1
|
Amani H, Alipour M, Shahriari E, Taboas JM. Immunomodulatory Biomaterials: Tailoring Surface Properties to Mitigate Foreign Body Reaction and Enhance Tissue Regeneration. Adv Healthc Mater 2024:e2401253. [PMID: 39370571 DOI: 10.1002/adhm.202401253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/28/2024] [Indexed: 10/08/2024]
Abstract
The immune cells have demonstrated the ability to promote tissue repair by removing debris, breaking down the extracellular matrix, and regulating cytokine secretion profile. If the behavior of immune cells is not well directed, chronic inflammation and foreign body reaction (FBR) will lead to scar formation and loss of biomaterial functionality. The immunologic response toward tissue repair or chronic inflammation after injury and implantation can be modulated by manipulating the surface properties of biomaterials. Tailoring surface properties of biomaterials enables the regulation of immune cell fate such as adhesion, proliferation, recruitment, polarization, and cytokine secretion profile. This review begins with an overview of the role of immune cells in tissue healing and their interactions with biomaterials. It then discusses how the surface properties of biomaterials influence immune cell behavior. The core focus is reviewing surface modification methods to create innovative materials that reduce foreign body reactions and enhance tissue repair and regeneration by modulating immune cell activities. The review concludes with insights into future advancements in surface modification techniques and the associated challenges.
Collapse
Affiliation(s)
- Hamed Amani
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran
| | - Mahdieh Alipour
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Elahe Shahriari
- Department of Physiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Juan M Taboas
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| |
Collapse
|
2
|
Jacobs TW, Dillon JT, Cohen DJ, Boyan BD, Schwartz Z. Different Methods to Modify the Hydrophilicity of Titanium Implants with Biomimetic Surface Topography to Induce Variable Responses in Bone Marrow Stromal Cells. Biomimetics (Basel) 2024; 9:227. [PMID: 38667238 PMCID: PMC11048143 DOI: 10.3390/biomimetics9040227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The osteoblastic differentiation of bone marrow stromal cells (bMSCs), critical to the osseointegration of titanium implants, is enhanced on titanium surfaces with biomimetic topography, and this is further enhanced when the surfaces are hydrophilic. This is a result of changing the surface free energy to change protein adsorption, improving cell attachment and differentiation, and improving bone-to-implant contact in patients. In this study, we examined different methods of plasma treatment, a well-accepted method of increasing hydrophilicity, and evaluated changes in surface properties as well as the response of bMSCs in vitro. Commercially pure Ti and titanium-aluminum-vanadium (Ti6Al4V) disks were sand-blasted and acid-etched to impart microscale and nanoscale roughness, followed by treatment with various post-processing surface modification methods, including ultraviolet light (UV), dielectric barrier discharge (DBD)-generated plasma, and plasma treatment under an argon or oxygen atmosphere. Surface wettability was based on a sessile water drop measurement of contact angle; the elemental composition was analyzed using XPS, and changes in topography were characterized using scanning electron microscopy (SEM) and confocal imaging. The cell response was evaluated using bMSCs; outcome measures included the production of osteogenic markers, paracrine signaling factors, and immunomodulatory cytokines. All plasma treatments were effective in inducing superhydrophilic surfaces. Small but significant increases in surface roughness were observed following UV, DBD and argon plasma treatment. No other modifications to surface topography were noted. However, the relative composition of Ti, O, and C varied with the treatment method. The cell response to these hydrophilic surfaces depended on the plasma treatment method used. DBD plasma treatment significantly enhanced the osteogenic response of the bMSCs. In contrast, the bMSC response to argon plasma-treated surfaces was varied, with an increase in OPG production but a decrease in OCN production. These results indicate that post-packaging methods that increased hydrophilicity as measured by contact angle did not change the surface free energy in the same way, and accordingly, cells responded differently. Wettability and surface chemistry alone are not enough to declare whether an implant has an improved osteogenic effect and do not fully explain how surface free energy affects cell response.
Collapse
Affiliation(s)
- Thomas W. Jacobs
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Jonathan T. Dillon
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA 23284, USA; (J.T.D.); (D.J.C.); (B.D.B.)
| | - David J. Cohen
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA 23284, USA; (J.T.D.); (D.J.C.); (B.D.B.)
| | - Barbara D. Boyan
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA 23284, USA; (J.T.D.); (D.J.C.); (B.D.B.)
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Zvi Schwartz
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA 23284, USA; (J.T.D.); (D.J.C.); (B.D.B.)
- Department of Periodontics, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
3
|
Parisi L, Bianchi MG, Ghezzi B, Maurizi E, Macaluso GM, Bussolati O, Lumetti S. Preparation of human primary macrophages to study the polarization from monocyte-derived macrophages to pro- or anti-inflammatory macrophages at biomaterial interface in vitro. J Dent Sci 2023; 18:1630-1637. [PMID: 37799917 PMCID: PMC10547954 DOI: 10.1016/j.jds.2023.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/20/2023] [Indexed: 02/16/2023] Open
Abstract
Background/purpose Testing of dental materials when in contact with innate immune cells has been so far hindered by the lack of proper in vitro models. Human primary monocyte-derived macrophages (MDMs) would be an excellent option to this aim. However, the inability to detach them from the tissue culture plates contrast the possibility to culture them on biomaterials. The goal of the present work is to present and validate an innovative protocol to obtain MDMs from peripheral blood monocytes, and to reseed them in contact with biomaterials without altering their viability and phenotype. Materials and methods We differentiated MDMs on ultra-low attachment tissue culture plastics and recovered them with specific detachment solution in order to be reseeded on a secondary substrate. Therefore, using biological assays (RT-PCR, Western blot, and immunofluorescence) we compared their phenotype to MDMs differentiated on standard culture plates. Results Transferred MDMs keep their differentiated M0 resting state, as well as the ability to be polarized into M1 (pro-inflammatory) or M2 (anti-inflammatory) macrophages. Conclusion These data provide the dental material research community the unprecedented possibility to investigate the immunomodulatory properties of biomaterials for dental application.
Collapse
Affiliation(s)
- Ludovica Parisi
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Massimiliano Giovanni Bianchi
- Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
- Microbiome Research Hub, Università di Parma, Parma, Italy
| | - Benedetta Ghezzi
- Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
- Centro Universitario di Odontoiatria, Università di Parma, Parma, Italy
- IMEM-CNR, Parma, Italy
| | - Eleonora Maurizi
- Centro Universitario di Odontoiatria, Università di Parma, Parma, Italy
- Centre for Regenerative Medicine “S.Ferrari”, University of Modena and Reggio Emilia, Modena, Italy
| | - Guido Maria Macaluso
- Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
- Centro Universitario di Odontoiatria, Università di Parma, Parma, Italy
- IMEM-CNR, Parma, Italy
| | - Ovidio Bussolati
- Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
- Microbiome Research Hub, Università di Parma, Parma, Italy
| | - Simone Lumetti
- Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
- Centro Universitario di Odontoiatria, Università di Parma, Parma, Italy
- IMEM-CNR, Parma, Italy
| |
Collapse
|
4
|
Teixeira JFL, de Souza JAC, Magalhães FAC, de Oliveira GJPL, de Santis JB, de Souza Costa CA, de Souza PPC. Laser-Modified Ti Surface Improves Paracrine Osteogenesis by Modulating the Expression of DKK1 in Osteoblasts. J Funct Biomater 2023; 14:jfb14040224. [PMID: 37103314 PMCID: PMC10145280 DOI: 10.3390/jfb14040224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
Titanium surface modifications are widely used to modulate cellular behavior by recognition of topographical cues. However, how those modifications affect the expression of mediators that will influence neighboring cells is still elusive. This study aimed to evaluate the effects of conditioned media from osteoblasts cultured on laser-modified titanium surfaces on the differentiation of bone marrow cells in a paracrine manner and to analyze the expression of Wnt pathway inhibitors. Mice calvarial osteoblasts were seeded on polished (P) and Yb:YAG laser-irradiated (L) Ti surfaces. Osteoblast culture media were collected and filtered on alternate days to stimulate mice BMCs. Resazurin assay was performed every other day for 20 days to check BMC viability and proliferation. After 7 and 14 days of BMCs maintained with osteoblasts P and L-conditioned media, alkaline phosphatase activity, Alizarin Red staining, and RT-qPCR were performed. ELISA of conditioned media was conducted to investigate the expression of Wnt inhibitors Dickkopf-1 (DKK1) and Sclerostin (SOST). BMCs showed increased mineralized nodule formation and alkaline phosphatase activity. The L-conditioned media enhanced the BMC mRNA expression of bone-related markers Bglap, Alpl, and Sp7. L-conditioned media decreased the expression of DKK1 compared with P-conditioned media. The contact of osteoblasts with Yb:YAG laser-modified Ti surfaces induces the regulation of the expression of mediators that affect the osteoblastic differentiation of neighboring cells. DKK1 is among these regulated mediators.
Collapse
Affiliation(s)
- Jorge Felipe Lima Teixeira
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara 14801-385, Brazil
| | | | | | | | - José Bernardo de Santis
- Department of Basic and Oral Biology, Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-904, Brazil
| | - Carlos Alberto de Souza Costa
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara 14801-385, Brazil
| | - Pedro Paulo Chaves de Souza
- Innovation in Biomaterials Laboratory (iBioM), School of Dentistry, Federal University of Goiás, Goiânia 74605-020, Brazil
| |
Collapse
|
5
|
Yu X, Wang Y, Zhang M, Ma H, Feng C, Zhang B, Wang X, Ma B, Yao Q, Wu C. 3D printing of gear-inspired biomaterials: Immunomodulation and bone regeneration. Acta Biomater 2023; 156:222-233. [PMID: 36100177 DOI: 10.1016/j.actbio.2022.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 01/18/2023]
Abstract
It is of significance to construct the immunomodulatory and osteogenic microenvironment for three dimension (3D) regeneration of bone tissues. 3D scaffolds, with various chemical composition, macroporous structure and surface characteristics offer a beneficial microenvironment for bone tissue regeneration. However, there is a gap between the well-ordered surface microstructure of bioceramic scaffolds and immune microenvironment for bone regeneration. In this study, a gear-inspired 3D scaffold with well-ordered surface microstructure was successfully prepared through a modified extrusion-based 3D printing strategy for immunomodulation and bone regeneration. The prepared gear-inspired scaffolds could induce M2 phenotype polarization of macrophages and further promoted osteogenic differentiation of bone mesenchymal stem cells in vitro. The subsequent in vivo study demonstrated that the gear-inspired scaffolds were able to attenuate inflammation and further promote new bone formation. The study develops a facile strategy to construct well-ordered surface microstructure which plays a key role in 3D immunomodulatory and osteogenic microenvironment for bone tissue engineering and regenerative medicine. STATEMENT OF SIGNIFICANCE.
Collapse
Affiliation(s)
- Xiaopeng Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yufeng Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China; Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, PR China
| | - Meng Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hongshi Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chun Feng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Bingjun Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xin Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Bing Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qingqiang Yao
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, PR China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
6
|
Lu X, Wu Z, Xu K, Wang X, Wang S, Qiu H, Li X, Chen J. Multifunctional Coatings of Titanium Implants Toward Promoting Osseointegration and Preventing Infection: Recent Developments. Front Bioeng Biotechnol 2021; 9:783816. [PMID: 34950645 PMCID: PMC8691702 DOI: 10.3389/fbioe.2021.783816] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/25/2021] [Indexed: 01/27/2023] Open
Abstract
Titanium and its alloys are dominant material for orthopedic/dental implants due to their stable chemical properties and good biocompatibility. However, aseptic loosening and peri-implant infection remain problems that may lead to implant removal eventually. The ideal orthopedic implant should possess both osteogenic and antibacterial properties and do proper assistance to in situ inflammatory cells for anti-microbe and tissue repair. Recent advances in surface modification have provided various strategies to procure the harmonious relationship between implant and its microenvironment. In this review, we provide an overview of the latest strategies to endow titanium implants with bio-function and anti-infection properties. We state the methods they use to preparing these efficient surfaces and offer further insight into the interaction between these devices and the local biological environment. Finally, we discuss the unmet needs and current challenges in the development of ideal materials for bone implantation.
Collapse
Affiliation(s)
- Xiaoxuan Lu
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Zichen Wu
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Kehui Xu
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Xiaowei Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Shuang Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Hua Qiu
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Xiangyang Li
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Jialong Chen
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
Mestres G, Carter SSD, Hailer NP, Diez-Escudero A. A practical guide for evaluating the osteoimmunomodulatory properties of biomaterials. Acta Biomater 2021; 130:115-137. [PMID: 34087437 DOI: 10.1016/j.actbio.2021.05.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/29/2021] [Accepted: 05/20/2021] [Indexed: 12/17/2022]
Abstract
Biomaterials offer a promising approach to repair bone defects. Whereas traditional studies predominantly focused on optimizing the osteogenic capacity of biomaterials, less focus has been on the immune response elicited by them. However, the immune and skeletal systems extensively interact, a concept which is referred to as 'osteoimmunology'. This realization has fuelled the development of biomaterials with favourable osteoimmunomodulatory (OIM) properties, aiming to modulate the immune response and to support bone regeneration, thereby affecting the success of an implant. Given the plethora of in vitro assays used to evaluate the OIM properties of biomaterials, it may be challenging to select the right methods to produce conclusive results. In this review, we aim to provide a comprehensive and practical guide for researchers interested in studying the OIM properties of biomaterials in vitro. After a concise overview of the concept of osteoimmunology, emphasis is put on the methodologies that are regularly used to evaluate the OIM properties of biomaterials. First, a description of the most commonly used cell types and cell culture media is provided. Second, typical experimental set-ups and their relevant characteristics are discussed. Third, a detailed overview of the generally used methodologies and readouts, including cell type-specific markers and time points of analysis, is given. Finally, we highlight the promise of advanced approaches, namely microarrays, bioreactors and microfluidic-based systems, and the potential that these may offer to the osteoimmunology field. STATEMENT OF SIGNIFICANCE: Osteoimmunology focuses on the connection and communication between the skeletal and immune systems. This interaction has been recognized to play an important role in the clinical success of biomaterials, which has resulted in an increasing amount of research on the osteoimmunomodulatory (OIM) properties of biomaterials. However, the amount of literature makes it challenging to extract the information needed to design experiments from beginning to end, and to compare obtained results to existing work. This article intends to serve as a guide for those aiming to learn more about the commonly used experimental approaches in the field. We cover early-stage choices, such as cell types and experimental set-ups, but also discuss specific assays, including cell markers and time points of analysis.
Collapse
Affiliation(s)
- Gemma Mestres
- Division of Microsystems Technology, Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, 751 22 Uppsala, Sweden.
| | - Sarah-Sophia D Carter
- Division of Microsystems Technology, Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, 751 22 Uppsala, Sweden
| | - Nils P Hailer
- Ortholab, Department of Surgical Sciences-Orthopaedics, Uppsala University, 751 85 Uppsala, Sweden
| | - Anna Diez-Escudero
- Ortholab, Department of Surgical Sciences-Orthopaedics, Uppsala University, 751 85 Uppsala, Sweden
| |
Collapse
|
8
|
Zhu Y, Liang H, Liu X, Wu J, Yang C, Wong TM, Kwan KYH, Cheung KMC, Wu S, Yeung KWK. Regulation of macrophage polarization through surface topography design to facilitate implant-to-bone osteointegration. SCIENCE ADVANCES 2021; 7:eabf6654. [PMID: 33811079 PMCID: PMC11060047 DOI: 10.1126/sciadv.abf6654] [Citation(s) in RCA: 196] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Proper immune responses are critical for successful biomaterial implantation. Here, four scales of honeycomb-like TiO2 structures were custom made on titanium (Ti) substrates to investigate cellular behaviors of RAW 264.7 macrophages and their immunomodulation on osteogenesis. We found that the reduced scale of honeycomb-like TiO2 structures could significantly activate the anti-inflammatory macrophage phenotype (M2), in which the 90-nanometer sample induced the highest expression level of CD206, interleukin-4, and interleukin-10 and released the highest amount of bone morphogenetic protein-2 among other scales. Afterward, the resulting immune microenvironment favorably triggered osteogenic differentiation of murine mesenchymal stem cells in vitro and subsequent implant-to-bone osteointegration in vivo. Furthermore, transcriptomic analysis revealed that the minimal scale of TiO2 honeycomb-like structure (90 nanometers) facilitated macrophage filopodia formation and up-regulated the Rho family of guanosine triphosphatases (RhoA, Rac1, and CDC42), which reinforced the polarization of macrophages through the activation of the RhoA/Rho-associated protein kinase signaling pathway.
Collapse
Affiliation(s)
- Yizhou Zhu
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
- School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Hang Liang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiangmei Liu
- School of Materials Science & Engineering, Hubei University, Wuhan 430062, China.
| | - Jun Wu
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Tak Man Wong
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Kenny Y H Kwan
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Kenneth M C Cheung
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Shuilin Wu
- School of Materials Science and Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
| | - Kelvin W K Yeung
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong 999077, China.
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
- China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, China
| |
Collapse
|
9
|
Berger MB, Bosh KB, Cohen DJ, Boyan BD, Schwartz Z. Benchtop plasma treatment of titanium surfaces enhances cell response. Dent Mater 2021; 37:690-700. [PMID: 33589272 PMCID: PMC7981249 DOI: 10.1016/j.dental.2021.01.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/20/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Modifications to implant surface properties, including topography, chemistry, and wettability, alter immune response, osteoblast differentiation of bone marrow stromal cells (MSCs), and implant integration in vivo. Dielectric barrier discharge (DBD) plasma treatment has been used to sterilize surfaces and remove adsorbed carbon, improving wettability. However, unless it is used immediately prior to placement, ambient atmospheric hydrocarbons rapidly adhere to the surface, thereby reducing its hydrophilicity. Moreover, this method is not practical in many clinical settings. The aim of this study was to evaluate the effectiveness of an on-site benchtop modification technique for implants at time of placement, consisting of a DBD plasma that is used to sterilize implants that are pre-packaged in a vacuum. Effects of the plasma-treatment on implant surface properties and cellular response of MSCs and osteoblasts were assessed in vitro. METHODS Titanium-aluminum-vanadium implant surfaces were grit-blasted (GB) or grit-blasted and acid-etched (AE), and packaged under vacuum. AE surfaces were also plasma-treated using the benchtop device (GB + AE) and then removed from the vacuum. GB surface morphology was altered with AE but AE microroughness was not changed with the plasma-treatment. Plasma-treatment increased the surface wettability, but did not alter surface atomic concentrations of titanium, oxygen, or carbon. RESULTS MSCs and osteoblast-like cells (MG63 s) produced increased concentrations of osteocalcin, osteopontin, and osteoprotegerin after plasma-treatment of AE surfaces compared to non-plasma-treated AE surfaces; production of IL6 was reduced and IL10 was. Aging GB + AE surfaces for 7 days after plasma-treatment but still in the vacuum environment reduced the effectiveness of plasma on cellular response. SIGNIFICANCE Overall, these data suggest that application of benchtop plasma at the time of implant placement can alter the surface free energy of an implant surface without modifying surface chemical composition and enhance the differentiation and activity of MSCs and osteoblasts that are in contact with these implant surfaces.
Collapse
Affiliation(s)
- Michael B Berger
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA.
| | - Kyla B Bosh
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA.
| | - D Joshua Cohen
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA.
| | - Barbara D Boyan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA; Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Zvi Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA; Department of Periodontology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
10
|
Chen L, Qiao P, Liu H, Shao L. Amorphous Calcium Phosphate NPs Mediate the Macrophage Response and Modulate BMSC Osteogenesis. Inflammation 2020; 44:278-296. [PMID: 32939669 DOI: 10.1007/s10753-020-01331-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/20/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022]
Abstract
The potential risk associated with ACP nanoparticles (ACP NPs) cultured with immune cells and their indirect effects on osteogenesis have not been studied deeply. This project aims to evaluate the safety of ACP NPs in macrophages, the responses of macrophages (macrophage polarization, the cytokine secretion pattern of macrophages and intracellular homeostasis) to ACP NPs and the effect of ACP NPs/macrophage-modulated environments on the osteogenic ability of BMSCs. The cell proliferation rate and apoptosis were detected by CCK-8 and Annexin V Apoptosis Detection kits. ROS and autophagy expression were evaluated by ROS test kits and Western blot (WB). Macrophage polarization and cytokine expression were determined by SEM, cytoskeletal staining, RT-PCR and ELISA. TMT™ quantitative protein analysis was used to evaluate protein expression. BMSC osteogenic differentiation was detected by ALP staining, Alizarin Red solution staining and RT-PCR. ACP NPs were safe to macrophages but promoted autophagy and induced ROS production at high concentrations. ACP NPs changed morphology of macrophages and induced polarization into M1 type, thus promoting the expression of inflammatory cytokines. ACP NPs/macrophage-modulated environments weakened the osteogenic ability of BMSCs. ACP NPs polarize macrophages into the M1 phenotype and change the cytokine secretion pattern. ACP NPs/macrophage-modulated environments weaken the osteogenic ability of BMSCs. ACP NPs may cause aseptic inflammation and attenuate osteogenesis.
Collapse
Affiliation(s)
- Liangjiao Chen
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
- Department of Orthodontics, Affilicated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regeneartive Medicine, Guangzhou, 510140, China
| | - Pengyan Qiao
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Hongchen Liu
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| | - Longquan Shao
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
11
|
Huo SC, Yue B. Approaches to promoting bone marrow mesenchymal stem cell osteogenesis on orthopedic implant surface. World J Stem Cells 2020; 12:545-561. [PMID: 32843913 PMCID: PMC7415248 DOI: 10.4252/wjsc.v12.i7.545] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/13/2020] [Accepted: 05/30/2020] [Indexed: 02/06/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) play a critical role in the osseointegration of bone and orthopedic implant. However, osseointegration between the Ti-based implants and the surrounding bone tissue must be improved due to titanium’s inherent defects. Surface modification stands out as a versatile technique to create instructive biomaterials that can actively direct stem cell fate. Here, we summarize the current approaches to promoting BMSC osteogenesis on the surface of titanium and its alloys. We will highlight the utilization of the unique properties of titanium and its alloys in promoting tissue regeneration, and discuss recent advances in understanding their role in regenerative medicine. We aim to provide a systematic and comprehensive review of approaches to promoting BMSC osteogenesis on the orthopedic implant surface.
Collapse
Affiliation(s)
- Shi-Cheng Huo
- Department of Bone and Joint Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Bing Yue
- Department of Bone and Joint Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
12
|
Razzi F, Fratila-Apachitei LE, Fahy N, Bastiaansen-Jenniskens YM, Apachitei I, Farrell E, Zadpoor AA. Immunomodulation of surface biofunctionalized 3D printed porous titanium implants. ACTA ACUST UNITED AC 2020; 15:035017. [PMID: 32069447 DOI: 10.1088/1748-605x/ab7763] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Additive manufacturing (AM) techniques have provided many opportunities for the rational design of porous metallic biomaterials with complex and precisely controlled topologies that give rise to unprecedented combinations of mechanical, physical, and biological properties. These favorable properties can be enhanced by surface biofunctionalization to enable full tissue regeneration and minimize the risk of implant-associated infections (IAIs). There is, however, an increasing need to investigate the immune responses triggered by surface biofunctionalized AM porous metals. Here, we studied the immunomodulatory effects of AM porous titanium (Ti-6Al-4V) printed using selective laser melting, and of two additional groups consisting of AM implants surface biofunctionalized using plasma electrolytic oxidation (PEO) with/without silver nanoparticles. The responses of human primary macrophages and human mesenchymal stromal cells (hMSCs) were studied in terms of cell viability, cell morphology and biomarkers of macrophage polarization. Non-treated AM porous titanium triggered a strong pro-inflammatory response in macrophages, albeit combined with signs of anti-inflammatory effects. The PEO treatment of AM porous titanium implants showed a higher potential to induce polarization towards a pro-repair macrophage phenotype. We detected no cytotoxicity against hMSCs in any of the groups. However, the incorporation of silver nanoparticles resulted in strong cytotoxicity against attached macrophages. The results of this study indicate the potential immunomodulatory effects of the AM porous titanium enhanced with PEO treatment, and point towards caution and further research when using silver nanoparticles for preventing IAIs.
Collapse
Affiliation(s)
- F Razzi
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands. Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, Dr Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
13
|
Tan Y, Wei Z, Chen J, An J, Li M, Zhou L, Men Y, Zhao S. Save your gut save your age: The role of the microbiome in stem cell ageing. J Cell Mol Med 2019; 23:4866-4875. [PMID: 31207055 PMCID: PMC6653314 DOI: 10.1111/jcmm.14373] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/06/2019] [Accepted: 04/21/2019] [Indexed: 12/14/2022] Open
Abstract
The tremendous importance of microbiota in microbial homoeostasis, alterations in metabolism and both innate and adaptive immune systems has been well established. A growing body of evidence support that dysbiosis or compositional changes in gut microbiota is linked to the ageing of stem cells in terms of dysregulations of metabolism, aberrant activation of the immune system as well as promoting epigenetic instability of stem cell. In this concise review, we elucidate recent emerging topics on microbiotic alterations and underlying mechanisms in stem cell ageing.
Collapse
Affiliation(s)
- Yi Tan
- Obstetrics and gynecology department, Dongguan nancheng hospital, Dongguan, China
| | - Zongke Wei
- Shenzhen Rekindle Biotech Co., Ltd., Shenzhen, China
| | - Jiaoliu Chen
- Obstetrics and gynecology department, Dongguan nancheng hospital, Dongguan, China
| | - Junli An
- Obstetrics and gynecology department, Dongguan nancheng hospital, Dongguan, China
| | - Manling Li
- Obstetrics and gynecology department, Dongguan nancheng hospital, Dongguan, China
| | - Liuyun Zhou
- Obstetrics and gynecology department, Dongguan nancheng hospital, Dongguan, China
| | - Yanhua Men
- Obstetrics and gynecology department, Dongguan nancheng hospital, Dongguan, China
| | - Shan Zhao
- Shenzhen Rekindle Biotech Co., Ltd., Shenzhen, China
| |
Collapse
|
14
|
Zhang Y, Guo T, Li Q, Qin J, Ding X, Ye S, Zhao J, Zhou Y. Novel ultrafine-grained β-type Ti-28Nb-2Zr-8Sn alloy for biomedical applications. J Biomed Mater Res A 2019; 107:1628-1639. [PMID: 30916874 DOI: 10.1002/jbm.a.36679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/18/2019] [Accepted: 03/15/2019] [Indexed: 12/23/2022]
Abstract
Titanium alloys are widely accepted as orthopedic or dental implant materials in the medical field. It is important to evaluate the biocompatibility of an implant material prior to use. A new β-type ultrafine-grained Ti-28Nb-2Zr-8Sn (TNZS) alloy with low Young's modulus of 31.6 GPa was fabricated. This study aims to evaluate the biocompatibility of TNZS alloy. In this study, we examined the microstructure, chemical composition and surface wettability of the TNZS alloy. The mouse embryonic osteoblast MC3T3-E1 cells and human umbilical vein endothelial cells (HUVECs) were cultured to study the cytocompatibility of TNZS alloy. Also, we evaluated the proinflammatory response of TNZS alloy in vitro and in vivo. The results show that the TNZS did not cause cytotoxicity, genotoxicity to MC3T3-E1 cells and HUVECs. Whereas, the TNZS alloy could significantly promote the cell proliferation, cell spreading and cell adhesion of MC3T3-E1 cells and HUVECs, as well as facilitate the osteogenic differentiation of MC3T3-E1 cells. Moreover, the TNZS alloy did not induce any remarkable proinflammatory response in vitro and in vivo. Thus, the novel TNZS alloy with an elasticity closer to that of human bone is biologically safe and could be a potential candidate for biomedical implant application. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1628-1639, 2019.
Collapse
Affiliation(s)
- Yidi Zhang
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Tianqi Guo
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Qiushi Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China.,Department of VIP, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Jie Qin
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Xinxin Ding
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Shan Ye
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Jinghui Zhao
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Yanmin Zhou
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| |
Collapse
|
15
|
Lyu M, Zheng Y, Jia L, Zheng Y, Liu Y, Lin Y, Di P. Genome-wide DNA-methylation profiles in human bone marrow mesenchymal stem cells on titanium surfaces. Eur J Oral Sci 2019; 127:196-209. [PMID: 30791149 DOI: 10.1111/eos.12607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2018] [Indexed: 12/22/2022]
Abstract
The characteristics of titanium (Ti) have been shown to influence dental implant fixation. Treatment of surfaces using the sandblasted, large-grit, acid-etched (SLA) method is widely used to provide effective osseointegration. However, the DNA methylation-associated mechanism by which SLA surface treatment affects osseointegration of human bone marrow mesenchymal stem cells (hBMSCs) remains elusive. Genome-wide methylation profiling of hBMSCs on SLA-treated and machined smooth Ti was performed using Illumina Infinium Methylation EPIC BeadChip at day 7 of osteogenic induction. In total, 2,846 CpG sites were differentially methylated in the SLA group compared with the machined group. Of these sites, 1,651 (covering 1,066 genes) were significantly hypermethylated and 1,195 (covering 775 genes) were significantly hypomethylated. Thirty significant enrichment pathways were observed, with Wnt signaling being the most significant. mRNA expression was identified by microarray and combined with DNA-methylation profiles. Thirty-seven genes displayed negative association between mRNA expression and DNA-methylation level, with the osteogenesis-related genes insulin-like growth factor 2 (IGF2) and carboxypeptidase X, M14 Family Member 2 (CPXM2) showing significant up-regulation and down-regulation, respectively. In summary, our results demonstrate differences between SLA-treated and machined surfaces in their effects on genome-wide DNA methylation and enrichment of osteogenic pathways in hBMSCs. We provide novel insights into genes and pathways affected by SLA treatment in hBMSCs at the molecular level.
Collapse
Affiliation(s)
- Mingyue Lyu
- Department of Implantology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Lingfei Jia
- Department of Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yan Zheng
- Department of Implantology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yanping Liu
- Department of Implantology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Ye Lin
- Department of Implantology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Ping Di
- Department of Implantology, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
16
|
Menzyanova NG, Pyatina SА, Nikolaeva ED, Shabanov AV, Nemtsev IV, Stolyarov DP, Dryganov DB, Sakhnov EV, Shishatskaya EI. Screening of biopolymeric materials for cardiovascular surgery toxicity-Evaluation of their surface relief with assessment of morphological aspects of monocyte/macrophage polarization in atherosclerosis patients. Toxicol Rep 2018; 6:74-90. [PMID: 30581762 PMCID: PMC6297908 DOI: 10.1016/j.toxrep.2018.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 12/16/2022] Open
Abstract
The morphotypes of human macrophages (MPh) were studied in the culture on nano-structured biopolymer substrates, made from polyhydroxyalcanoates (PHAs) of five various monomer compositions, followed by the solvent evaporation. Its surface relief, which was further in direct contact with human cells in vitro, was analyzed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). It was shown, that the features of the micro/nano relief depend on the monomeric composition of the polymer substrates. Monocytes (MN) of patients with atherosclerosis and cardiac ischemia, undergoing stenting and conventional anti-atherosclerotic therapy, were harvested prior and after stenting. MN were isolated and cultured, with the transformation into MPh in direct contact with biopolymer culture substrates with different monomer composition and nano-reliefs, and transformed into MPh, in comparison with the same process on standard culture plastic. Sub-populations of cells with characteristic morphology in each phenotypic class were described, and their quantitative ratios for each sample of polymers were counted as an intermediate result in the development of "smart" material for cardiovascular devices. The results obtained allow us to assume, that the processes of MPh differentiation and polarization in vitro depend not only on the features of the micro/nano relief of biopolymer substrates, but also on the initial state of MN in vivo and general response of patients.
Collapse
Key Words
- AFM, atomic force microscopy
- Atherosclerosis
- Cell morphology
- Intravascular stenting
- MN, monocytes
- MOC, mononuclear cells
- MPh, macrophages
- MUC, multinucleated cells
- Macrophages
- Monocytes
- P(3HB), poly-3-hydroxybutyrate
- P(3HB/3HV), copolymers of 3-hydroxybutyrate and 3-hydroxyvalerate
- P(3HB/3HV/3HHx), copolymers of 3-hydroxybutyrate, 3-hydroxyvalerate and 3-hydroxyhexanoate
- P(3HB/3HV/4HB/3HHx), copolymers of 3-hydroxybutyrate, 3-hydroxyvalerate, 4-hydroxybutyrate and 3-hydroxyhexanoate
- P(3HB/4HB), copolymers of 3-hydroxybutyrate and 4-hydroxybutyrate
- PHAs, polyhydroxyalcanoates
- Polyhydroxyalkanoates
- SEM, scanning electron microscopy
Collapse
Affiliation(s)
| | | | - Elena D. Nikolaeva
- Institute of Biophysics, Siberian Branch of the Russian Academy of Sciences, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia
| | - Alexander V. Shabanov
- L.V. Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, 50/38 Akademgorodok, Krasnoyarsk, 660036, Russia
| | - Ivan V. Nemtsev
- Federal Research Center Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences, 50 Akademgorodok, Krasnoyarsk, 660036, Russia
| | - Dmitry P. Stolyarov
- Federal Center for Cardiovascular Surgery, 45 Karaulnaya, Krasnoyarsk, 660020, Russia
| | - Dmitry B. Dryganov
- Federal Center for Cardiovascular Surgery, 45 Karaulnaya, Krasnoyarsk, 660020, Russia
| | - Eugene V. Sakhnov
- Federal Center for Cardiovascular Surgery, 45 Karaulnaya, Krasnoyarsk, 660020, Russia
| | - Ekaterina I. Shishatskaya
- Siberian Federal University, 79, Svobodny av., Krasnoyarsk, 660041, Russia
- Institute of Biophysics, Siberian Branch of the Russian Academy of Sciences, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia
| |
Collapse
|
17
|
He W, Fan Y, Li X. [Recent research progress of bioactivity mechanism and application of bone repair materials]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2018; 32:1107-1115. [PMID: 30129343 PMCID: PMC8413994 DOI: 10.7507/1002-1892.201807039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/08/2018] [Indexed: 12/11/2022]
Abstract
Large bone defect repair is a difficult problem to be solved urgently in orthopaedic field, and the application of bone repair materials is a feasible method to solve this problem. Therefore, bone repair materials have been continuously developed, and have evolved from autogenous bone grafts, allograft bone grafts, and inert materials to highly active and multifunctional bone tissue engineering scaffold materials. In this paper, the related mechanism of bone repair materials, the application of bone repair materials, and the exploration of new bone repair materials are introduced to present the research status and advance of the bone repair materials, and the development direction is also prospected.
Collapse
Affiliation(s)
- Wei He
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, P.R.China;Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, P.R.China
| | - Yubo Fan
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, P.R.China;Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083,
| | - Xiaoming Li
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, P.R.China;Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083,
| |
Collapse
|