for Public Health and Primary Care, Maastricht, The Netherlands
| | - Patrick Schramm
- Department of Anesthesiology, Johannes Gutenberg University, University Medical Hospital Mainz, Mainz, Germany
| | - Christian Tanislav
- Department of Geriatrics, Jung-Stilling Hospital Siegen, Siegen, Germany
| |
Collapse
|
44
|
Sorribes IC, Moore MNJ, Byrne HM, Jain HV. A Biomechanical Model of Tumor-Induced Intracranial Pressure and Edema in Brain Tissue. Biophys J 2019; 116:1560-1574. [PMID: 30979548 PMCID: PMC6486495 DOI: 10.1016/j.bpj.2019.02.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/25/2019] [Accepted: 02/28/2019] [Indexed: 02/07/2023] Open
Abstract
Brain tumor growth and tumor-induced edema result in increased intracranial pressure (ICP), which, in turn, is responsible for conditions as benign as headaches and vomiting or as severe as seizures, neurological damage, or even death. Therefore, it has been hypothesized that tracking ICP dynamics may offer improved prognostic potential in terms of early detection of brain cancer and better delimitation of the tumor boundary. However, translating such theory into clinical practice remains a challenge, in part because of an incomplete understanding of how ICP correlates with tumor grade. Here, we propose a multiphase mixture model that describes the biomechanical response of healthy brain tissue-in terms of changes in ICP and edema-to a growing tumor. The model captures ICP dynamics within the diseased brain and accounts for the ability/inability of healthy tissue to compensate for this pressure. We propose parameter regimes that distinguish brain tumors by grade, thereby providing critical insight into how ICP dynamics vary by severity of disease. In particular, we offer an explanation for clinically observed phenomena, such as a lack of symptoms in low-grade glioma patients versus a rapid onset of symptoms in those with malignant tumors. Our model also takes into account the effects tumor-derived proteases may have on ICP levels and the extent of tumor invasion. This work represents an important first step toward understanding the mechanisms that underlie the onset of edema and ICP in cancer-afflicted brains. Continued modeling effort in this direction has the potential to make an impact in the field of brain cancer diagnostics.
Collapse
Affiliation(s)
| | - Matthew N J Moore
- Department of Mathematics, Florida State University, Tallahassee, Florida
| | - Helen M Byrne
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Harsh V Jain
- Department of Mathematics, Florida State University, Tallahassee, Florida.
| |
Collapse
|
45
|
Ryu JA, Jung W, Jung YJ, Kwon DY, Kang K, Choi H, Kong DS, Seol HJ, Lee JI. Early prediction of neurological outcome after barbiturate coma therapy in patients undergoing brain tumor surgery. PLoS One 2019; 14:e0215280. [PMID: 30995269 PMCID: PMC6469802 DOI: 10.1371/journal.pone.0215280] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/31/2019] [Indexed: 11/18/2022] Open
Abstract
After a difficult brain tumor surgery, refractory intracranial hypertension (RICH) may occur due to residual tumor or post-operative complications such as hemorrhage, infarction, and aggravated brain edema. We investigated which predictors are associated with prognosis when using barbiturate coma therapy (BCT) as a second-tier therapy to control RICH after brain tumor surgery. The study included adult patients who underwent BCT after brain tumor surgery between January 2010 and December 2016. The primary outcome was neurological status upon hospital discharge, which was assessed using the Glasgow Outcome Scale (GOS). In the study period, 4,296 patients underwent brain tumor surgery in total. Of these patients, BCT was performed in 73 patients (1.7%). Among these 73 patients, 56 (76.7%) survived to discharge and 25 (34.2%) showed favorable neurological outcomes (GOS scores of 4 and 5). Invasive monitoring of intracranial pressure (ICP) was performed in 60 (82.2%) patients, and revealed that the maximal ICP within 6 h after BCT was significantly lower in patients with favorable neurological outcome as well as in survivors (p = 0.008 and p = 0.028, respectively). Uncontrolled RICH (ICP ≥ 22 mm Hg within 6 h of BCT) was an important predictor of mortality after BCT (adjusted hazard ratio 12.91, 95% confidence interval [CI] 2.788–59.749), and in particular, ICP ≥ 15 mm Hg within 6 h of BCT was associated with poor neurological outcome (adjusted odds ratio 9.36, 95% CI 1.664–52.614). Therefore, early-controlled ICP after BCT was associated with clinical prognosis. There were no significant differences in the complications associated with BCT between the two neurological outcome groups. No BCT-induced death was observed. The active and timely control of RICH may be beneficial for clinical outcomes in patients with RICH after brain tumor surgery.
Collapse
Affiliation(s)
- Jeong-Am Ryu
- Department of Critical Care Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Wonkyung Jung
- Department of Nursing, Neurosurgery Intensive Care Unit, Samsung Medical Center, Seoul, Republic of Korea
| | - Yoo Jin Jung
- Department of Nursing, Neurosurgery Intensive Care Unit, Samsung Medical Center, Seoul, Republic of Korea
| | - Do Yeon Kwon
- Department of Nursing, Neurosurgery Intensive Care Unit, Samsung Medical Center, Seoul, Republic of Korea
| | - Kina Kang
- Department of Nursing, Neurosurgery Intensive Care Unit, Samsung Medical Center, Seoul, Republic of Korea
| | - Hyeok Choi
- Department of Nursing, Neurosurgery Intensive Care Unit, Samsung Medical Center, Seoul, Republic of Korea
| | - Doo-Sik Kong
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ho Jun Seol
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jung-Il Lee
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
46
|
Abstract
OBJECTIVE To describe the indications for convection-enhanced delivery in the treatment of glioblastoma, highlighting candidates for the delivery method, mechanics of drug delivery, and management of acute and long-term complications. DATA SOURCES A conceptual framework drawn from published literature as well as author's expert experiences. CONCLUSION Convection-enhanced delivery is an established method of delivering new therapies to patients with glioblastoma. Management of both acute and long-term complications is often drug dependent. IMPLICATIONS FOR NURSING PRACTICE Nurses should be able to recognize and manage potential complications during the infusion of agents delivered via convection-enhanced delivery. Post-infusion symptoms may worsen because of immunologic responses related to the drug and management should be directed toward symptom relief and support without interference on the immunologic response.
Collapse
|