1
|
Feldman D. Designing a Biomaterial Approach to Control the Adaptive Response to a Skin Injury. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6366. [PMID: 36143676 PMCID: PMC9503963 DOI: 10.3390/ma15186366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/03/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
The goal of this review is to explain how to design a biomaterial approach to control the adaptive response to injury, with an emphasis on skin wounds. The strategies will be selected based on whether they have a reasonable probability of meeting the desired clinical outcome vs. just comparing the pros and cons of different strategies. To do this, the review will look at the normal adaptive response in adults and why it does not meet the desired clinical outcome in most cases. In addition, the adaptive response will be looked at in cases where it does meet the clinical performance requirements including animals that regenerate and for fetal wound healing. This will lead to how biomaterials can be used to alter the overall adaptive response to allow it to meet the desired clinical outcome. The important message of the review is that you need to use the engineering design process, not the scientific method, to design a clinical treatment. Also, the clinical performance requirements are functional, not structural. The last section will give some specific examples of controlling the adaptive response for two skin injuries: burns and pressure ulcers. For burns, it will cover some preclinical studies used to justify a clinical study as well as discuss the results of a clinical study using this system. For pressure ulcers, it will cover some preclinical studies for two different approaches: electrical stimulation and degradable/regenerative scaffolds. For electrical stimulation, the results of a clinical study will be presented.
Collapse
Affiliation(s)
- Dale Feldman
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
2
|
Yang Y, Xiao Y. Biomaterials Regulating Bone Hematoma for Osteogenesis. Adv Healthc Mater 2020; 9:e2000726. [PMID: 32691989 DOI: 10.1002/adhm.202000726] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/18/2020] [Indexed: 12/11/2022]
Abstract
Blood coagulation in tissue healing not only prevents blood loss, but also forms a natural scaffold for tissue repair and regeneration. As blood clot formation is the initial and foremost phase upon bone injury, and the quality of blood clot (hematoma) orchestrates the following inflammatory and cellular processes as well as the subsequent callus formation and bone remodeling process. Inspired by the natural healing hematoma, tissue-engineered biomimic scaffold/hydrogels and blood prefabrication strategies attract significant interests in developing functional bone substitutes. The alteration of the fracture hematoma ca significantly accelerate or impair the overall bone healing process. This review summarizes the impact of biomaterials on blood coagulation and provides evidence on fibrin network structure, growth factors, and biomolecules that contribute to bone healing within the hematoma. The aim is to provide insights into the development of novel implant and bone biomaterials for enhanced osteogenesis. Advances in the understanding of biomaterial characteristics (e.g., morphology, chemistry, wettability, and protein adsorption) and their effect on hematoma properties are highlighted. Emphasizing the importance of the initial healing phase of the hematoma endows the design of advanced biomaterials with the desired regulatory properties for optimal coagulation and hematoma properties, thereby facilitating enhanced osteogenesis and ideal therapeutic effects.
Collapse
Affiliation(s)
- Ying Yang
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| |
Collapse
|
3
|
Galan D, Monuszko K, Sankey EW, Zakare-Fagbamila R, Yang Z, Niedzwiecki D, Gottfried O, Bagley CA, Krucoff MO. Fibrin glue as an adjuvant dural sealant reduces the rate of perioperative complications in posterior fossa decompression with duraplasty: A single center experience in 165 adult Chiari I patients. J Clin Neurosci 2019; 68:80-85. [PMID: 31327584 DOI: 10.1016/j.jocn.2019.07.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/07/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Diego Galan
- Duke University School of Medicine, United States
| | | | - Eric W Sankey
- Department of Neurosurgery, Duke University Medical Center, United States.
| | | | - Zidanyue Yang
- Department of Biostatistics and Bioinformatics, Duke University, United States
| | - Donna Niedzwiecki
- Department of Biostatistics and Bioinformatics, Duke University, United States
| | | | - Carlos A Bagley
- Department of Neurosurgery, University of Texas Southwestern Medical Center, United States
| | - Max O Krucoff
- Department of Neurosurgery, Duke University Medical Center, United States
| |
Collapse
|
4
|
Feldman DS. Biomaterial Enhanced Regeneration Design Research for Skin and Load Bearing Applications. J Funct Biomater 2019; 10:E10. [PMID: 30691135 PMCID: PMC6462970 DOI: 10.3390/jfb10010010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/11/2019] [Accepted: 01/15/2019] [Indexed: 12/31/2022] Open
Abstract
Biomaterial enhanced regeneration (BER) falls mostly under the broad heading of Tissue Engineering: the use of materials (synthetic and natural) usually in conjunction with cells (both native and genetically modified as well as stem cells) and/or biological response modifiers (growth factors and cytokines as well as other stimuli, which alter cellular activity). Although the emphasis is on the biomaterial as a scaffold it is also the use of additive bioactivity to enhance the healing and regenerative properties of the scaffold. Enhancing regeneration is both moving more toward regeneration but also speeding up the process. The review covers principles of design for BER as well as strategies to select the best designs. This is first general design principles, followed by types of design options, and then specific strategies for applications in skin and load bearing applications. The last section, surveys current clinical practice (for skin and load bearing applications) including limitations of these approaches. This is followed by future directions with an attempt to prioritize strategies. Although the review is geared toward design optimization, prioritization also includes the commercializability of the devices. This means a device must meet both the clinical performance design constraints as well as the commercializability design constraints.
Collapse
Affiliation(s)
- Dale S Feldman
- UAB, Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham 35294, AL, USA.
| |
Collapse
|
5
|
Feldman DS, Osborne S. Fibrin as a Tissue Adhesive and Scaffold with an Angiogenic Agent (FGF-1) to Enhance Burn Graft Healing In Vivo and Clinically. J Funct Biomater 2018; 9:E68. [PMID: 30486230 PMCID: PMC6306864 DOI: 10.3390/jfb9040068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/02/2018] [Accepted: 11/12/2018] [Indexed: 11/25/2022] Open
Abstract
There is a need for a strategy to reduce scarring in meshed skin graft healing leading to a better cosmetic result without a significant increase in cost. The strategy in this paper is to increase the closure rate of a meshed skin graft to reduce scarring, which should also decrease the infection rate. Specifically, we used fibrin glue to attach all parts of the graft to the wound bed and added in an angiogenic growth factor and made the fibrin porous to further help the growth of blood vessels from the wound bed into the graft. There was a 10-day animal study and a one-month clinical study. Neither making the fibrin porous or adding an angiogenic agent (i.e., fibroblast growth factor-1 (FGF-1)) seemed to make a significant improvement in vivo or clinically. The use of fibrin on a meshed skin graft appears to speed up the regenerative healing rate leading to less scarring in the holes in the mesh. It appears to shorten the healing time by five days and keep the tissue stiffness close to normal levels vs. the doubling of the stiffness by the controls. A larger clinical study, however, is needed to definitively prove this benefit as well as the mechanism for this improvement.
Collapse
Affiliation(s)
- Dale S Feldman
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Scott Osborne
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
6
|
The Feasibility of Using Pulsatile Electromagnetic Fields (PEMFs) to Enhance the Regenerative Ability of Dermal Biomaterial Scaffolds. J Funct Biomater 2018; 9:jfb9040066. [PMID: 30463198 PMCID: PMC6306936 DOI: 10.3390/jfb9040066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/28/2018] [Accepted: 10/28/2018] [Indexed: 11/16/2022] Open
Abstract
Degradable regenerative scaffolds usually require adjunctive treatment to meet the clinical healing performance requirements. This study was designed to look at pulsatile electromagnetic fields (PEMF) as an adjunctive therapy for these scaffolds in skin wounds; however, no scaffold was used in this study in order to isolate the effects of PEMF alone. In this study, New Zealand rabbits received four full-thickness defects with a size of 3 cm × 3 cm on the dorsolateral aspect. The rabbits in the treatment group were placed in a chamber and subjected to a PEMF at six different predetermined frequency and intensity combinations for 2 h a day for a 2-week period. At the end of the 2-week period, the animals were sacrificed and tissue samples were taken. Half of each tissue sample was used for histomorphometric analysis and the other half was for tensile testing. The study showed an increased healing response by all the PEMF treatments compared to that in the control, although different combinations led to increases in different aspects of the healing response. This suggests that although some treatments are better for the critical clinical parameter—healing rate, it might be beneficial to use treatments in the early stages to increase angiogenesis before the treatment is switched to the one best for the healing rate to get an even better haling rate.
Collapse
|
7
|
Montes-Medina L, Hernández-Fernández A, Gutiérrez-Rivera A, Ripalda-Cemboráin P, Bitarte N, Pérez-López V, Granero-Moltó F, Prosper F, Izeta A. Effect of bone marrow stromal cells in combination with biomaterials in early phases of distraction osteogenesis: An experimental study in a rabbit femur model. Injury 2018; 49:1979-1986. [PMID: 30219381 DOI: 10.1016/j.injury.2018.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 08/24/2018] [Accepted: 09/04/2018] [Indexed: 02/07/2023]
Abstract
Acceleration of the consolidation of the distracted bone is a relevant medical need. As a platform to improve in vivo bone engineering, we developed a novel distraction osteogenesis (DO) model in a rabbit large bone (femur) and tested if the application of cultured bone marrow stromal cells (BMSCs) immediately after the osteotomy promotes the formation of bone. This report consists of two components, an animal study to evaluate the quality of the regenerate following different treatments and an in vitro study to evaluate osteogenic potential of BMSC cultures. To illuminate the mechanism of action of injected cells, we tested stem cell cultures enriched in osteogenic-BMSCs (O-BMSCs) as compared with cultures enriched in non-osteogenic BMSCs (NO-BMSCs). Finally, we included a group of animals treated with biomaterials (fibrin and ground cortical bone) in addition to cells. Injection of O-BMSCs promoted the maturity of distracted callus and decreased fibrosis. When combined with biomaterials, O-BMSCs modified the ossification pattern from endochondral to intramembranous type. The use of NO-BMSCs not only did not increase the maturity but also increased porosity of the bone. These preclinical results indicate that the BMSC cultures must be tested in vitro prior to clinical use, since a number of factors may influence their outcome in bone formation. We hypothesize that the use of osteogenic BMSCs and biomaterials could be clinically beneficial to shorten the consolidation period of the distraction and the total period of bone lengthening.
Collapse
Affiliation(s)
- Laura Montes-Medina
- Department of Orthopaedic Surgery, Donostia University Hospital, San Sebastian, Spain
| | - Alberto Hernández-Fernández
- Department of Orthopaedic Surgery, Donostia University Hospital, San Sebastian, Spain; Department of Surgery, Radiology and Physical Medicine of the University of the Basque Country (UPV-EHU), San Sebastian, Spain
| | | | | | - Nerea Bitarte
- Tissue Engineering Group, Bioengineering Area, Instituto Biodonostia, San Sebastian, Spain
| | - Virginia Pérez-López
- Tissue Engineering Group, Bioengineering Area, Instituto Biodonostia, San Sebastian, Spain
| | - Froilán Granero-Moltó
- Department of Orthopaedic Surgery and Traumatology, Clínica Universidad de Navarra, Pamplona, Spain; Cell Therapy Area, Clínica Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Felipe Prosper
- Cell Therapy Area, Clínica Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Ander Izeta
- Tissue Engineering Group, Bioengineering Area, Instituto Biodonostia, San Sebastian, Spain; Department of Biomedical Engineering and Science, School of Engineering, Tecnun-University of Navarra, San Sebastian, Spain.
| |
Collapse
|
8
|
Heher P, Mühleder S, Mittermayr R, Redl H, Slezak P. Fibrin-based delivery strategies for acute and chronic wound healing. Adv Drug Deliv Rev 2018; 129:134-147. [PMID: 29247766 DOI: 10.1016/j.addr.2017.12.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/24/2017] [Accepted: 12/09/2017] [Indexed: 12/17/2022]
Abstract
Fibrin, a natural hydrogel, is the end product of the physiological blood coagulation cascade and naturally involved in wound healing. Beyond its role in hemostasis, it acts as a local reservoir for growth factors and as a provisional matrix for invading cells that drive the regenerative process. Its unique intrinsic features do not only promote wound healing directly via modulation of cell behavior but it can also be fine-tuned to evolve into a delivery system for sustained release of therapeutic biomolecules, cells and gene vectors. To further augment tissue regeneration potential, current strategies exploit and modify the chemical and physical characteristics of fibrin to employ combined incorporation of several factors and their timed release. In this work we show advanced therapeutic approaches employing fibrin matrices in wound healing and cover the many possibilities fibrin offers to the field of regenerative medicine.
Collapse
|
9
|
Yuan X, Smith RJ, Guan H, Ionita CN, Khobragade P, Dziak R, Liu Z, Pang M, Wang C, Guan G, Andreadis S, Yang S. Hybrid Biomaterial with Conjugated Growth Factors and Mesenchymal Stem Cells for Ectopic Bone Formation. Tissue Eng Part A 2016; 22:928-39. [PMID: 27269204 DOI: 10.1089/ten.tea.2016.0052] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bone is a highly vascularized tissue and efficient bone regeneration requires neovascularization, especially for critical-sized bone defects. We developed a novel hybrid biomaterial comprising nanocalcium sulfate (nCS) and fibrin hydrogel to deliver mesenchymal stem cells (MSCs) and angiogenic factors, vascular endothelial growth factor (VEGF) and fibroblast growth factor 9 (FGF9), to promote neovascularization and bone formation. MSC and growth factor(s)-loaded scaffolds were implanted subcutaneously into mice to examine their angiogenic and osteogenic potential. Micro CT, alkaline phosphatase activity assay, and histological analysis were used to evaluate bone formation, while immunohistochemistry was employed to assess neovessel formation. The presence of fibrin preserved the nCS scaffold structure and promoted de novo bone formation. In addition, the presence of bone morphogenic protein 2-expressing MSC in nCS and fibrin hydrogels improved bone regeneration significantly. While FGF9 alone had no significant effect, the combination FGF9 and VEGF conjugated in fibrin enhanced neovascularization and bone formation more than 4-fold compared to nCS with MSC. Overall, our results suggested that the combination of nCS (to support bone formation) with a fibrin-based VEGF/FGF9 release system (support vascular formation) is an innovative and effective strategy that significantly enhanced ectopic bone formation in vivo.
Collapse
Affiliation(s)
- Xue Yuan
- 1 Department of Oral Biology, State University of New York , Buffalo, New York
| | - Randall J Smith
- 2 Department of Biomedical Engineering, State University of New York , Buffalo, New York
| | - Huiyan Guan
- 1 Department of Oral Biology, State University of New York , Buffalo, New York.,3 Department of Orthodontics, State University of New York , Buffalo, New York
| | - Ciprian N Ionita
- 2 Department of Biomedical Engineering, State University of New York , Buffalo, New York.,4 Toshiba Stroke and Vascular Research Center, State University of New York , Buffalo, New York
| | - Parag Khobragade
- 2 Department of Biomedical Engineering, State University of New York , Buffalo, New York.,4 Toshiba Stroke and Vascular Research Center, State University of New York , Buffalo, New York
| | - Rosemary Dziak
- 1 Department of Oral Biology, State University of New York , Buffalo, New York
| | - Zunpeng Liu
- 1 Department of Oral Biology, State University of New York , Buffalo, New York
| | - Manhui Pang
- 5 Clinical and Translational Research Center, State University of New York , Buffalo, New York
| | - Changdong Wang
- 1 Department of Oral Biology, State University of New York , Buffalo, New York
| | - Guoqiang Guan
- 3 Department of Orthodontics, State University of New York , Buffalo, New York
| | - Stelios Andreadis
- 2 Department of Biomedical Engineering, State University of New York , Buffalo, New York.,6 Department of Chemical and Biological Engineering, State University of New York , Buffalo, New York.,7 Center of Excellence in Bioinformatics and Life Sciences, State University of New York , Buffalo, New York
| | - Shuying Yang
- 1 Department of Oral Biology, State University of New York , Buffalo, New York.,7 Center of Excellence in Bioinformatics and Life Sciences, State University of New York , Buffalo, New York
| |
Collapse
|
10
|
Li Y, Li R, Hu J, Song D, Jiang X, Zhu S. Recombinant human bone morphogenetic protein-2 suspended in fibrin glue enhances bone formation during distraction osteogenesis in rabbits. Arch Med Sci 2016; 12:494-501. [PMID: 27279839 PMCID: PMC4889683 DOI: 10.5114/aoms.2016.59922] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 11/16/2014] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Bone morphogenetic protein-2 (BMP-2) has high potential for bone formation, but its in vivo effects are unpredictable due to the short life time. This study was designed to evaluate the effects of recombinant human (rh) BMP-2 suspended in fibrin on bone formation during distraction osteogenesis (DO) in rabbits. MATERIAL AND METHODS The in vitro release kinetics of rhBMP-2 suspended in fibrin was tested using an enzyme-linked immunosorbent assay. Unilateral tibial lengthening for 10 mm was achieved in 48 rabbits. At the completion of osteodistraction, vehicle, fibrin, rhBMP-2 or rhBMP-2 suspended in fibrin (rhBMP-2 + fibrin) was injected into the center of the lengthened gap, with 12 animals in each group. Eight weeks later, the distracted callus was examined by histology, micro-CT and biomechanical testing. Radiographs of the distracted tibiae were taken at both 4 and 8 weeks after drug treatment. RESULTS It was found that fibrin prolonged the life span of rhBMP-2 in vitro with sustained release during 17 days. The rhBMP-2 + fibrin treated animals showed the best results in bone mineral density, bone volume fraction, cortical bone thickness by micro-CT evaluation and mechanical properties by the three-point bending test when compared to the other groups (p < 0.05). In histological images, rhBMP-2 + fibrin treatment showed increased callus formation and better gap bridging compared to the other groups. CONCLUSIONS The results of this study suggest that fibrin holds promise to be a good carrier of rhBMP-2, and rhBMP-2 suspended in fibrin showed a stronger promoting effect on bone formation during DO in rabbits.
Collapse
Affiliation(s)
- Yunfeng Li
- The State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery, Sichuan University West China Hospital of Stomatology, Chengdu, China
| | - Rui Li
- Department of Stomatology, The General Hospital of People's Liberation Army, Beijing, China
| | - Jing Hu
- The State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery, Sichuan University West China Hospital of Stomatology, Chengdu, China
| | - Donghui Song
- The State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery, Sichuan University West China Hospital of Stomatology, Chengdu, China
| | - Xiaowen Jiang
- The State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery, Sichuan University West China Hospital of Stomatology, Chengdu, China
| | - Songsong Zhu
- The State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery, Sichuan University West China Hospital of Stomatology, Chengdu, China
| |
Collapse
|
11
|
Johnson NR, Wang Y. Drug delivery systems for wound healing. Curr Pharm Biotechnol 2016; 16:621-9. [PMID: 25658378 DOI: 10.2174/1389201016666150206113720] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/19/2014] [Accepted: 12/21/2014] [Indexed: 12/19/2022]
Abstract
Protein, gene, and small molecule therapies hold great potential for facilitating comprehensive tissue repair and regeneration. However, their clinical value will rely on effective delivery systems which maximize their therapeutic benefit. Significant advances have been made in recent years towards biomaterial delivery systems to satisfy this clinical need. Here we summarize the most outstanding advances in drug delivery technology for cutaneous wound healing.
Collapse
Affiliation(s)
| | - Yadong Wang
- 320 Benedum Hall, 3700 O'Hara St, Pittsburgh, PA 15261 USA.
| |
Collapse
|
12
|
Klueh U, Qiao Y, Czajkowski C, Ludzinska I, Antar O, Kreutzer DL. Basement Membrane-Based Glucose Sensor Coatings Enhance Continuous Glucose Monitoring in Vivo. J Diabetes Sci Technol 2015; 9:957-65. [PMID: 26306494 PMCID: PMC4667328 DOI: 10.1177/1932296815598776] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Implantable glucose sensors demonstrate a rapid decline in function that is likely due to biofouling of the sensor. Previous efforts directed at overcoming this issue has generally focused on the use of synthetic polymer coatings, with little apparent effect in vivo, clearly a novel approach is required. We believe that the key to extending sensor life span in vivo is the development of biocompatible basement membrane (BM) based bio-hydrogels as coatings for glucose sensors. METHOD BM based bio-hydrogel sensor coatings were developed using purified BM preparations (ie, Cultrex from Trevigen Inc). Modified Abbott sensors were coated with Cultrex BM extracts. Sensor performance was evaluated for the impact of these coatings in vitro and in vivo in a continuous glucose monitoring (CGM) mouse model. In vivo sensor function was assessed over a 28-day time period expressed as mean absolute relative difference (MARD) values. Tissue reactivity of both Cultrex coated and uncoated glucose sensors was evaluated at 7, 14, 21 and 28 days post-sensor implantation with standard histological techniques. RESULTS The data demonstrate that Cultrex-based sensor coatings had no effect on glucose sensor function in vitro. In vivo glucose sensor performance was enhanced following BM coating as determined by MARD analysis, particularly in weeks 2 and 3. In vivo studies also demonstrated that Cultrex coatings significantly decreased sensor-induced tissue reactions at the sensor implantation sites. CONCLUSION Basement-membrane-based sensor coatings enhance glucose sensor function in vivo, by minimizing or preventing sensor-induced tissues reactions.
Collapse
Affiliation(s)
- Ulrike Klueh
- Center for Molecular Tissue Engineering, University of Connecticut, School of Medicine, Farmington, CT, USA Department of Surgery, University of Connecticut, School of Medicine, Farmington, CT, USA
| | - Yi Qiao
- Center for Molecular Tissue Engineering, University of Connecticut, School of Medicine, Farmington, CT, USA Department of Surgery, University of Connecticut, School of Medicine, Farmington, CT, USA
| | - Caroline Czajkowski
- Center for Molecular Tissue Engineering, University of Connecticut, School of Medicine, Farmington, CT, USA Department of Surgery, University of Connecticut, School of Medicine, Farmington, CT, USA
| | - Izabela Ludzinska
- Center for Molecular Tissue Engineering, University of Connecticut, School of Medicine, Farmington, CT, USA Department of Surgery, University of Connecticut, School of Medicine, Farmington, CT, USA
| | - Omar Antar
- Center for Molecular Tissue Engineering, University of Connecticut, School of Medicine, Farmington, CT, USA Department of Surgery, University of Connecticut, School of Medicine, Farmington, CT, USA
| | - Donald L Kreutzer
- Center for Molecular Tissue Engineering, University of Connecticut, School of Medicine, Farmington, CT, USA Department of Surgery, University of Connecticut, School of Medicine, Farmington, CT, USA
| |
Collapse
|
13
|
Dutta D, Fauer C, Mulleneux HL, Stabenfeldt SE. Tunable Controlled Release of Bioactive SDF-1α via Protein Specific Interactions within Fibrin/Nanoparticle Composites. J Mater Chem B 2015; 3:7963-7973. [PMID: 26660666 DOI: 10.1039/c5tb00935a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The chemokine, stromal cell-derived factor 1α (SDF-1α), is a key regulator of the endogenous neural progenitor/stem cell-mediated regenerative response after neural injury. Increased and sustained bioavailability of SDF-1α in the peri-injury region is hypothesized to modulate this endogenous repair response. Here, we describe poly(lactic-co-glycolic) acid (PLGA) nanoparticles capable of releasing bioactive SDF-1α in a sustained manner over 60days after a burst of 23%. Moreover, we report a biphasic cellular response to SDF-1α concentrations thus the large initial burst release in an in vivo setting may result in supratherapeutic concentrations of SDF-1α. Specific protein-protein interactions between SDF-1α and fibrin (as well as its monomer, fibrinogen) were exploited to control the magnitude of the burst release. Nanoparticles embedded in fibrin significantly reduced the amount of SDF-1α released after 72 hrs as a function of fibrin density. Therefore, the nanoparticle/fibrin composites represented a means to independently tune the magnitude of the burst phase release from the nanoparticles while perserving a bioactive depot of SDF-1α for release over 60days.
Collapse
Affiliation(s)
- D Dutta
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - C Fauer
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - H L Mulleneux
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - S E Stabenfeldt
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
14
|
Mehanna RA, Nabil I, Attia N, Bary AA, Razek KA, Ahmed TAE, Elsayed F. The Effect of Bone Marrow-Derived Mesenchymal Stem Cells and Their Conditioned Media Topically Delivered in Fibrin Glue on Chronic Wound Healing in Rats. BIOMED RESEARCH INTERNATIONAL 2015; 2015:846062. [PMID: 26236740 PMCID: PMC4508387 DOI: 10.1155/2015/846062] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 02/05/2023]
Abstract
Bone marrow-derived mesenchymal stem cells (BM-MSCs) represent a modern approach for management of chronic skin injuries. In this work, we describe BM-MSCs application versus their conditioned media (CM) when delivered topically admixed with fibrin glue to enhance the healing of chronic excisional wounds in rats. Fifty-two adult male rats were classified into four groups after induction of large-sized full-thickness skin wound: control group (CG), fibrin only group (FG), fibrin + MSCs group (FG + SCs), and fibrin + CM group (FG + CM). Healing wounds were evaluated functionally and microscopically. Eight days after injury, number of CD68+ macrophages infiltrating granulation tissue was considerably higher in the latter two groups. Although--later--none of the groups depicted a substantially different healing rate, the quality of regenerated skin was significantly boosted by the application of either BM-MSCs or their CM both (1) structurally as demonstrated by the obviously increased mean area percent of collagen fibers in Masson's trichrome-stained skin biopsies and (2) functionally as supported by the interestingly improved epidermal barrier as well as dermal tensile strength. Thus, we conclude that topically applied BM-MSCs and their CM-via fibrin vehicle--could effectively improve the quality of healed skin in chronic excisional wounds in rats, albeit without true acceleration of wound closure.
Collapse
Affiliation(s)
- Radwa A. Mehanna
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Dr Fahmi Abdel Meguid Street, Mowassat Building, El Shatby, Alexandria 21561, Egypt
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria 21514, Egypt
| | - Iman Nabil
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria 21514, Egypt
- Histology and Cell Biology Department, Faculty of Medicine, Alexandria University, Dr Fahmi Abdel Meguid Street, Mowassat Building, El Shatby, Alexandria 21561, Egypt
| | - Noha Attia
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria 21514, Egypt
- Histology and Cell Biology Department, Faculty of Medicine, Alexandria University, Dr Fahmi Abdel Meguid Street, Mowassat Building, El Shatby, Alexandria 21561, Egypt
| | - Amany A. Bary
- Pathology Department, Faculty of Medicine, Alexandria University, Dr Fahmi Abdel Meguid Street, Mowassat Building, El Shatby, Alexandria 21561, Egypt
| | - Khalid A. Razek
- Medical Research Institute, Alexandria University, 71 Victor Emanuel Street, Smouha, Alexandria 21615, Egypt
| | - Tamer A. E. Ahmed
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab, P.O. Box 21934, Alexandria, Egypt
| | - Fatma Elsayed
- Cell Culture Department, Medical Research Institute, Alexandria University, 71 Victor Emanuel Street, Smouha, Alexandria 21615, Egypt
| |
Collapse
|
15
|
Losi P, Briganti E, Sanguinetti E, Burchielli S, Al Kayal T, Soldani G. Healing effect of a fibrin-based scaffold loaded with platelet lysate in full-thickness skin wounds. J BIOACT COMPAT POL 2015. [DOI: 10.1177/0883911514568436] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chronic skin lesions are difficult to heal due to reduced levels and activity of endogenous growth factors. The platelet lysate, obtained by repeated freeze–thawing of platelet-enriched blood samples, is an easily attainable source of a wide range of growth factors and bioactive mediators involved in tissue repair. In this study, a bio-synthetic scaffold composed of poly(ether)urethane–polydimethylsiloxane material and fibrin was developed for platelet lysate delivery to chronic skin wounds. The kinetics release and the bioactivity of growth factors released from platelet lysate–loaded poly(ether)urethane–polydimethylsiloxane–fibrin scaffold were investigated, respectively, by enzyme-linked immunosorbent assay and a cell proliferation test using human fibroblasts. The in vitro experiments demonstrated that the platelet lysate–loaded poly(ether)urethane–polydimethylsiloxane–fibrin scaffold provides a sustained release of platelet derived growth factors. The cell growth in the presence of scaffold was comparable to those observed for the platelet lysate added to culture medium in free form, showing that the scaffold preparation process did not affect biological activity of growth factors. The effect of platelet lysate–loaded poly(ether)urethane–polydimethylsiloxane–fibrin scaffold on wound healing in genetically diabetic mouse (db/db) was also investigated. The application of the scaffold on full-thickness skin wounds significantly accelerated wound closure at day 15 post-surgery compared with control poly(ether)urethane–polydimethylsiloxane–fibrin scaffold (without platelet lysate) or a commercially available polyurethane film dressing. Histological analysis demonstrated an increased re-epithelialization, granulation tissue formation, and collagen deposition. The ability of the platelet lysate–loaded poly(ether)urethane–polydimethylsiloxane–fibrin scaffold to promote wound healing in vivo through simultaneous delivery of multiple active substances suggests its potential use for the treatment of diabetic foot ulcers.
Collapse
Affiliation(s)
- Paola Losi
- Institute of Clinical Physiology, National Research Council, Massa, Italy
| | - Enrica Briganti
- Institute of Clinical Physiology, National Research Council, Massa, Italy
| | - Elena Sanguinetti
- Institute of Clinical Physiology, National Research Council, Massa, Italy
| | | | - Tamer Al Kayal
- Institute of Clinical Physiology, National Research Council, Massa, Italy
| | - Giorgio Soldani
- Institute of Clinical Physiology, National Research Council, Massa, Italy
| |
Collapse
|
16
|
Ren X, Feng Y, Guo J, Wang H, Li Q, Yang J, Hao X, Lv J, Ma N, Li W. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications. Chem Soc Rev 2015; 44:5680-742. [DOI: 10.1039/c4cs00483c] [Citation(s) in RCA: 359] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review highlights the recent developments of surface modification and endothelialization of biomaterials in vascular tissue engineering applications.
Collapse
Affiliation(s)
- Xiangkui Ren
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Yakai Feng
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Jintang Guo
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Haixia Wang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Qian Li
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Jing Yang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xuefang Hao
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Juan Lv
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Nan Ma
- Institute of Chemistry and Biochemistry
- Free University of Berlin
- D-14195 Berlin
- Germany
| | - Wenzhong Li
- Department of Cardiac Surgery
- University of Rostock
- D-18057 Rostock
- Germany
| |
Collapse
|
17
|
Tan Y, Wang KY, Wang N, Li G, Liu D. Ectopic expression of human acidic fibroblast growth factor 1 in the medicinal plant, Salvia miltiorrhiza, accelerates the healing of burn wounds. BMC Biotechnol 2014; 14:74. [PMID: 25106436 PMCID: PMC4134118 DOI: 10.1186/1472-6750-14-74] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 08/05/2014] [Indexed: 12/15/2022] Open
Abstract
Background Healing of burns is a complex process and very few effective treatments exist to facilitate the burn recovery process. Human acidic fibroblast growth factor 1 (FGF-1) plays an important role in a variety of biological processes, including angiogenesis, and tissue repair. Salvia miltiorrhiza is widely used in traditional Chinese medicine as an herb for the treatment of various diseases, including cardiovascular and cerebrovascular diseases, and traumatic injuries. We present that expression of FGF-1 in S. miltiorrhiza significantly accelerates the healing of burn wounds. Results The human fgf-1 gene was fused with a barley α-amylase signal peptide DNA sequence and driven by a 35S promoter for constitutive expression in transgenic S. miltiorrhiza plants. The highest yield of recombinant FGF-1 obtained from leaves of transgenic S. miltiorrhiza lines was 272 ng/fresh weight. Aqueous extracts from transgenic S. miltiorrhiza exhibited FGF-1 activity approximately 19.2-fold greater than that of the standard FGF-1. Compared to the standard FGF-1 or the extracts obtained from non-transgenic plants, it stimulated proliferation of Balb/c 3 T3 mouse fibroblast cells assessed with the standard MTT assay and promoted angiogenesis in the chicken embryo chorioallantoic membrane (CAM) assay. Topical application of the extract significantly accelerated the burn wound healing process. Conclusions The product appears to retain the biological activity of both FGF-1 as well as the medicinal properties of the plant. The extracts from transgenic S. miltiorrhiza combines the therapeutic functions of FGF-1 and the medicinal plant, S. miltiorrhiza. Topical application of the product can reduce the costs associated with extraction, purification, and recovery.
Collapse
Affiliation(s)
| | | | | | | | - DeHu Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Southern Zhong Guan Cun Road, Beijing 100081, China.
| |
Collapse
|
18
|
Vavken P, Joshi SM, Murray MM. Fibrin concentration affects ACL fibroblast proliferation and collagen synthesis. Knee 2011; 18:42-6. [PMID: 20080411 PMCID: PMC2891311 DOI: 10.1016/j.knee.2009.12.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 11/30/2009] [Accepted: 12/17/2009] [Indexed: 02/02/2023]
Abstract
Fibrin is a frequently used biomaterial in surgery and tissue engineering. While it has been shown that fibrin supports cellular proliferation and biosynthesis, there is a scarcity of studies focusing on the effects of fibrin concentration. The objective of this study is to assess the effect of fibrin concentrations around the physiological concentration of 3mg/ml on the behavior of ligament fibroblasts. Fibroblasts were obtained from the anterior cruciate ligaments of four pigs and seeded throughout fibrin gels of either 1, 3, or 6 mg/ml fibrin. The gels were collected at 2, 6, and 10 days for measurement of DNA and collagen content. We found that both DNA and collagen content increased significantly over time in gels made with all concentrations of fibrin. However, the increases were significantly lower in gels made with the higher concentrations of fibrin (3 and 6 mg/ml). Microscopic assessment of FITC-labeled gels showed a decrease in pore size at high fibrin concentrations, which might be a reason for the observed effect on bioactivity. To enhance cell behavior and thus clinical results fibrin applications should build on physiologic or sub-physiologic concentrations, and those with higher concentrations, such as currently available sealants, should be used cautiously.
Collapse
Affiliation(s)
- Patrick Vavken
- Department of Orthopedic Surgery, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA.
| | | | | |
Collapse
|
19
|
Fibrin-mediated lentivirus gene transfer: implications for lentivirus microarrays. J Control Release 2010; 144:213-20. [PMID: 20153386 DOI: 10.1016/j.jconrel.2010.02.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 02/01/2010] [Accepted: 02/04/2010] [Indexed: 01/08/2023]
Abstract
We employed fibrin hydrogel as a bioactive matrix for lentivirus mediated gene transfer. Fibrin-mediated gene transfer was highly efficient and exhibited strong dependence on fibrinogen concentration. Efficient gene transfer was achieved with fibrinogen concentration between 3.75 and 7.5mg/ml. Lower fibrinogen concentrations resulted in diffusion of virus out of the gel while higher concentrations led to ineffective fibrin degradation by target cells. Addition of fibrinolytic inhibitors decreased gene transfer in a dose-dependent manner suggesting that fibrin degradation by target cells may be necessary for successful gene delivery. Under these conditions transduction may be limited only to cells interacting with the matrix thereby providing a method for spatially-localized gene delivery. Indeed, when lentivirus-containing fibrin microgels were spotted in an array format gene transfer was confined to virus-containing fibrin spots with minimal cross-contamination between neighboring sites. Collectively, our data suggest that fibrin may provide an effective matrix for spatially-localized gene delivery with potential applications in high-throughput lentiviral microarrays and in regenerative medicine.
Collapse
|
20
|
Breen A, Dockery P, O'Brien T, Pandit A. Fibrin scaffold promotes adenoviral gene transfer and controlled vector delivery. J Biomed Mater Res A 2009; 89:876-84. [PMID: 18465822 DOI: 10.1002/jbm.a.32039] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Gene therapy using adenoviral vectors in tissue regeneration is hindered by a short duration of transgene expression. It is hypothesized that a fibrin scaffold will enhance delivery of the adenovirus to a wound site, precluding the need for high repeated doses. It was aimed to analyze whether fibrin could deliver a low single dose of viral vector to a wound site, without compromising transfection efficiency. Fibrin scaffold containing adenovirus encoding beta-galactosidase, fibrin alone, adenovirus alone, and no treatment groups were applied to a rabbit ear ulcer model. beta-Galactosidase transgene expression was measured at 7 and 14 days. Transgene expression was enhanced in the fibrin containing adenovirus group at 7 days. By 14 days, there was low expression and no difference between groups. Stereological methods assessing wound healing aimed to determine whether the adenovirus capsid elicited an unfavorable inflammatory response and whether fibrin's beneficial properties were altered by addition of adenovirus. The fibrin adenovirus group showed a wound-healing response similar to fibrin alone, showing maximum cellularity and angiogenesis at 7 days. By 14 days, cellularity and angiogenesis subsided, and this effect was not inhibited by the presence of adenovirus. Adenovirus alone did not cause an unfavorable inflammatory response. It is concluded the fibrin aids in the delivery of a low-dose viral vector, thereby avoiding a chronic inflammatory response, and allowing superior transfection than viral vector alone. This has wide-ranging implications on the use of viral vectors in tissue engineering.
Collapse
Affiliation(s)
- Ailish Breen
- National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Galway, Ireland
| | | | | | | |
Collapse
|
21
|
Lei P, Padmashali RM, Andreadis ST. Cell-controlled and spatially arrayed gene delivery from fibrin hydrogels. Biomaterials 2009; 30:3790-9. [PMID: 19395019 DOI: 10.1016/j.biomaterials.2009.03.049] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 03/26/2009] [Indexed: 01/08/2023]
Abstract
We investigated fibrin-mediated gene transfer by embedding pDNA within the hydrogel during polymerization and using two modes of gene transfection with cells placed either on the surface (2D transfection) or within the hydrogel (3D transfection). Using this model, we found that cell transfection depended strongly on the local cell-pDNA microenvironment as defined by the 2D vs. 3D context, target cell type and density, as well as fibrinogen and pDNA concentrations. When cells were embedded within the fibrin matrix lipofectamine-induced cell death decreased significantly, especially at low target cell density. Addition of fibrinolytic inhibitors decreased gene transfer in a dose-dependent manner, suggesting that fibrin degradation may be necessary for efficient gene transfer. We also provided proof-of-concept that fibrin-mediated gene transfer can be used for spatially localized gene delivery, which is required in cell-transfection microarrays. When lipoplex-containing hydrogels were spotted in an array format gene transfer was strictly confined to pDNA-containing fibrin spots with no cross-contamination between neighboring sites. Collectively, our data suggest that fibrin may be used as a biomaterial to deliver genes in an efficient, cell-controlled and spatially localized manner for potential applications in vitro or in vivo.
Collapse
Affiliation(s)
- Pedro Lei
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, NY 14260, USA
| | | | | |
Collapse
|
22
|
des Rieux A, Shikanov A, Shea LD. Fibrin hydrogels for non-viral vector delivery in vitro. J Control Release 2009; 136:148-54. [PMID: 19232532 DOI: 10.1016/j.jconrel.2009.02.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 02/02/2009] [Accepted: 02/07/2009] [Indexed: 01/28/2023]
Abstract
Fibrin based hydrogels have been employed in vitro as a scaffold to promote tissue formation and investigate underlying molecular mechanisms. These hydrogels support a variety of cellular processes, and are being developed to enhance the presentation of biological cues, or to tailor the biological cues for specific tissues. The presentation of these cues could alternatively be enhanced through gene delivery, which can be employed to induce the expression of tissue inductive factors in the local environment. This report investigates gene delivery within fibrin hydrogels for two in vitro models of tissue growth: i) cell encapsulation within and ii) cell seeding onto the hydrogel. Naked plasmid and lipoplexes can be efficiently entrapped within the hydrogel, and after 1 day in solution more than 70% of the entrapped DNA is retained within the gel, with a sustained release observed for at least 19 days. Encapsulated lipoplexes did not aggregate and retain their original size. Transgene expression in vitro by delivery of lipoplexes was a function of the fibrinogen and DNA concentration. For encapsulated cells, all cells had intracellular plasmid and transgene expression persisted for at least 10 days, with maximal levels achieved at day 1. For cell infiltration, expression levels were less than those observed for encapsulation, and expression increased throughout the culture period. The increasing expression levels suggest that lipoplexes retain their activity after encapsulation; however, interactions between fibrin and the lipoplexes likely limit internalization. The inclusion of non-viral vectors into fibrin-based hydrogels can be employed to induce transgene expression of encapsulated and infiltrating cells, and may be employed with in vitro models of tissue growth to augment the intrinsic bioactivity of fibrin.
Collapse
Affiliation(s)
- Anne des Rieux
- Université Catholique de Louvain, Unité de Pharmacie Galénique Industrielle et Officinale, Avenue E. Mounier 73, 1200 Brussels, Belgium
| | | | | |
Collapse
|
23
|
Woodruff MA, Rath SN, Susanto E, Haupt LM, Hutmacher DW, Nurcombe V, Cool SM. Sustained release and osteogenic potential of heparan sulfate-doped fibrin glue scaffolds within a rat cranial model. J Mol Histol 2007; 38:425-33. [PMID: 17849224 DOI: 10.1007/s10735-007-9137-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 08/20/2007] [Indexed: 10/22/2022]
Abstract
This paper explores the potential therapeutic role of the naturally occurring sugar heparan sulfate (HS) for the augmentation of bone repair. Scaffolds comprising fibrin glue loaded with 5 microg of embryonically derived HS were assessed, firstly as a release-reservoir, and secondly as a scaffold to stimulate bone regeneration in a critical size rat cranial defect. We show HS-loaded scaffolds have a uniform distribution of HS, which was readily released with a typical burst phase, quickly followed by a prolonged delivery lasting several days. Importantly, the released HS contributed to improved wound healing over a 3-month period as determined by microcomputed tomography (microCT) scanning, histology, histomorphometry, and PCR for osteogenic markers. In all cases, only minimal healing was observed after 1 and 3 months in the absence of HS. In contrast, marked healing was observed by 3 months following HS treatment, with nearly full closure of the defect site. PCR analysis showed significant increases in the gene expression of the osteogenic markers Runx2, alkaline phosphatase, and osteopontin in the heparin sulfate group compared with controls. These results further emphasize the important role HS plays in augmenting wound healing, and its successful delivery in a hydrogel provides a novel alternative to autologous bone graft and growth factor-based therapies.
Collapse
Affiliation(s)
- Maria Ann Woodruff
- Division of Bioengineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore.
| | | | | | | | | | | | | |
Collapse
|
24
|
Andreadis ST. Gene-modified tissue-engineered skin: the next generation of skin substitutes. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2006; 103:241-74. [PMID: 17195466 DOI: 10.1007/10_023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Tissue engineering combines the principles of cell biology, engineering and materials science to develop three-dimensional tissues to replace or restore tissue function. Tissue engineered skin is one of most advanced tissue constructs, yet it lacks several important functions including those provided by hair follicles, sebaceous glands, sweat glands and dendritic cells. Although the complexity of skin may be difficult to recapitulate entirely, new or improved functions can be provided by genetic modification of the cells that make up the tissues. Gene therapy can also be used in wound healing to promote tissue regeneration or prevent healing abnormalities such as formation of scars and keloids. Finally, gene-enhanced skin substitutes have great potential as cell-based devices to deliver therapeutics locally or systemically. Although significant progress has been made in the development of gene transfer technologies, several challenges have to be met before clinical application of genetically modified skin tissue. Engineering challenges include methods for improved efficiency and targeted gene delivery; efficient gene transfer to the stem cells that constantly regenerate the dynamic epidermal tissue; and development of novel biomaterials for controlled gene delivery. In addition, advances in regulatable vectors to achieve spatially and temporally controlled gene expression by physiological or exogenous signals may facilitate pharmacological administration of therapeutics through genetically engineered skin. Gene modified skin substitutes are also employed as biological models to understand tissue development or disease progression in a realistic three-dimensional context. In summary, gene therapy has the potential to generate the next generation of skin substitutes with enhanced capacity for treatment of burns, chronic wounds and even systemic diseases.
Collapse
Affiliation(s)
- Stelios T Andreadis
- Bioengineering Laboratory, Department of Chemical & Biological Engineering, University at Buffalo, The State University of New York (SUNY), Amherst, NY 14260, USA.
| |
Collapse
|
25
|
Gwak SJ, Kim SS, Sung K, Han J, Choi CY, Kim BS. Synergistic effect of keratinocyte transplantation and epidermal growth factor delivery on epidermal regeneration. Cell Transplant 2006; 14:809-17. [PMID: 16454355 DOI: 10.3727/000000005783982521] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Both keratinocyte transplantation and epidermal growth factor (EGF) delivery stimulate epidermal regeneration. In this study, we hypothesized that the combined therapy of keratinocyte transplantation and EGF delivery accelerates epidermal regeneration compared to the single therapy of either keratinocyte transplantation or EGF delivery. To test this hypothesis, we utilized fibrin matrix as a keratinocyte/EGF delivery vehicle for epidermal regeneration. Full-thickness wounds were created on the dorsum of athymic mice, and human keratinocytes and EGF in fibrin matrix were sprayed onto the wounds to regenerate epidermal layers (group 1). As controls, human keratinocytes in fibrin matrix (group 2), EGF in fibrin matrix (group 3), or fibrin matrix alone (group 4) was sprayed onto the wounds. Spraying keratinocytes suspended in fibrin matrix did not affect the keratinocyte viability, as the cell viabilities before and after spraying were not different. EGF was released from fibrin matrix for 3 days. The wounds were analyzed with histology and immunohistochemistry at 1 and 3 weeks after treatments. Compared with the control groups, initial wound closure rate was highest in group 1. Histological analyses indicated that group 1 exhibited faster and better epidermal regeneration than the other groups. Immunohistochemical analyses showed that regenerated epithelium in groups 1 and 2 stained positively for human involucrin at 3 weeks, whereas the tissue sections of the groups 3 and 4 stained negatively. Human laminin was detected at the dermal-epidermal junction of the regenerated tissues in groups 1 and 2 at 3 weeks and was not detected in groups 3 and 4. The epidermal thickness of the regenerated tissues in group 1 was significantly thicker than that of the other groups at all time points. These results suggest that the combined therapy of keratinocyte transplantation and EGF delivery is more efficacious for epidermal regeneration than each separate therapy alone.
Collapse
Affiliation(s)
- So-Jung Gwak
- Department of Chemical Engineering, Hanyang University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
26
|
Makogonenko E, Goldstein AL, Bishop PD, Medved L. Factor XIIIa Incorporates Thymosin β4 Preferentially into the Fibrin(ogen) αC-Domains. Biochemistry 2004; 43:10748-56. [PMID: 15311936 DOI: 10.1021/bi049253l] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It was shown recently that tissue transglutaminase and presumably plasma transglutaminase, factor XIIIa, can covalently incorporate into fibrin(ogen) a physiologically active peptide, thymosin beta(4) [(Huff et al. (2002) FASEB J. 16, 691-696]. To clarify the mechanism of this incorporation, we studied the interaction of thymosin beta(4) with fibrinogen, fibrin, and their recombinant fragments, the gamma-module (gamma-chain residues 148-411), and the alphaC-domain (Aalpha-chain residues 221-610) and its truncated variants by immunoblot and ELISA. No significant noncovalent interaction between them was detected in the absence of activated factor XIII, while in its presence thymosin beta(4) was effectively incorporated into fibrin and to a lesser extent into fibrinogen. The incorporation at physiological concentrations of fibrin(ogen) and factor XIII was significant with molar incorporation ratios of thymosin beta(4) to fibrinogen and fibrin of 0.2 and 0.4, respectively. Further experiments revealed that although activated factor XIII incorporates thymosin beta(4) into the isolated gamma-module and alphaC-domain, in fibrin the latter serves as the major incorporation site. This site was further localized to the COOH-terminal portion of the alphaC-domain including residues 392-610.
Collapse
Affiliation(s)
- Evgeny Makogonenko
- Biochemistry Department, Jerome H. Holland Laboratory for the Biomedical Sciences, American Red Cross, Rockville, Maryland 20855, USA
| | | | | | | |
Collapse
|
27
|
Dantzer D, Ferguson P, Hill RP, Keating A, Kandel RA, Wunder JS, O'Sullivan B, Sandhu J, Waddell J, Bell RS. Effect of radiation and cell implantation on wound healing in a rat model. J Surg Oncol 2003; 83:185-90. [PMID: 12827690 DOI: 10.1002/jso.10242] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND AND OBJECTIVES Having shown that intra-dermal injection of fibroblasts decreases the effect of radiation on healing of superficial wounds, we now test the effect of fibroblasts and syngeneic marrow stromal cells on irradiated deep and superficial wounds. METHODS Wistar rats received bilateral buttock irradiation followed by partial excision of the gluteus muscle bilaterally. In Protocol 1, one irradiated wound was treated with 1.2 x 10(7) autologous cells injected intra-dermally. In Protocol 2, the experimental side was treated with a fibrin and autologous cell implant (1.2 x 10(7) cells). Twenty-one days later, wound mechanical characteristics were tested. In Protocol 3, the effect of pooled marrow stromal cells on healing of superficial irradiated wounds in Lewis rats was similarly tested. RESULTS The fibrin-fibroblast implant (Protocol 2) had no effect on wound mechanics. Superficial injection of fibroblasts (Protocol 1) significantly improved wound breaking strength when compared to the control group (mean +/- SEM, breaking strength: treated 504.6 +/- 37.0 g vs. control 353.4 +/- 35.2 g, P = 0.005). The dermal injection of marrow stromal cells also resulted in marked increases in breaking strength (mean +/- SEM, breaking strength: treated 338.5 +/- 39.9 g vs. control 187.1 +/- 12.0 g, P < 0.01). In both Protocols 1 and 3, ultimate tensile strength and toughness were increased in the side receiving cell transplantation. CONCLUSIONS Cell implantation holds promise for decreasing the effect of radiation on healing of irradiated wounds.
Collapse
Affiliation(s)
- Dale Dantzer
- The Samuel Lunenfeld Research Institute, Sinai Hospital, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Currie LJ, Sharpe JR, Martin R. The use of fibrin glue in skin grafts and tissue-engineered skin replacements: a review. Plast Reconstr Surg 2001; 108:1713-26. [PMID: 11711954 DOI: 10.1097/00006534-200111000-00045] [Citation(s) in RCA: 251] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fibrin glue has been widely used as an adhesive in plastic and reconstructive surgery. This article reviews the advantages and disadvantages of its use with skin grafts and tissue-engineered skin substitutes. Fibrin glue has been shown to improve the percentage of skin graft take, especially when associated with difficult grafting sites or sites associated with unavoidable movement. Evidence also suggests improved hemostasis and a protective effect resulting in reduced bacterial infection. Fibrin, associated with fibronectin, has been shown to support keratinocyte and fibroblast growth both in vitro and in vivo, and may enhance cellular motility in the wound. When used as a delivery system for cultured keratinocytes and fibroblasts, fibrin glue may provide similar advantages to those proven with conventional skin grafts. Fibrin glue has also been shown to be a suitable delivery vehicle for exogenous growth factors that may in the future be used to accelerate wound healing.
Collapse
Affiliation(s)
- L J Currie
- Blond McIndoe Centre for Medical Research, Queen Victoria Hospital, East Grinstead, West Sussex, United Kingdom.
| | | | | |
Collapse
|