1
|
Liu W, Cheong N, He Z, Zhang T. Application of Hydroxyapatite Composites in Bone Tissue Engineering: A Review. J Funct Biomater 2025; 16:127. [PMID: 40278235 DOI: 10.3390/jfb16040127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
The treatment of bone defects is complicated by clinical conditions, such as trauma, tumor resection, and infection, which result in defects and impair the bone's regenerative capacity. Hydroxyapatite (HAp), the primary inorganic component of bone, possesses good biocompatibility and osteoconductivity. However, it has poor mechanical properties, a slow degradation rate, and limited functionality, necessitating combination with other materials to broaden its application scope. This paper summarizes the importance and properties of HAp composites and provides a categorized review of current research on HAp composites in bone tissue engineering. These composite scaffolds not only offer excellent mechanical support for cell growth and tissue regeneration but also facilitate new bone formation and vascularization. Additionally, the challenges faced by HAp composites, such as material property optimization and improvement of preparation techniques, are discussed. The paper also summarizes the applications of HAp composites in bone defect repair, dental implants, spinal fusion, and other fields.
Collapse
Affiliation(s)
- Weijie Liu
- Zhongshan Stomatological Hospital, Guangzhou 528400, China
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Nalini Cheong
- Zhongshan Stomatological Hospital, Guangzhou 528400, China
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Zhuling He
- Zhongshan Stomatological Hospital, Guangzhou 528400, China
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Tonghan Zhang
- Zhongshan Stomatological Hospital, Guangzhou 528400, China
- School of Stomatology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
2
|
Sun Y, Shi M, Niu B, Xu X, Xia W, Deng C. Mg-Sr-Ca containing bioactive glass nanoparticles hydrogel modified mineralized collagen scaffold for bone repair. J Biomater Appl 2024; 39:117-128. [PMID: 38775351 DOI: 10.1177/08853282241254741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
The aim of this study is to explore the therapeutic effects of Mg-Sr-Ca containing bioactive glass nanoparticles sodium alginate hydrogel modified mineralized collagen scaffold (Mg-Sr-Ca-BGNs-SA-MC) on the repair of osteoporotic bone defect. During the study, Mg-Sr-Ca containing bioactive glass nanoparticles (Mg-Sr-Ca-BGNs) were synthesized using the sol-gel method, and the Mg-Sr-Ca-BGNs-SA-MC scaffold was synthesized by a simple method. The Mg-Sr-Ca-BGNs and the Mg-Sr-Ca-BGNs-SA-MC scaffold were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The elements of Mg, Sr, Ca and Si were effectively integrated into Mg-Sr-Ca-BGNs. SEM analysis revealed the presence of Mg-Sr-Ca-BGNs on the scaffold's surface. Furthermore, the cytotoxicity of the scaffolds were assessed using a live/dead assay. The result of the live/dead assay demonstrated that the scaffold materials were non-toxic to cell growth. More importantly, the in vivo study indicated that implanted scaffold promoted tissue regeneration and integration with newly formed bone. Overall, the Mg-Sr-Ca-BGNs-SA-MC scaffold is suitable for guided bone regeneration and beneficial to repair of osteoporotic bone defects.
Collapse
Affiliation(s)
- Yi Sun
- Anhui Provincial Engineering Research Center for Dental Materials and Application, Wannan Medical College, Wuhu, China
- School of Stomatology, Wannan Medical College, Wuhu, China
| | - Min Shi
- Anhui Provincial Engineering Research Center for Dental Materials and Application, Wannan Medical College, Wuhu, China
- School of Stomatology, Wannan Medical College, Wuhu, China
| | - Bowen Niu
- Anhui Provincial Engineering Research Center for Dental Materials and Application, Wannan Medical College, Wuhu, China
- School of Stomatology, Wannan Medical College, Wuhu, China
| | - Xiangyang Xu
- Anhui Provincial Engineering Research Center for Dental Materials and Application, Wannan Medical College, Wuhu, China
- School of Stomatology, Wannan Medical College, Wuhu, China
| | - Wen Xia
- Anhui Provincial Engineering Research Center for Dental Materials and Application, Wannan Medical College, Wuhu, China
- School of Stomatology, Wannan Medical College, Wuhu, China
| | - Chao Deng
- Anhui Provincial Engineering Research Center for Dental Materials and Application, Wannan Medical College, Wuhu, China
- School of Stomatology, Wannan Medical College, Wuhu, China
| |
Collapse
|
3
|
Liu C, Ma N, Sun C, Shen X, Li J, Wang C. The effect of magnesium ions synergistic with mineralized collagen on osteogenesis/angiogenesis properties by modulating macrophage polarization in vitroand in vivo. Biomed Mater 2024; 19:035028. [PMID: 38518370 DOI: 10.1088/1748-605x/ad3702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 03/22/2024] [Indexed: 03/24/2024]
Abstract
In bone tissue engineering, the bone immunomodulatory properties of biomaterials are critical for bone regeneration, which is a synergistic process involving physiological activities like immune response, osteogenesis, and angiogenesis. The effect of the macrophage immune microenvironment on the osteogenesis and angiogenesis of various material extracts was examined in this experiment using Mg2+and Nano-hydroxyapatite/collagen (nHAC) in both a single application and a combined form. This studyin vitrorevealed that the two compounds combined significantly inhibited the NF-κB signaling pathway and reduced the release of inflammatory factors from macrophages when compared with the extraction phase alone. Additionally, by contributing to the polarization of macrophages towards the M2 type, the combined effects of the two materials can significantly improve osteogenesis/angiogenesis. The results ofin vivoexperiments confirmed that Mg2+/nHAC significantly promoted bone regeneration and angiogenesis. This study offers a promising method for enhancing bone graft material osseointegration.
Collapse
Affiliation(s)
- Chang Liu
- Department of Prosthodontics, Second Affiliated Hospital (Stomatological Hospital Affiliated) of Jinzhou Medical University, Jinzhou 121000, People's Republic of China
- Collaborative Innovation Center for Health Promotion of Children and Adolescents of Jinzhou Medical University, Jinzhou 121000, People's Republic of China
| | - Nan Ma
- Department of Prosthodontics, Second Affiliated Hospital (Stomatological Hospital Affiliated) of Jinzhou Medical University, Jinzhou 121000, People's Republic of China
- Collaborative Innovation Center for Health Promotion of Children and Adolescents of Jinzhou Medical University, Jinzhou 121000, People's Republic of China
| | - Changan Sun
- Department of Prosthodontics, Second Affiliated Hospital (Stomatological Hospital Affiliated) of Jinzhou Medical University, Jinzhou 121000, People's Republic of China
| | - Xuecheng Shen
- Department of Prosthodontics, Second Affiliated Hospital (Stomatological Hospital Affiliated) of Jinzhou Medical University, Jinzhou 121000, People's Republic of China
| | - Jinwei Li
- School of Basic Medicine, Jinzhou Medical University, Jinzhou 121000, People's Republic of China
| | - Chengyue Wang
- Department of Prosthodontics, Second Affiliated Hospital (Stomatological Hospital Affiliated) of Jinzhou Medical University, Jinzhou 121000, People's Republic of China
- Collaborative Innovation Center for Health Promotion of Children and Adolescents of Jinzhou Medical University, Jinzhou 121000, People's Republic of China
| |
Collapse
|
4
|
Zhu W, Li W, Yao M, Wang Y, Zhang W, Li C, Wang X, Chen W, Lv H. Mineralized Collagen/Polylactic Acid Composite Scaffolds for Load-Bearing Bone Regeneration in a Developmental Model. Polymers (Basel) 2023; 15:4194. [PMID: 37896438 PMCID: PMC10610794 DOI: 10.3390/polym15204194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/23/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Repairing load-bearing bone defects in children remains a big clinical challenge. Mineralized collagen (MC) can effectively simulate natural bone composition and hierarchical structure and has a good biocompatibility and bone conductivity. Polylactic acid (PLA) is regarded as a gold material because of its mechanical properties and degradability. In this study, we prepare MC/PLA composite scaffolds via in situ mineralization and freeze-drying. Cell, characterization, and animal experiments compare and evaluate the biomimetic properties and repair effects of the MC/PLA scaffolds. Phalloidin and DAPI staining results show that the MC/PLA scaffolds are not cytotoxic. CCK-8 and scratch experiments prove that the scaffolds are superior to MC and hydroxyapatite (HA)/PLA scaffolds in promoting cell proliferation and migration. The surface and interior of the MC/PLA scaffolds exhibit rich interconnected pore structures with a porosity of ≥70%. The XRD patterns are typical HA waveforms. X-ray, micro-CT, and H&E staining reveal that the defect boundary disappears, new bone tissue grows into MC/PLA scaffolds in a large area, and the scaffolds are degraded after six months of implantation. The MC/PLA composite scaffold has a pore structure and composition similar to cancellous bone, with a good biocompatibility and bone regeneration ability.
Collapse
Affiliation(s)
- Wenbo Zhu
- Department of Orthopaedic Surgery, Hebei Medical University Third Hospital, No. 139 Ziqiang Road, Shijiazhuang 050051, China; (W.Z.); (W.L.); (M.Y.); (Y.W.); (C.L.)
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No. 139 Ziqiang Road, Shijiazhuang 050051, China
- National Health Commission Key Laboratory of Intelligent Orthopaedic Equipment, Hebei Medical University Third Hospital, No. 139 Ziqiang Road, Shijiazhuang 050051, China
| | - Wenjing Li
- Department of Orthopaedic Surgery, Hebei Medical University Third Hospital, No. 139 Ziqiang Road, Shijiazhuang 050051, China; (W.Z.); (W.L.); (M.Y.); (Y.W.); (C.L.)
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No. 139 Ziqiang Road, Shijiazhuang 050051, China
- National Health Commission Key Laboratory of Intelligent Orthopaedic Equipment, Hebei Medical University Third Hospital, No. 139 Ziqiang Road, Shijiazhuang 050051, China
| | - Mengxuan Yao
- Department of Orthopaedic Surgery, Hebei Medical University Third Hospital, No. 139 Ziqiang Road, Shijiazhuang 050051, China; (W.Z.); (W.L.); (M.Y.); (Y.W.); (C.L.)
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No. 139 Ziqiang Road, Shijiazhuang 050051, China
- National Health Commission Key Laboratory of Intelligent Orthopaedic Equipment, Hebei Medical University Third Hospital, No. 139 Ziqiang Road, Shijiazhuang 050051, China
| | - Yan Wang
- Department of Orthopaedic Surgery, Hebei Medical University Third Hospital, No. 139 Ziqiang Road, Shijiazhuang 050051, China; (W.Z.); (W.L.); (M.Y.); (Y.W.); (C.L.)
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No. 139 Ziqiang Road, Shijiazhuang 050051, China
- National Health Commission Key Laboratory of Intelligent Orthopaedic Equipment, Hebei Medical University Third Hospital, No. 139 Ziqiang Road, Shijiazhuang 050051, China
| | - Wei Zhang
- Department of Pathology, Hebei Medical University, No. 361 Zhongshan Road, Shijiazhuang 050017, China;
| | - Chao Li
- Department of Orthopaedic Surgery, Hebei Medical University Third Hospital, No. 139 Ziqiang Road, Shijiazhuang 050051, China; (W.Z.); (W.L.); (M.Y.); (Y.W.); (C.L.)
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No. 139 Ziqiang Road, Shijiazhuang 050051, China
- National Health Commission Key Laboratory of Intelligent Orthopaedic Equipment, Hebei Medical University Third Hospital, No. 139 Ziqiang Road, Shijiazhuang 050051, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, No. 30 Shuangqing Road, Beijing 100084, China;
| | - Wei Chen
- Department of Orthopaedic Surgery, Hebei Medical University Third Hospital, No. 139 Ziqiang Road, Shijiazhuang 050051, China; (W.Z.); (W.L.); (M.Y.); (Y.W.); (C.L.)
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No. 139 Ziqiang Road, Shijiazhuang 050051, China
- National Health Commission Key Laboratory of Intelligent Orthopaedic Equipment, Hebei Medical University Third Hospital, No. 139 Ziqiang Road, Shijiazhuang 050051, China
| | - Hongzhi Lv
- Department of Orthopaedic Surgery, Hebei Medical University Third Hospital, No. 139 Ziqiang Road, Shijiazhuang 050051, China; (W.Z.); (W.L.); (M.Y.); (Y.W.); (C.L.)
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No. 139 Ziqiang Road, Shijiazhuang 050051, China
- National Health Commission Key Laboratory of Intelligent Orthopaedic Equipment, Hebei Medical University Third Hospital, No. 139 Ziqiang Road, Shijiazhuang 050051, China
| |
Collapse
|
5
|
Zhou S, Liu S, Wang Y, Li W, Wang J, Wang X, Wang S, Chen W, Lv H. Advances in the Study of Bionic Mineralized Collagen, PLGA, Magnesium Ionomer Materials, and Their Composite Scaffolds for Bone Defect Treatment. J Funct Biomater 2023; 14:406. [PMID: 37623651 PMCID: PMC10455784 DOI: 10.3390/jfb14080406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
The healing of bone defects after a fracture remains a key issue to be addressed. Globally, more than 20 million patients experience bone defects annually. Among all artificial bone repair materials that can aid healing, implantable scaffolds made from a mineralized collagen (MC) base have the strongest bionic properties. The MC/PLGA scaffold, created by adding Poly (lactic-co-glycolic acid) copolymer (PLGA) and magnesium metal to the MC substrate, plays a powerful role in promoting fracture healing because, on the one hand, it has good biocompatibility similar to that of MC; on the other hand, the addition of PLGA provides the scaffold with an interconnected porous structure, and the addition of magnesium allows the scaffold to perform anti-inflammatory, osteogenic, and angiogenic activities. Using the latest 3D printing technology for scaffold fabrication, it is possible to model the scaffold in advance according to the requirement and produce a therapeutic scaffold suitable for various bone-defect shapes with less time and effort, which can promote bone tissue healing and regeneration to the maximum extent. This study reviews the material selection and technical preparation of MC/PLGA scaffolds, and the progress of their research on bone defect treatment.
Collapse
Affiliation(s)
- Shuai Zhou
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China; (S.Z.); (S.L.); (Y.W.); (W.L.)
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No. 139 Ziqiang Road, Shijiazhuang 050051, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China
| | - Shihang Liu
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China; (S.Z.); (S.L.); (Y.W.); (W.L.)
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No. 139 Ziqiang Road, Shijiazhuang 050051, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China
| | - Yan Wang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China; (S.Z.); (S.L.); (Y.W.); (W.L.)
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No. 139 Ziqiang Road, Shijiazhuang 050051, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China
| | - Wenjing Li
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China; (S.Z.); (S.L.); (Y.W.); (W.L.)
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No. 139 Ziqiang Road, Shijiazhuang 050051, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China
| | - Juan Wang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China; (S.Z.); (S.L.); (Y.W.); (W.L.)
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No. 139 Ziqiang Road, Shijiazhuang 050051, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, No. 30 Shuangqing Road, Beijing 100084, China
| | - Shuo Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, No. 30 Shuangqing Road, Beijing 100084, China
| | - Wei Chen
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China; (S.Z.); (S.L.); (Y.W.); (W.L.)
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No. 139 Ziqiang Road, Shijiazhuang 050051, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China
| | - Hongzhi Lv
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China; (S.Z.); (S.L.); (Y.W.); (W.L.)
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No. 139 Ziqiang Road, Shijiazhuang 050051, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China
| |
Collapse
|
6
|
Zhu W, Li C, Yao M, Wang X, Wang J, Zhang W, Chen W, Lv H. Advances in osseointegration of biomimetic mineralized collagen and inorganic metal elements of natural bone for bone repair. Regen Biomater 2023; 10:rbad030. [PMID: 37181680 PMCID: PMC10172150 DOI: 10.1093/rb/rbad030] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/24/2023] [Accepted: 03/16/2023] [Indexed: 05/16/2023] Open
Abstract
At this stage, bone defects caused by trauma, infection, tumor, or congenital diseases are generally filled with autologous bone or allogeneic bone transplantation, but this treatment method has limited sources, potential disease transmission and other problems. Ideal bone-graft materials remain continuously explored, and bone defect reconstruction remains a significant challenge. Mineralized collagen prepared by bionic mineralization combining organic polymer collagen with inorganic mineral calcium phosphate can effectively imitate the composition and hierarchical structure of natural bone and has good application value in bone repair materials. Magnesium, strontium, zinc and other inorganic components not only can activate relevant signaling pathways to induce differentiation of osteogenic precursor cells but also stimulate other core biological processes of bone tissue growth and play an important role in natural bone growth, and bone repair and reconstruction. This study reviewed the advances in hydroxyapatite/collagen composite scaffolds and osseointegration with natural bone inorganic components, such as magnesium, strontium and zinc.
Collapse
Affiliation(s)
| | | | - Mengxuan Yao
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, P.R. China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, Shijiazhuang 050051, P.R. China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, P.R. China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Juan Wang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, P.R. China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, Shijiazhuang 050051, P.R. China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, P.R. China
| | - Wei Zhang
- Correspondence address. E-mail: (W.Z.); (W.C.); (H.L.)
| | - Wei Chen
- Correspondence address. E-mail: (W.Z.); (W.C.); (H.L.)
| | - Hongzhi Lv
- Correspondence address. E-mail: (W.Z.); (W.C.); (H.L.)
| |
Collapse
|
7
|
Sun Y, Lin J, Li L, Jia K, Xia W, Deng C. In vitroand in vivostudy of magnesium containing bioactive glass nanoparticles modified gelatin scaffolds for bone repair. Biomed Mater 2022; 17. [PMID: 35226881 DOI: 10.1088/1748-605x/ac5949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 02/28/2022] [Indexed: 11/12/2022]
Abstract
Magnesium containing bioactive glass nanoparticles modified gelatin scaffolds (MBGNs/Gel scaffolds) have shown recently the potential for bone regeneration due to its good biocompatibility, bioresorbability and bioactivity. Nevertheless, its use is limited by its complicated manufacturing process and a relatively expensive price. In this study, MBGNs were prepared by sol-gel process. The MBGNs/Gel was synthesized by a simple immersion method. SEM, transmission electron microscopy and dynamic light scattering analysis showed that the particles had spherical morphology with mean particle size of 100 nm. The MBGNs/Gel scaffolds were observed by SEM. The scaffolds showed connected pore structure with pore size ranging from 100 to 300 μm. SEM images with high magnification showed the existence of MBGNs on the surface of micro-pores. The ion release results revealed the release of Mg, Ca and Si elements from the MBGNs. MTT assay and cytotoxicity studies indicated that, the scaffolds provide a suitable ion related micro-environment for cell attachment and spreading. The Reverse Transcription-Polymerase Chain Reaction (RT-PCR) results showed the scaffolds could promote the osteogenesis of MC3T3-E1. Thein vivostudy also showed higher amount of new bone and trabecular bone which indicated excellent bone induction and conduction property of modified scaffolds. So, the developed MBGNs/Gel scaffolds are a potential candidate for bone regeneration applications.
Collapse
Affiliation(s)
- Yi Sun
- School of Stomatology, Wannan Medical College, Wuhu, Anhui Province, People's Republic of China
| | - Jie Lin
- School of Stomatology, Wannan Medical College, Wuhu, Anhui Province, People's Republic of China
| | - LeiLei Li
- School of Stomatology, Wannan Medical College, Wuhu, Anhui Province, People's Republic of China
| | - Kai Jia
- School of Stomatology, Wannan Medical College, Wuhu, Anhui Province, People's Republic of China
| | - Wen Xia
- School of Stomatology, Wannan Medical College, Wuhu, Anhui Province, People's Republic of China
| | - Chao Deng
- School of Stomatology, Wannan Medical College, Wuhu, Anhui Province, People's Republic of China
| |
Collapse
|