1
|
Effect of Histone Acetylation on N-Methyl-D-Aspartate 2B Receptor Subunits and Interleukin-1 Receptors in Association with Nociception-Related Somatosensory Cortex Dysfunction in a Mouse Model of Sepsis. Shock 2018; 45:660-7. [PMID: 26682951 DOI: 10.1097/shk.0000000000000547] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Whole-body inflammation (i.e., sepsis) often results in brain-related sensory dysfunction. We previously reported that interleukin (IL)-1 resulted in synaptic dysfunction of septic encephalopathy, but the underlying molecular mechanisms remain unknown, as do effective treatments. Using mice, we examined immunohistochemistry, co-immunoprecipitation, enzyme-linked immunosorbent assay, and behavior analyses, and investigated the role of the N-methyl-D-aspartate 2B subunit (NR2B) of NMDA receptor, IL-1 receptor, and histone acetylation in the pathophysiology underlying sensory dysfunction induced by lipopolysaccharide (LPS). Mice groups of sham-operated, LPS, LPS with an NR2B antagonist, or LPS with resveratrol (a histone acetylation activator) were analyzed. We found that LPS increased NR2B and interleukin-1 receptor (IL-1R) immunoreactivity. The expression of Iba1, a marker for microglia and/or macrophages, increased more significantly in the brain than in the spinal cord, implicating NR2B and IL-1R in brain inflammation. Immunoprecipitation with NR2B and IL-1R revealed related antibodies. Blood levels of IL-1β (i.e., the IL-1R ligand) increased, though not significantly, suggesting that inflammation peaked at 20 h. Behavioral assessments of central (CNS) and peripheral sensory (PNS) function indicated that LPS delayed CNS but not PNS escape latency. Finally, NR2B antagonist or resveratrol in the lateral ventricle antagonized the effects of LPS in the brain and improved animal survival. In summary, histone acetylation may control expression of NR2B and IL-1R, alleviating inflammation-induced sensory neuronal dysfunction caused by LPS.
Collapse
|
2
|
Busse J, Phillips L, Schechter W. Long-Term Intravenous Ketamine for Analgesia in a Child with Severe Chronic Intestinal Graft versus Host Disease. Case Rep Anesthesiol 2015; 2015:834168. [PMID: 26779350 PMCID: PMC4686632 DOI: 10.1155/2015/834168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/29/2015] [Indexed: 11/18/2022] Open
Abstract
Ketamine is reported to be an effective adjuvant to opioids in the treatment of refractory cancer pain; however, the use of high doses of ketamine for extended periods in pediatric patients has not been described. We present a five-year-old male with grade IV intestinal GVHD whose abdominal pain required both hydromorphone and ketamine for a period of over four months. There was no evidence of hepatotoxicity, hemorrhagic cystitis, or other adverse effects. Possible withdrawal symptoms were mild and were readily mitigated by gradually weaning ketamine.
Collapse
Affiliation(s)
- Jennifer Busse
- Anesthesiology, Morgan Stanley Children's Hospital at Columbia University, New York, NY 10032, USA
| | - Leroy Phillips
- Anesthesiology, New York University Langone Medical Center, New York, NY 10016, USA
| | - William Schechter
- Anesthesiology and Pediatrics, Morgan Stanley Children's Hospital at Columbia University, New York, NY 10032, USA
| |
Collapse
|
3
|
Abstract
Antidepressant and anxiolytic drug development has largely stalled. This article reviews novel current programs for developing depressants and anxiolytics. Biological bases are discussed for these, as are recent results. Problems encountered are reviewed. Recently announced failed programs for other antidepressants are then discussed with an eye toward uncovering possible common elements that may explain their failures. Lastly, possible solutions for improving the likelihood of the success of antidepressant/anxiolytic agents are discussed.
Collapse
Affiliation(s)
- Alan F Schatzberg
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Stanford, CA 94305-5797, USA.
| |
Collapse
|
4
|
Schatzberg AF. Issues encountered in recent attempts to develop novel antidepressant agents. Ann N Y Acad Sci 2015; 1345:67-73. [DOI: 10.1111/nyas.12716] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alan F. Schatzberg
- Department of Psychiatry and Behavioral Sciences; Stanford University School of Medicine; Stanford California
| |
Collapse
|
5
|
Sanacora G, Schatzberg AF. Ketamine: promising path or false prophecy in the development of novel therapeutics for mood disorders? Neuropsychopharmacology 2015; 40:259-67. [PMID: 25257213 PMCID: PMC4443967 DOI: 10.1038/npp.2014.261] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/11/2014] [Accepted: 09/13/2014] [Indexed: 02/07/2023]
Abstract
Large 'real world' studies demonstrating the limited effectiveness and slow onset of clinical response associated with our existing antidepressant medications has highlighted the need for the development of new therapeutic strategies for major depression and other mood disorders. Yet, despite intense research efforts, the field has had little success in developing antidepressant treatments with fundamentally novel mechanisms of action over the past six decades, leaving the field wary and skeptical about any new developments. However, a series of relatively small proof-of-concept studies conducted over the last 15 years has gradually gained great interest by providing strong evidence that a unique, rapid onset of sustained, but still temporally limited, antidepressant effects can be achieved with a single administration of ketamine. We are now left with several questions regarding the true clinical meaningfulness of the findings and the mechanisms underlying the antidepressant action. In this Circumspectives piece, Dr Sanacora and Dr Schatzberg share their opinions on these issues and discuss paths to move the field forward.
Collapse
|
6
|
Mehta AK, Bhati Y, Tripathi CD, Sharma KK. Analgesic Effect of Piracetam on Peripheral Neuropathic Pain Induced by Chronic Constriction Injury of Sciatic Nerve in Rats. Neurochem Res 2014; 39:1433-9. [DOI: 10.1007/s11064-014-1329-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 05/04/2014] [Accepted: 05/07/2014] [Indexed: 12/19/2022]
|
7
|
Mehta AK, Tripathi CD. Commiphora mukul attenuates peripheral neuropathic pain induced by chronic constriction injury of sciatic nerve in rats. Nutr Neurosci 2014; 18:97-102. [PMID: 24621062 DOI: 10.1179/1476830513y.0000000104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The management of neuropathic pain remains unsatisfactory till date, despite immense advances in the therapeutic strategies. Commiphora mukul (CM), also known as Commiphora wightii, is well known in the traditional Indian system of medicine, and has been used to treat ailments such as obesity, bone fractures, arthritis, inflammation, cardiovascular diseases, and lipid disorders. The present study was performed to investigate the effect of CM on peripheral neuropathic pain in rats. METHODS Neuropathic pain was induced by the chronic constriction injury of the sciatic nerve. Following this, CM was orally administered for 2 weeks in doses of 50, 100, and 200 mg/kg, and pain assessment was performed by employing the behavioral tests for thermal hyperalgesia (hot-plate and tail-flick tests) and cold allodynia (acetone test). RESULTS Following the induction of neuropathic pain, significant development of thermal hyperalgesia and cold allodynia was observed. The administration of CM (50 mg/kg) did not have any effect on the hot-plate and tail-flick tests, but significant anti-allodynic effect was observed in the acetone test. Furthermore, administration of CM (100 mg/kg) caused significant decrease in pain as observed on the tail-flick and acetone tests, but not in the hot-plate test. CM in a dose of 200 mg/kg significantly modulated neuropathic pain as observed from the increased hot-plate and tail-flick latencies, and decreased paw withdrawal duration (in acetone test). DISCUSSION Therefore, the present study suggests that CM may be used in future as a treatment option for neuropathic pain.
Collapse
|
8
|
Abstract
This paper is the thirty-fifth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2012 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
9
|
Woller SA, Hook MA. Opioid administration following spinal cord injury: implications for pain and locomotor recovery. Exp Neurol 2013; 247:328-41. [PMID: 23501709 PMCID: PMC3742731 DOI: 10.1016/j.expneurol.2013.03.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 03/04/2013] [Accepted: 03/06/2013] [Indexed: 12/18/2022]
Abstract
Approximately one-third of people with a spinal cord injury (SCI) will experience persistent neuropathic pain following injury. This pain negatively affects quality of life and is difficult to treat. Opioids are among the most effective drug treatments, and are commonly prescribed, but experimental evidence suggests that opioid treatment in the acute phase of injury can attenuate recovery of locomotor function. In fact, spinal cord injury and opioid administration share several common features (e.g. central sensitization, excitotoxicity, aberrant glial activation) that have been linked to impaired recovery of function, as well as the development of pain. Despite these effects, the interactions between opioid use and spinal cord injury have not been fully explored. A review of the literature, described here, suggests that caution is warranted when administering opioids after SCI. Opioid administration may synergistically contribute to the pathology of SCI to increase the development of pain, decrease locomotor recovery, and leave individuals at risk for infection. Considering these negative implications, it is important that guidelines are established for the use of opioids following spinal cord and other central nervous system injuries.
Collapse
Affiliation(s)
- Sarah A Woller
- Texas A&M Institute for Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843-4235, USA.
| | | |
Collapse
|
10
|
Bredlau AL, Thakur R, Korones DN, Dworkin RH. Ketamine for pain in adults and children with cancer: a systematic review and synthesis of the literature. PAIN MEDICINE 2013; 14:1505-17. [PMID: 23915253 DOI: 10.1111/pme.12182] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Chronic cancer pain is often refractory and difficult to treat. Ketamine is a medication with evidence of efficacy in the treatment of chronic pain. DESIGN This article presents a synthesis of the data on ketamine for refractory cancer pain in adults and children. RESULTS There are five randomized, double-blind, controlled trials of ketamine use in cancer pain that demonstrate improvement in pain for some patients. There are six prospective, uncontrolled trials in cancer pain that also demonstrate improvement in pain scores for some patients. There are no randomized, controlled trials in children with cancer pain, although there are a few studies reflecting improved pain control with ketamine for children with cancer pain. Adverse events for adults on ketamine are most commonly somnolence, feelings of insobriety, nausea/vomiting, hallucinations, depersonalization/derealization, and drowsiness. However, when ketamine is combined with benzodiazepines, feelings of insobriety, hallucinations, and depersonalization/derealization are not reported. Children on ketamine have had few reported adverse effects, which include sedation, anorexia, urinary retention, and myoclonic movements. Recommended ketamine infusion dosages are from 0.05 to 0.5 mg/kg/h (intravenous or subcutaneous). Recommended oral dosages of ketamine are 0.2-0.5 mg/kg/dose two to three times daily with a maximum of 50 mg/dose three times daily. CONCLUSIONS Despite limitations in the breadth and depth of data available, there is evidence that ketamine may be a viable option for treatment-refractory cancer pain.
Collapse
Affiliation(s)
- Amy Lee Bredlau
- Departments of Pediatrics and Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | | | | | | |
Collapse
|
11
|
Oral ketamine for children with chronic pain: a pilot phase 1 study. J Pediatr 2013; 163:194-200.e1. [PMID: 23403253 PMCID: PMC3799772 DOI: 10.1016/j.jpeds.2012.12.077] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/03/2012] [Accepted: 12/21/2012] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To assess whether oral ketamine is safe at higher dosages for sedating children and whether it may be an option for the control of chronic pain in children. STUDY DESIGN A prospective study was performed on 12 children with chronic pain to identify the maximum tolerated dosage of oral ketamine. Participants were given 14 days of oral ketamine, 3 times daily, at dosages ranging from 0.25-1.5 mg/kg/dose. Participants were assessed for toxicity and for pain severity at baseline and on day 14 of treatment. RESULTS Two participants, both treated at 1.5 mg/kg/dose, experienced dose-limiting toxicities (sedation and anorexia). One participant, treated at 1 mg/kg/dose, opted to stop ketamine treatment due to new pain on treatment. Nine participants completed their course of ketamine treatment. Of these 12 children, 5 experienced improvement in their pain scores, 2 with complete resolution of pain, lasting >4 weeks off ketamine treatment. CONCLUSION Oral ketamine at dosages of 0.25-1 mg/kg/dose appears to be safe when given for 14 days to children with chronic pain.
Collapse
|
12
|
The plasticity of the association between mu-opioid receptor and glutamate ionotropic receptor N in opioid analgesic tolerance and neuropathic pain. Eur J Pharmacol 2013; 716:94-105. [PMID: 23499699 DOI: 10.1016/j.ejphar.2013.01.066] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 12/13/2012] [Accepted: 01/09/2013] [Indexed: 02/08/2023]
Abstract
Multiple groups have reported the functional cross-regulation between mu-opioid (MOP) receptor and glutamate ionotropic receptor N (GluN), and the post-synaptic association of these receptors has been implicated in the transmission and modulation of nociceptive signals. Opioids, such as morphine, disrupt the MOP receptor-GluN receptor complex to stimulate the activity of GluN receptors via protein kinase C (PKC)/Src. This increased GluN receptor activity opposes MOP receptor signalling, and via neural nitric oxide synthase (nNOS) and calcium and calmodulin regulated kinase II (CaMKII) induces the phosphorylation and uncoupling of the opioid receptor, which results in the development of morphine analgesic tolerance. Both experimental in vivo activation of GluN receptors and neuropathic pain separate the MOP receptor-GluN receptor complex via protein kinase A (PKA) and reduce the analgesic capacity of morphine. The histidine triad nucleotide-binding protein 1 (HINT1) associates with the MOP receptor C-terminus and connects the activities of MOP receptor and GluN receptor. In HINT1⁻/⁻ mice, morphine promotes enhanced analgesia and produces tolerance that is not related to GluN receptor activity. In these mice, the GluN receptor agonist N-methyl-D-aspartate acid (NMDA) does not antagonise the analgesic effects of morphine. Treatments that rescue morphine from analgesic tolerance, such as GluN receptor antagonism or PKC, nNOS and CaMKII inhibitors, all induce MOP receptor-GluN receptor re-association and reduce GluN receptor/CaMKII activity. In mice treated with NMDA or suffering from neuropathic pain (induced by chronic constriction injury, CCI), GluN receptor antagonists, PKA inhibitors or certain antidepressants also diminish CaMKII activity and restore the MOP receptor-GluN receptor association. Thus, the HINT1 protein stabilises the association between MOP receptor and GluN receptor, necessary for the analgesic efficacy of morphine, and this coupling is reduced following the activation of GluN receptors, similar to what is observed in neuropathic pain.
Collapse
|
13
|
Hronik-Tupaj M, Raja WK, Tang-Schomer M, Omenetto FG, Kaplan DL. Neural responses to electrical stimulation on patterned silk films. J Biomed Mater Res A 2013; 101:2559-72. [PMID: 23401351 DOI: 10.1002/jbm.a.34565] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 12/15/2012] [Accepted: 12/18/2012] [Indexed: 12/21/2022]
Abstract
Peripheral nerve injury is a critical issue for patients with trauma. Following injury, incomplete axon regeneration or misguided axon innervation into tissue will result in loss of sensory and motor functions. The objective of this study was to examine axon outgrowth and axon alignment in response to surface patterning and electrical stimulation. To accomplish our objective, metal electrodes with dimensions of 1.5 mm × 4 cm, were sputter coated onto micropatterned silk protein films, with surface grooves 3.5 μm wide × 500 nm deep. P19 neurons were seeded on the patterned electronic silk films and stimulated at 120 mV, 1 kHz, for 45 min each day for 7 days. Responses were compared with neurons on flat electronic silk films, patterned silk films without stimulation, and flat silk films without stimulation. Significant alignment was found on the patterned film groups compared with the flat film groups. Axon outgrowth was greater (p < 0.05) on electronic films on days 5 and 7 compared with the unstimulated groups. In conclusion, electrical stimulation, at 120 mV, 1 kHz, for 45 min daily, in addition to surface patterning, of 3.5 μm wide × 500 nm deep grooves, offered control of nerve axon outgrowth and alignment.
Collapse
Affiliation(s)
- Marie Hronik-Tupaj
- Department of Biomedical Engineering, Science & Technology Center, Tufts University, Medford, Massachusetts 02155, USA
| | | | | | | | | |
Collapse
|
14
|
Ingram SL. Association of mu-opioid and NMDA receptors in the periaqueductal gray: what does it mean for pain control? Neuropsychopharmacology 2012; 37:315-6. [PMID: 22157945 PMCID: PMC3242320 DOI: 10.1038/npp.2011.241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Susan L Ingram
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|