1
|
Gagnani R, Singh H, Suri M, Bali A. JNK inhibition mitigates sepsis-associated encephalopathy via attenuation of neuroinflammation, oxidative stress and apoptosis. Metab Brain Dis 2025; 40:148. [PMID: 40080264 DOI: 10.1007/s11011-025-01563-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/28/2025] [Indexed: 03/15/2025]
Abstract
Sepsis-associated encephalopathy (SAE) is a severe complication of sepsis, leading to cognitive dysfunction and neuronal damage. C-Jun N-terminal kinases (JNKs), a subset of the MAP kinase family, have attracted substantial interest for their role in cellular events during sepsis conditions. Previous investigations have established the involvement of JNK signaling against memory impairment and abnormal synaptic plasticity. However, the present study is the first to investigate the effects of JNK inhibition in sepsis-associated cerebral injury and cognitive impairments. This study investigated the neuroprotective effects of SP600125, a selective JNK inhibitor, in cecal ligation and puncture (CLP) mouse model of sepsis. CLP-induced sepsis resulted in significant cognitive impairments, as assessed by the open field test, inhibitory avoidance test, morris water maze, and novel object recognition test. Additionally, septic mice exhibited increased serum levels of neuronal injury markers (S100B and NSE), pro-inflammatory cytokines (TNF-α and IL-1β), and oxidative stress markers (MDA), along with decreased antioxidant levels (GSH, SOD, and CAT). Histological analysis revealed neuronal pyknosis, degeneration, and loss of Nissl bodies in the cortex and hippocampus of septic mice. Furthermore, sepsis-induced blood-brain barrier dysfunction was evident from increased cerebral edema. Treatment with SP600125 (10, 30, and 50 mg/kg) significantly attenuated CLP-induced cognitive deficits, neuronal injury, neuroinflammation, oxidative stress, and apoptosis in a dose-dependent manner. The present study provides preliminary evidence that JNK inhibition by SP600125 exerts neuroprotective effects against sepsis-induced encephalopathy in vivo via suppression of neuroinflammation, oxidative stress, and apoptosis.
Collapse
Affiliation(s)
- Riya Gagnani
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Harshita Singh
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Manisha Suri
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Anjana Bali
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India.
| |
Collapse
|
2
|
Mosa AK, Majeed S, Ghafil FA, Hadi NR. Potential cardioprotective effect of trimetazidine in mice model of endotoxemia: role of AMPK-Nrf2. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2025; 78:35-44. [PMID: 40023854 DOI: 10.36740/wlek/190820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
OBJECTIVE Aim: To clarify the potential cardioprotective effect of Trimetazidine against experimentally sepsis-caused endotoxic cardiac injury damage in mice. PATIENTS AND METHODS Materials and Methods: 24 Mice were divided into four groups (n=6): Sham group, CLP group DMSO group, trimetazidine-treated group 50 mg/kg IP, 1hr before CLP, then the animals were sacrificed 24 hr after CLP and tissue sample was taken for measurement of TNF-α, TNF-αr1, IL-1β, HO-1, MPO, caspase-11, F2-isoprostane and serum troponin by ELISA and gene expression of AMPK-Nrf2 by qpcr and histopathological study. RESULTS Results: trimetazidine treated group showed significant changes as compared with clp group regarding TNF-α, TNF-αr1, IL-1β, HO-1, MPO, CASPASE-11, F2-ISOPROSTANE as well as affect tissue mRNA expression of AMPK-Nrf2 genes p<0.05. CONCLUSION Conclusions: We evaluate that Trimetazidine has cardio protective effects due to its anti-inflammatory and anti-oxidative action. Also, trimetazidine showed a cardio-protective effect as they affect tissue mRNA expression of AMPK-Nrf2 genes.
Collapse
Affiliation(s)
- Alaa Kadhum Mosa
- PHARMACOLOGY AND THERAPEUTIC DEPARTMENT, FACULTY OF MEDICINE, UNIVERSITY OF KUFA, KUFA, IRAQ
| | - Sahar Majeed
- PHARMACOLOGY AND THERAPEUTIC DEPARTMENT, FACULTY OF MEDICINE, UNIVERSITY OF KUFA, KUFA, IRAQ
| | | | - Najah Rayish Hadi
- PHARMACOLOGY AND THERAPEUTIC DEPARTMENT, FACULTY OF MEDICINE, UNIVERSITY OF KUFA, KUFA, IRAQ
| |
Collapse
|
3
|
Gagnani R, Srivastava M, Suri M, Singh H, Shanker Navik U, Bali A. A focus on c-Jun-N-terminal kinase signaling in sepsis-associated multiple organ dysfunction: Mechanisms and therapeutic strategies. Int Immunopharmacol 2024; 143:113552. [PMID: 39536486 DOI: 10.1016/j.intimp.2024.113552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/19/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Sepsis is a life-threatening condition characterized by a widespread inflammatory response to infection, inevitably leading to multiple organ dysfunctions. Extensive research, both in vivo and in vitro, has revealed key factors contributing to sepsis, such as apoptosis, inflammation, cytokine release, oxidative stress, and systemic stress. The changes observed during sepsis-induced conditions are mainly attributed to altered signal transduction pathways, which play a critical role in cell proliferation, migration, and apoptosis. C-Jun N-terminal kinases, JNKs, and serine/threonine protein kinases in the mitogen-activated super family have gained considerable interest for their contribution to cellular events under sepsis conditions. JNK1 and JNK2 are present in various tissues like the lungs, liver, and intestine, while JNK3 is found in neurons. The JNK pathway plays a crucial role in the signal transduction of cytokines related to sepsis development, notably TNF-α and IL-1β. Activated JNK leads to apoptosis, causing tissue damage and organ dysfunction. Further, JNK activation is significant in several inflammatory conditions. Pharmacologically inhibiting JNK has been shown to prevent sepsis-associated damage across multiple organs, including the lungs, liver, intestines, heart, and kidneys. Multiple signaling pathways have been implicated in sepsis, including JNK/c-Myc, Mst1-JNK, MKK4-JNK, JNK-dependent autophagy, and Sirt1/FoxO3a. The review examines the role of JNK signaling in the development of sepsis-induced multiple-organ dysfunction through specific mechanisms. It also discusses different therapeutic approaches to target JNK. This review emphasizes the potential of JNKs as targets for the development of therapeutic agents for sepsis and the associated specific organ damage.
Collapse
Affiliation(s)
- Riya Gagnani
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India.
| | - Mukul Srivastava
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Manisha Suri
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Harshita Singh
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Uma Shanker Navik
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Anjana Bali
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India.
| |
Collapse
|
4
|
Abdelrahman RS, Abdelmageed ME. Hepatoprotective effects of the xanthine oxidase inhibitor Febuxostat against thioacetamide-induced liver injury in rats: The role of the Nrf2/ HO-1 and TLR4/ NF-κB pathways. Food Chem Toxicol 2024; 194:115087. [PMID: 39489394 DOI: 10.1016/j.fct.2024.115087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/27/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Experimental models of liver injury have been established utilizing thioacetamide (TAA), a classic liver toxic chemical that causes organ damage via oxidative stress and inflammatory induction. This study examined the impact of Febuxostat (a xanthine oxidase inhibitor; Febu, 10-15 mg/kg, orally) against TAA (500 mg/kg, i.p.) -induced liver injury in rats. Febu significantly attenuated TAA-induced alterations in liver function parameters, in addition to promoting hepatic antioxidant effects through a significant elevation of Heme-oxygenase-1(HO-1), nuclear factor erythroid 2-related factor2 (Nrf2), reduced glutathione (GSH) and superoxide dismutase (SOD) levels and reduction in hepatic malondialdehyde (MDA) content. Moreover, Febu improved the hepatic anti-inflammatory status by increasing the anti-inflammatory cytokine Interleukin (IL-10) level and reducing the levels of the pro-inflammatory cytokines (Nuclear factor kappa B (NF-κB), IL-1β, high-mobility group box1 (HMGB1), receptor for advanced glycation end products (RAGE), and toll-like receptor4 (TLR4) levels, in addition to suppressing the increased protein and mRNA expression levels of tumor necrosis factor alpha (TNF-α) and IL-6, hepatic expression of TNF-α and activated mitogen-activated protein kinases (p-JNK/p-p38 MAPK). Histopathologically, Febu markedly normalized TAA-induced alteration in liver sections. In conclusion, Febu, in a dose-dependent fashion, refines TAA-induced hepatotoxicity by enhancing antioxidant capabilities and decreasing inflammatory signals.
Collapse
Affiliation(s)
- Rehab S Abdelrahman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516, Mansoura, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Taibah University, Al-Madina Al-Munawwarah, 30001, Saudi Arabia
| | - Marwa E Abdelmageed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516, Mansoura, Egypt.
| |
Collapse
|
5
|
El-Shoura EAM, Sharkawi SMZ, Abdelzaher LA, Abdel-Wahab BA, Ahmed YH, Abdel-Sattar AR. Reno-protective effect of fenofibrate and febuxostat against vancomycin-induced acute renal injury in rats: Targeting PPARγ/NF-κB/COX-II and AMPK/Nrf2/HO-1 signaling pathways. Immunopharmacol Immunotoxicol 2024; 46:509-520. [PMID: 38918173 DOI: 10.1080/08923973.2024.2373216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Vancomycin (VCM) is used clinically to treat serious infections caused by multi-resistant Gram-positive bacteria, although its use is severely constrained by nephrotoxicity. This study investigated the possible nephroprotective effect of febuxostat (FX) and/or fenofibrate (FENO) and their possible underlying mechanisms against VCM-induced nephrotoxicity in a rat model. METHODS Male Wistar rats were randomly allocated into five groups; Control, VCM, FX, FENO, and combination groups. Nephrotoxicity was evaluated histopathologically and biochemically. The oxidative stress biomarkers (SOD, MDA, GSH, total nitrite, GPx, MPO), the apoptotic marker, renal Bcl-2 associated X protein (Bax), and inflammatory and kidney injury markers (IL-1β, IL-6, TNF-α, Nrf2, OH-1, kappa-light-chain-enhancer of activated B cells (NF-κB), NADPH oxidase, Kim-1, COX-II, NGAL, Cys-C were also evaluated. RESULTS VCM resulted in significant elevation in markers of kidney damage, oxidative stress, apoptosis, and inflammatory markers. Co-administration of VCM with either/or FX and FENO significantly mitigated nephrotoxicity and associated oxidative stress, inflammatory and apoptotic markers. In comparison to either treatment alone, a more notable improvement was observed with the FX and FENO combination regimen. CONCLUSION Our findings show that FX, FENO, and their combination regimen have a nephroprotective impact on VCM-induced kidney injury by suppressing oxidative stress, apoptosis, and the inflammatory response. Renal recovery from VCM-induced injury was accomplished by activation of Nrf2/HO-1 signaling and inhibition of NF-κB expression. This study highlights the importance of FX and FENO as effective therapies for reducing nephrotoxicity in VCM-treated patients.
Collapse
Affiliation(s)
- Ehab A M El-Shoura
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
- Department of Pharmacy Practice, Faculty of Pharmacy, Horus University in Egypt, New Damietta, Egypt
| | - Souty M Z Sharkawi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Lobna A Abdelzaher
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Basel A Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Yasmine H Ahmed
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | |
Collapse
|
6
|
Zaini A, Jawad HE, Hadi NR. Targeting VEGF using Bevacizumab attenuates sepsis-induced liver injury in a mouse model of cecal ligation and puncture. J Med Life 2023; 16:1488-1498. [PMID: 38313162 PMCID: PMC10835558 DOI: 10.25122/jml-2023-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/14/2023] [Indexed: 02/06/2024] Open
Abstract
Sepsis, a life-threatening condition resulting from an uncontrolled host response to infection, often leads to severe liver damage and remains a significant cause of mortality in critically ill patients despite advances in antibiotic therapy and resuscitation. Bevacizumab, a neutralizing antibody targeting vascular endothelial growth factor (VEGF), is approved for treating certain cancers. However, its potential impact on sepsis-related liver injury is not well understood. This study aimed to explore the potential hepatoprotective effect of Bevacizumab on sepsis-induced liver injury. Twenty-four mice were divided into four groups: a sham group subjected to a midline incision only, a cecal ligation and puncture induction (CLP) group, a vehicle-treated group that received a vehicle one hour before CLP induction, and a Bevacizumab-treated group that received Bevacizumab one hour before CLP induction. Blood samples were collected, and angiopoietin-2 (ANGPT2), alanine transaminase (ALT), and aspartate transaminase (AST) serum levels were measured. Liver tissue homogenates were analyzed for IL-6, TNFα, intracellular adhesion molecule (ICAM-1), macrophage inhibitory factor (MIF), vascular endothelial growth factor (VEGF), F2-isoprostane, and caspase-11 levels. A histological examination was performed to assess the extent of liver damage. Mice exposed to CLP had high levels of the biomarkers mentioned above with a high degree of liver injury compared to the sham group. In contrast, treatment with Bevacizumab notably reduced these markers and mitigated liver damage. In conclusion, Bevacizumab may be a protective agent against sepsis-induced liver injury.
Collapse
Affiliation(s)
- Aula Zaini
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Najaf, Iraq
| | | | - Najah Rayish Hadi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Najaf, Iraq
| |
Collapse
|
7
|
Abdel-Wahab BA, El-Shoura EAM, Shafiuddin Habeeb M, Zafaar D. Febuxostat alleviates Arsenic Trioxide-Induced renal injury in Rats: Insights on the crosstalk between NLRP3/TLR4, Sirt-1/NF-κB/TGF-β signaling Pathways, and miR-23b-3p, miR-181a-5b expression. Biochem Pharmacol 2023; 216:115794. [PMID: 37689273 DOI: 10.1016/j.bcp.2023.115794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/15/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Febuxostat (FBX), a xanthine oxidase inhibitor, is known to improve renal function and can show promise as a therapeutic agent for preventing drug-induced nephrotoxicity. This study aimed to explore the protective effect of FBX in preventing renal damage caused by arsenic trioxide (ATO) toxicity and uncover the underlying mechanisms. The researchers examined how FBX (10 mg/kg, orally) affected ATO-induced kidney injury (5 mg/kg, intraperitoneally) in rats. Kidney function and toxicity parameters in serum and oxidative stress biomarkers and inflammatory cytokine levels in renal tissue were measured. H&E staining was used to detect histopathological changes in the kidney. Network the molecular mechanisms of FBX in improving kidney injury were investigated using Western blotting and PCR techniques. The findings showed that FBX improved kidney function by inhibiting the pathological changes seen in H&E staining, decreasing levels of probed kidney function and toxicity measures in serum and tissue, and exhibiting antioxidant and anti-inflammatory effects. FBX decreased MDA, MPO, TNF-α, IL-1β, IL-6, COX-II, and NADPH oxidase levels, while increased GSH, GPx, SOD, and IL-10 levels. FBX also reduced the expression of NLRP3, ASC, TLR4, and micro-RNA 181a-5b while increased the expression of IKBα, Sirt-1, and micro-RNA 23b-3p, according to Western blotting and PCR results. In conclusion, FBX can play a vital role in reducing kidney injury in cases of ATO-induced nephrotoxicity, though more clinical research needs to be conducted.
Collapse
Affiliation(s)
- Basel A Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran P.O. Box 1988, Saudi Arabia.
| | - Ehab A M El-Shoura
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| | | | - Dalia Zafaar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University of Technology, and Information, Cairo, Egypt.
| |
Collapse
|
8
|
Chen L, Li M, Lin Y, Li Y, Liang M, Zeng K. Neutrophil elastase in dexmedetomidine alleviating sepsis-related renal injury in rats. Int Immunopharmacol 2023; 122:110441. [PMID: 37393835 DOI: 10.1016/j.intimp.2023.110441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND This research was to investigate the mechanism of neutrophil elastase (NE) in dexmedetomidine (DEX) alleviates sepsis-related renal injury in rats. METHODS Sixty healthy male SD rats aged 6-7 weeks were randomly assigned to the control group (Sham group (S group)), Model group (M group), Model + DEX group (M + DEX group), and Model + DEX + Elaspol group (M + DEX + Elaspol (sivelestat) group), with 15 rats in each group. The renal morphology and pathological changes of different groups of rats after modeling were observed, and renal tubular injury was scored. Serum samples were collected at 6 h, 12 h, and 24 h after modeling, and the rats were sacrificed. Renal function indicators, including neutrophil gelatinase-associated lipoprotein (NGAL), kidney injury molecule-1 (KIM-1), tumor necrosis factor (TNF-α), interleukin-6 (IL-6), NE, serum creatinine (SCr), and blood urea nitrogen (BUN), were analyzed by enzyme-linked immunosorbent assay at different time periods. The level of NF-кB in renal tissue was detected by immunohistochemistry. RESULTS It was revealed that the general color of renal tissue in M group was dark red, swollen, and congested, and the renal tubular epithelial cells were significantly enlarged, with obvious vacuolar degeneration and inflammatory cell infiltration. Compared with M group, the color and morphology of renal tissue in M + DEX group and M + DEX + Elaspol group were improved, and the amount of inflammatory cell infiltration was reduced. The renal tubular injury score, SCr level, BUN level, NGAL level, KIM-1 level, TNF-α, IL-6, NE level, and NF-кB level in M group were significant different from S group 12 h after the operation (P < 0.001). The renal tubular injury score, SCr level, BUN level, NGAL level, KIM-1 level, TNF-α, IL-6, NE level, and NF-кB level in M + DEX group were significant different from M group (P < 0.01). The renal tubular injury score, SCr level, BUN level, NGAL level, KIM-1 level, TNF-α, IL-6, NE level, and NF-кB level in M + DEX + Elaspol group were significant different from those in M group at 12 h after the operation (P < 0.001). CONCLUSION NE plays an active role in the reduction of sepsis-related renal injury in rats by inhibiting the inflammatory response.
Collapse
Affiliation(s)
- Lu Chen
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China; Department of Anesthesiology, Anesthesiology Research Institute, The first Affiliated Hospital of Fujian Medical University, Fuzhou 350005 Fujian, China
| | - Min Li
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, Fujian, China; Department of Anesthesiology and Perioperative Medicine, 900 Hospital of the Joint Logistic Support Force, Fuzhou, 350025 Fujian, China
| | - Yingyi Lin
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China; Department of Anesthesiology, Anesthesiology Research Institute, The first Affiliated Hospital of Fujian Medical University, Fuzhou 350005 Fujian, China
| | - Yanzhen Li
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China; Department of Anesthesiology, Anesthesiology Research Institute, The first Affiliated Hospital of Fujian Medical University, Fuzhou 350005 Fujian, China
| | - Min Liang
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China; Department of Anesthesiology, Anesthesiology Research Institute, The first Affiliated Hospital of Fujian Medical University, Fuzhou 350005 Fujian, China.
| | - Kai Zeng
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China; Department of Anesthesiology, Anesthesiology Research Institute, The first Affiliated Hospital of Fujian Medical University, Fuzhou 350005 Fujian, China.
| |
Collapse
|
9
|
Yilmaz S, Doğanyiğit Z, Oflamaz AO, Ateş Ş, Uçar S, Söylemez ESA. Detection of melatonin protective effects in sepsis via argyrophilic nucleolar regulatory region-associated protein synthesis and TLR4/NF-κB signaling pathway. Chem Biol Drug Des 2023; 101:915-926. [PMID: 36546873 DOI: 10.1111/cbdd.14199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/30/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
In this study, the protective effect of melatonin was investigated in lipopolysaccharide induced sepsis model. Twenty-eight rats were randomly divided: Control, Melatonin, LPS and LPS + Melatonin. After LPS application, surgically remove kidney and liver tissues. The level of malondialdehyde (MDA) an oxidative stress marker and the immunoreactivity of Toll-like receptor-4 (TLR4), tumor necrosis factor-α (TNF-α), and transcription factor NF-κB were evaluated immunohistochemically. Expression levels for TLR4, TNF-α, NF-kB, IL-1β (interleukin 1 beta), and IL-6 (interleukin 6) were evaluated. Additionally, Argyrophilic NOR staining was performed in tissues. Vacuolization and inflammation were more intense in the kidney and liver sections in the LPS group compared to the other groups. It was observed that vacuolization and inflammation were decreased in LPS + Melatonin applied groups. It was determined that glomerular damage was increased in the LPS and LPS-melatonin groups, but the damage rate LPS-Melatonin group was decrease in the LPS group. It was determined that the MDA level in tissues of the LPS group was importantly increased compared to other groups. Additionally, TAA/NA ratio statistically significant differences were discovered between the groups. This study supports the potential protective effects of 10 mg/kg melatonin by modulating critical markers of local immune reaction in a model of LPS-induced sepsis.
Collapse
Affiliation(s)
- Seher Yilmaz
- Department of Anatomy, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Züleyha Doğanyiğit
- Department of Histology and Embriology, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Aslı Okan Oflamaz
- Department of Histology and Embriology, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Şükrü Ateş
- Department of Anatomy, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Sümeyye Uçar
- Department of Anatomy, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Evrim Suna Arıkan Söylemez
- Department of Medical Biology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyon, Turkey
| |
Collapse
|
10
|
Matouk AI, El-Daly M, Habib HA, Senousy S, Naguib Abdel Hafez SM, Kasem AW, Almalki WH, Alzahrani A, Alshehri A, Ahmed ASF. Protective effects of menthol against sepsis-induced hepatic injury: Role of mediators of hepatic inflammation, apoptosis, and regeneration. Front Pharmacol 2022; 13:952337. [PMID: 36120368 PMCID: PMC9476320 DOI: 10.3389/fphar.2022.952337] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022] Open
Abstract
Liver dysfunction in sepsis is a major complication that amplifies multiple organ failure and increases the risk of death. Inflammation and oxidative stress are the main mediators in the pathophysiology of sepsis. Therefore, we investigated the role of menthol, a natural antioxidant, against sepsis-induced liver injury in female Wistar rats. Sepsis was induced by cecal ligation and puncture (CLP). Menthol (100 mg/kg) was given intragastric 2 h after CLP. Blood samples and liver tissues were collected 24 h after surgery. Menthol significantly (p < 0.05) attenuated the sepsis-induced elevation in serum liver enzymes and improved the hepatic histopathological changes. Menthol treatment significantly (p < 0.05) decreased hepatic levels of tumor necrosis factor-alpha, malondialdehyde, total nitrite, and cleaved caspase-3. It restored the hepatic levels of superoxide dismutase and reduced glutathione. Additionally, menthol significantly (p < 0.05) increased hepatic levels of B-cell lymphoma 2 (Bcl-2); an anti-apoptotic factor, and proliferating cell nuclear antigen (PCNA), a biomarker of regeneration and survival. Our results showed the therapeutic potential of menthol against liver injury induced by sepsis.
Collapse
Affiliation(s)
- Asmaa I. Matouk
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minya, Egypt
| | - Mahmoud El-Daly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minya, Egypt
| | - Heba A. Habib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minya, Egypt
| | - Shaymaa Senousy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minya, Egypt
| | | | - AlShaimaa W. Kasem
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Minya, Egypt
| | - Waleed Hassan Almalki
- Department of Pharmacology and Toxicology, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdulaziz Alzahrani
- Department of Pharmacology and Toxicology, College of Clinical Pharmacy, AlBaha University, Al Bahah, Saudi Arabia
| | - Ahmed Alshehri
- Department of Pharmacology and Toxicology, College of Clinical Pharmacy, AlBaha University, Al Bahah, Saudi Arabia
| | - Al-Shaimaa F. Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minya, Egypt
- *Correspondence: Al-Shaimaa F. Ahmed,
| |
Collapse
|
11
|
Inhibition of Xanthine Oxidase Protects against Sepsis-Induced Acute Kidney Injury by Ameliorating Renal Hypoxia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4326695. [PMID: 35873795 PMCID: PMC9307393 DOI: 10.1155/2022/4326695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 06/15/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022]
Abstract
Xanthine oxidase (XO) utilizes molecular oxygen as a substrate to convert purine substrates into uric acid, superoxide, and hydrogen peroxide, which is one of the main enzyme pathways to produce reactive oxygen species (ROS) during septic inflammation and oxidative stress. However, it is not clear whether XO inhibition can improve sepsis-induced renal hypoxia in sepsis-induced acute kidney injury (SI-AKI) mice. In this study, pretreatment with febuxostat, an XO-specific inhibitor, or kidney knockdown of XO by shRNA in vivo significantly improved the prognosis of SI-AKI, not only by reducing the levels of blood urea nitrogen, serum creatinine, tumor necrosis factor-α, interleukin-6, and interleukin-1β in peripheral blood but also by improving histological damage and apoptosis, reducing the production of ROS, and infiltrating neutrophils and macrophages in the kidney. More importantly, we found that pharmacological and genetic inhibition of XO significantly improved renal hypoxia in SI-AKI mice by a hypoxia probe via fluorescence staining. This effect was further confirmed by the decrease in hypoxia-inducible factor-1α expression in the kidneys of mice with pharmacological and genetic inhibition of XO. In vitro, the change in XO activity induced by lipopolysaccharide was related to the change in hypoxia in HK-2 cells. Febuxostat and XO siRNA significantly relieved the hypoxia of HK-2 cells cultured in 2% oxygen and reversed the decrease in cell viability induced by lipopolysaccharide. Our results provide novel insights into the nephroprotection of XO inhibition in SI-AKI, improving cell hypoxia by inhibiting XO activity and reducing apoptosis, inflammation, and oxidative stress.
Collapse
|
12
|
Ding X, Tong R, Song H, Sun G, Wang D, Liang H, Sun J, Cui Y, Zhang X, Liu S, Cheng M, Sun T. Identification of metabolomics-based prognostic prediction models for ICU septic patients. Int Immunopharmacol 2022; 108:108841. [DOI: 10.1016/j.intimp.2022.108841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022]
|
13
|
Yang HY, Hsu YSO, Lee TH, Wu CY, Tsai CY, Chou LF, Tu HT, Huang YT, Chang SH, Yen CL, Hsieh MH, Lee CC, Kuo G, Hsiao CY, Lin HL, Chen JJ, Yen TH, Chen YC, Tian YC, Yang CW, Anderson GF. Reduced Risk of Sepsis and Related Mortality in Chronic Kidney Disease Patients on Xanthine Oxidase Inhibitors: A National Cohort Study. Front Med (Lausanne) 2022; 8:818132. [PMID: 35174186 PMCID: PMC8841527 DOI: 10.3389/fmed.2021.818132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
Background Advanced chronic kidney disease (CKD) patients are at higher risk of sepsis-related mortality following infection and bacteremia. Interestingly, the urate-lowering febuxostat and allopurinol, both xanthine oxidase inhibitors (XOis), have been suggested to influence the sepsis course in animal studies. In this study, we aim to investigate the relationship between XOis and infection/sepsis risk in pre-dialysis population. Methods Pre-dialysis stage 5 CKD patients with gout were identified through the National Health Insurance Research Database (NHIRD) in Taiwan from 2012 to 2016. Outcomes were also compared with national data. Results In our nationwide, population-based cohort study, 12,786 eligible pre-dialysis stage 5 CKD patients were enrolled. Compared to non-users, febuxostat users and allopurinol users were associated with reduced sepsis/infection risk [hazard ratio (HR), 0.93; 95% confidence interval (CI), 0.87–0.99; P = 0.0324 vs. HR, 0.92; 95% CI, 0.86–0.99; P = 0.0163]. Significant sepsis/infection-related mortality risk reduction was associated with febuxostat use (HR, 0.68; 95% CI, 0.52–0.87). Subgroup analysis demonstrated preference of febuxostat over allopurinol in sepsis/infection-related mortality among patients younger than 65 years of age, stain users, non-steroidal anti-inflammatory drug non-users, and non-diabetics. There was no significant difference in major adverse cardiac and cerebrovascular event (MACCE) risk between users and non-users while reduced risk of all-cause mortality was observed for XOi users. Conclusions Use of XOi in pre-dialysis stage 5 CKD patients may be associated with reduced risk of sepsis/infection and their related mortality without increased MACCE and overall mortality.
Collapse
Affiliation(s)
- Huang-Yu Yang
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Nephrology Department, Kidney Research Institute, Chang Gung Memorial Hospital in Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yun-Shiuan Olivia Hsu
- Department of Medical Education, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Dermatology, National Taiwan University Hospital, Taipei, Taiwan
| | - Tao Han Lee
- Nephrology Department, Kidney Research Institute, Chang Gung Memorial Hospital in Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chao-Yi Wu
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chung-Ying Tsai
- Nephrology Department, Kidney Research Institute, Chang Gung Memorial Hospital in Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Li-Fang Chou
- Nephrology Department, Kidney Research Institute, Chang Gung Memorial Hospital in Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Hui-Tzu Tu
- Center for Big Data Analytics and Statistics, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Yu-Tung Huang
- Center for Big Data Analytics and Statistics, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Shang-Hung Chang
- Center for Big Data Analytics and Statistics, Chang Gung Memorial Hospital, Linkou, Taiwan
- Cardiovascular Department, Chang Gung Memorial Hospital at Linkou, Chang Gung University School of Medicine, Taoyuan, Taiwan
- Graduate Institute of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Chieh-Li Yen
- Nephrology Department, Kidney Research Institute, Chang Gung Memorial Hospital in Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Meng-Hsuan Hsieh
- Division of Nephrology, Department of Internal Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Cheng-Chia Lee
- Nephrology Department, Kidney Research Institute, Chang Gung Memorial Hospital in Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - George Kuo
- Nephrology Department, Kidney Research Institute, Chang Gung Memorial Hospital in Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chih-Yen Hsiao
- Division of Nephrology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Hsing-Lin Lin
- Division of Critical Care Surgery, Department of Critical Care Medicine, Veterans General Hospital, Kaohsiung, Taiwan
| | - Jia-Jin Chen
- Nephrology Department, Kidney Research Institute, Chang Gung Memorial Hospital in Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Tzung-Hai Yen
- Nephrology Department, Kidney Research Institute, Chang Gung Memorial Hospital in Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yung-Chang Chen
- Nephrology Department, Kidney Research Institute, Chang Gung Memorial Hospital in Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ya-Chong Tian
- Nephrology Department, Kidney Research Institute, Chang Gung Memorial Hospital in Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chih-Wei Yang
- Nephrology Department, Kidney Research Institute, Chang Gung Memorial Hospital in Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Gerard F. Anderson
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- *Correspondence: Gerard F. Anderson
| |
Collapse
|
14
|
Kose D, Un H, Ugan RA, Halici Z, Cadirci E, Tastan TB, Kahramanlar A. Aprepitant: an antiemetic drug, contributes to the prevention of acute lung injury with its anti-inflammatory and antioxidant properties. J Pharm Pharmacol 2021; 73:1302-1309. [PMID: 34160038 DOI: 10.1093/jpp/rgab088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/20/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVES We investigated, the effects of aprepitant (APRE) on the lung tissues of rats with an experimental polymicrobial sepsis model (CLP: cecal ligation and puncture) biochemically, molecularly and histopathologically. METHODS A total of 40 rats were divided into 5 groups with 8 animals in each group. Group 1 (SHAM), control group; Group 2 (CLP), cecal ligation and puncture; Group 3 (CLP + APRE10), rats were administered CLP + 10 mg/kg aprepitant; Group 4 (CLP + APRE20), rats were administered CLP + 20 mg/kg aprepitant; and Group 5 (CLP + APRE40), rats were administered CLP + 40 mg/kg aprepitant. A polymicrobial sepsis model was induced with CLP. After 16 h, lung tissues were taken for examination. Tumour necrosis factor α (TNF-α) and nuclear factor-kappa b (NFK-b) messenger ribonucleic acid (mRNA) expressions were analysed by real-time PCR (RT-PCR), biochemically antioxidant parameters such as superoxide dismutase (SOD) and glutathione (GSH) and oxidant parameters such as malondialdehyde (MDA) and lung damage histopathologically. KEY FINDINGS AND CONCLUSIONS The GSH level and SOD activity increased while the MDA level and the expressions of TNF-α and NFK-b were reduced in the groups treated with APRE, especially in the CLP + APRE40 group. The histopathology results supported the molecular and biochemical results.
Collapse
Affiliation(s)
- Duygu Kose
- Clinical Research, Development and Design Application, and Research Center, Ataturk University, Erzurum, Turkey
| | - Harun Un
- Faculty of Pharmacy, Department of Biochemistry, Agri İbrahim Çeçen University, Ağrı, Turkey
| | - Rustem Anil Ugan
- Faculty of Pharmacy, Department of Pharmacology, Atatürk University, Erzurum, Turkey
| | - Zekai Halici
- Clinical Research, Development and Design Application, and Research Center, Ataturk University, Erzurum, Turkey
| | - Elif Cadirci
- Faculty of Medicine, Department of Pharmacology, Atatürk University, Erzurum, Turkey
| | - Tugba Bal Tastan
- Faculty of Medicine, Department of Histology and Embryology Department, Binali Yıldırım University, Erzincan, Turkey
| | - Aysenur Kahramanlar
- Faculty of Pharmacy, Department of Biochemistry, Ataturk University, Erzurum, Turkey
| |
Collapse
|
15
|
Veljković A, Hadži- Đokić J, Sokolović D, Čukuranović R, Čukuranović-Kokoris J, Bašić D, Đorđević B, Stojanović M, Šmelcerović A, Kocić G. Local and Systemic Oxidative Stress in Balkan Endemic Nephropathy Is Not Associated with Xanthine Oxidase Activity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8209727. [PMID: 32908640 PMCID: PMC7450339 DOI: 10.1155/2020/8209727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/09/2020] [Accepted: 07/25/2020] [Indexed: 11/18/2022]
Abstract
Balkan endemic nephropathy (BEN) represents a chronic tubulointerstitial nephropathy which is followed by the progression of kidney fibrosis to end-stage kidney failure. The critical involvement of poisons in food (aristolochic acid (AA), ochratoxin, and heavy metals) and selenium deficiency are among nutritive factors which contribute to the pathogenesis of BEN, due to reactive oxygen species (ROS) liberation and/or decreased antioxidative defence system. The aim of the study is to distinguish a possible systemic and local origin of ROS through the measurement of xanthine oxidase (XO) activity in urine and plasma, along with the determination of the oxidative changes in lipids and proteins. The study included 50 patients with BEN and 38 control healthy subjects. We noted increased levels of both thiobarbituric acid-reactive substances (TBARS) and advanced oxidation protein products (AOPPs) in the plasma of patients with BEN, compared to the control group (p < 0.001). The urinary levels of AOPPs were higher in patients with BEN in comparison to the control (p < 0.001). The specific activity of XO was significantly lower in plasma and urine in BEN samples, compared to controls (p < 0.005). Based on these results, we hypothesize that XO might not be considered a direct systemic or local contributor to ROS production in BEN, most probably because of the diminished kidney functional tissue mass and/or AA-induced changes in purine nucleotide conformation. The increased AOPP and TBARS level in both plasma and urine in BEN may predict ROS systemic liberation with toxic local effects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Gordana Kocić
- Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| |
Collapse
|