1
|
Camponeschi C, Righino B, Pirolli D, Semeraro A, Ria F, De Rosa MC. Prediction of CD44 Structure by Deep Learning-Based Protein Modeling. Biomolecules 2023; 13:1047. [PMID: 37509083 PMCID: PMC10376988 DOI: 10.3390/biom13071047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/19/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
CD44 is a cell surface glycoprotein transmembrane receptor that is involved in cell-cell and cell-matrix interactions. It crucially associates with several molecules composing the extracellular matrix, the main one of which is hyaluronic acid. It is ubiquitously expressed in various types of cells and is involved in the regulation of important signaling pathways, thus playing a key role in several physiological and pathological processes. Structural information about CD44 is, therefore, fundamental for understanding the mechanism of action of this receptor and developing effective treatments against its aberrant expression and dysregulation frequently associated with pathological conditions. To date, only the structure of the hyaluronan-binding domain (HABD) of CD44 has been experimentally determined. To elucidate the nature of CD44s, the most frequently expressed isoform, we employed the recently developed deep-learning-based tools D-I-TASSER, AlphaFold2, and RoseTTAFold for an initial structural prediction of the full-length receptor, accompanied by molecular dynamics simulations on the most promising model. All three approaches correctly predicted the HABD, with AlphaFold2 outperforming D-I-TASSER and RoseTTAFold in the structural comparison with the crystallographic HABD structure and confidence in predicting the transmembrane helix. Low confidence regions were also predicted, which largely corresponded to the disordered regions of CD44s. These regions allow the receptor to perform its unconventional activity.
Collapse
Affiliation(s)
- Chiara Camponeschi
- Institute of Chemical Sciences and Technologies ''Giulio Natta'' (SCITEC)-CNR, 00168 Rome, Italy
| | - Benedetta Righino
- Institute of Chemical Sciences and Technologies ''Giulio Natta'' (SCITEC)-CNR, 00168 Rome, Italy
| | - Davide Pirolli
- Institute of Chemical Sciences and Technologies ''Giulio Natta'' (SCITEC)-CNR, 00168 Rome, Italy
| | - Alessandro Semeraro
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesco Ria
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Maria Cristina De Rosa
- Institute of Chemical Sciences and Technologies ''Giulio Natta'' (SCITEC)-CNR, 00168 Rome, Italy
| |
Collapse
|
2
|
Moliterni C, Tredicine M, Pistilli A, Falcicchia R, Bartolini D, Stabile AM, Rende M, Ria F, Di Sante G. In Vitro and Ex Vivo Methodologies for T-Cell Trafficking Through Blood-Brain Barrier After TLR Activation. Methods Mol Biol 2023; 2700:199-219. [PMID: 37603183 DOI: 10.1007/978-1-0716-3366-3_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
This chapter describes ex vivo isolation of human T cells and of naïve splenocytes respectively collected from multiple sclerosis patients and healthy controls and experimental autoimmune encephalomyelitis-affected mice. After the magnetic sorting of naïve and activated T helper lymphocytes, we provide details about the cell cultures to measure the interaction with extracellular matrix proteins using standard cell invasion or hand-made in vitro assays, upon different stimuli, through Toll-like receptor(s) ligands, T-cell activators, and cell adhesion molecules modulators. Finally, we describe the methods to harvest and recover T cells to evaluate the properties associated with their trafficking ability.
Collapse
Affiliation(s)
- Camilla Moliterni
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Biology and Biotechnology Charles Darwin, University of Rome Sapienza, Rome, Italy
| | - Maria Tredicine
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessandra Pistilli
- Department of Medicine and Surgery, Section of Human Anatomy, University of Perugia, Perugia, Italy
| | - Renato Falcicchia
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Desirée Bartolini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Anna Maria Stabile
- Department of Medicine and Surgery, Section of Human Anatomy, University of Perugia, Perugia, Italy
| | - Mario Rende
- Department of Medicine and Surgery, Section of Human Anatomy, University of Perugia, Perugia, Italy
| | - Francesco Ria
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gabriele Di Sante
- Department of Medicine and Surgery, Section of Human Anatomy, University of Perugia, Perugia, Italy.
| |
Collapse
|
3
|
Zhou X, Cao Y, Zhou M, Han M, Liu M, Hu Y, Xu B, Zhang A. Decreased CD44v3 expression impairs endometrial stromal cell proliferation and decidualization in women with recurrent implantation failure. Reprod Biol Endocrinol 2022; 20:170. [PMID: 36527033 PMCID: PMC9756673 DOI: 10.1186/s12958-022-01042-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/22/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The precise pathogenesis of poor endometrial receptivity in recurrent implantation failure (RIF) remains unclear. This study was aimed at exploring the effects of different CD44 isoforms in the mid-secretory phase endometrium on endometrial receptivity in women with RIF. METHODS Mid-secretory phase endometrial tissue samples were obtained from the following two groups of women who had undergone IVF: (a) 24 patients with RIF and (b) 18 patients with infertility due to tubal obstruction, who had achieved a successful clinical pregnancy after the first embryo transfer in IVF (control group). Identification of differentially expressed CD44 isoforms in endometrial tissues was assessed using immunohistochemistry, qPCR, and western blotting. Effects of overexpression and knockdown of CD44v3 on proliferation and decidualization of immortalized human endometrial stromal cells (T-HESCs) and primary HESCs were investigated by qPCR and western blot analysis. A heterologous coculture system of embryo implantation was constructed to mimic the process of trophoblast invasion during implantation. RESULTS The expression of CD44v3 was significantly higher in the mid-secretory phase of endometrial stromal cells than in the proliferation phase, but was notably lower in RIF patients. Knockdown of CD44v3 significantly downregulated cell proliferation both in T-HESCs and HESCs. The expression of decidualization markers, prolactin (PRL) and insulin like growth factor binding protein-1 (IGFBP1), was notably decreased following the knockdown of CD44v3, whereas the expression of both PRL and IGFBP1 increased after its overexpression in HESCs. Furthermore, the CD44v3-knockdown HESCs displayed significant deficiency in supporting trophoblast outgrowth in a coculture system of embryo implantation; however, overexpression of CD44v3 in HESCs promoted trophoblast outgrowth. CONCLUSION The reduced expression of CD44v3 suppresses the proliferation and decidualization of HESCs, which might play a pivotal role in poor endometrial receptivity in women with RIF.
Collapse
Affiliation(s)
- Xiaowei Zhou
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China
| | - Yi Cao
- Department of Obstetrics and Gynecology, Minhang Hospital, Fudan University, 170 Xin Song Road, Shanghai, 201100, People's Republic of China
| | - Mingjuan Zhou
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China
| | - Mi Han
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China
| | - Mengyu Liu
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China
| | - Yanqin Hu
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Bufang Xu
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China.
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Aijun Zhang
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China.
| |
Collapse
|
4
|
Tredicine M, Camponeschi C, Pirolli D, Lucchini M, Valentini M, Geloso MC, Mirabella M, Fidaleo M, Righino B, Moliterni C, Giorda E, Rende M, De Rosa MC, Foti M, Constantin G, Ria F, Di Sante G. A TLR/CD44 axis regulates T cell trafficking in experimental and human multiple sclerosis. iScience 2022; 25:103763. [PMID: 35128357 PMCID: PMC8804271 DOI: 10.1016/j.isci.2022.103763] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/28/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022] Open
Abstract
In the pathogenesis of autoimmune disorders, the modulation of leukocytes' trafficking plays a central role, still poorly understood. Here, we focused on the effect of TLR2 ligands in trafficking of T helper cells through reshuffling of CD44 isoforms repertoire. Concurrently, strain background and TLR2 haplotype affected Wnt/β-catenin signaling pathway and expression of splicing factors. During EAE, mCD44 v9- v 10 was specifically enriched in the forebrain and showed an increased ability to bind stably to osteopontin. Similarly, we observed that hCD44 v7 was highly enriched in cells of cerebrospinal fluid from MS patients with active lesions. Moreover, TLRs engagement modulated the composition of CD44 variants also in human T helper cells, supporting the hypothesis that pathogens or commensals, through TLRs, in turn modulate the repertoire of CD44 isoforms, thereby controlling the distribution of lesions in the CNS. The interference with this mechanism(s) represents a potential tool for prevention and treatment of autoimmune relapses and exacerbations.
Collapse
Affiliation(s)
- Maria Tredicine
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Chiara Camponeschi
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Davide Pirolli
- Institute of Chemical Sciences and Technologies “Giulio Natta” (SCITEC) -CNR, Largo Francesco Vito 1,00168 Rome, Italy
| | - Matteo Lucchini
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli1-8,00168 Rome, Italy
- Centro di ricerca per la Sclerosi Multipla (CERSM), Università Cattolica del Sacro Cuore, Largo Francesco Vito 1,00168 Rome, Italy
| | - Mariagrazia Valentini
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli1-8,00168 Rome, Italy
| | - Maria Concetta Geloso
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli1-8,00168 Rome, Italy
- Department of Neuroscience, Section of Human Anatomy, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1,00168 Rome, Italy
| | - Massimiliano Mirabella
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli1-8,00168 Rome, Italy
- Centro di ricerca per la Sclerosi Multipla (CERSM), Università Cattolica del Sacro Cuore, Largo Francesco Vito 1,00168 Rome, Italy
| | - Marco Fidaleo
- Department of Biology and Biotechnology Charles Darwin, University of Rome Sapienza,00185 Rome, Italy
| | - Benedetta Righino
- Institute of Chemical Sciences and Technologies “Giulio Natta” (SCITEC) -CNR, Largo Francesco Vito 1,00168 Rome, Italy
| | - Camilla Moliterni
- Department of Biology and Biotechnology Charles Darwin, University of Rome Sapienza,00185 Rome, Italy
| | - Ezio Giorda
- Core Facilities di Ricerca, Ospedale Pediatrico Bambino Gesù Roma – IRCCS, V.le Ferdinando Baldelli,40,00146 Roma, Italy
| | - Mario Rende
- Department of Medicine and Surgery, Section of Human, Clinic and Forensic Anatomy, University of Perugia, Piazza L. Severi, 06132 Perugia, Italy
| | - Maria Cristina De Rosa
- Institute of Chemical Sciences and Technologies “Giulio Natta” (SCITEC) -CNR, Largo Francesco Vito 1,00168 Rome, Italy
| | - Maria Foti
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Gabriela Constantin
- Department of Medicine, Section of General Pathology, University of Verona, Strada le Grazie 8,37134 Verona, Italy
| | - Francesco Ria
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli1-8,00168 Rome, Italy
| | - Gabriele Di Sante
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
- Department of Medicine and Surgery, Section of Human, Clinic and Forensic Anatomy, University of Perugia, Piazza L. Severi, 06132 Perugia, Italy
| |
Collapse
|
5
|
Latini A, Novelli L, Ceccarelli F, Barbati C, Perricone C, De Benedittis G, Conti F, Novelli G, Ciccacci C, Borgiani P. mRNA expression analysis confirms CD44 splicing impairment in systemic lupus erythematosus patients. Lupus 2021; 30:1086-1093. [PMID: 33794704 DOI: 10.1177/09612033211004725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Systemic Lupus Erythematosus (SLE) is a complex chronic autoimmune disease characterized by several immunological alterations. T cells have a peculiar role in SLE pathogenesis, moving from the bloodstream to the peripheral tissues, causing organ damage. This process is possible for their increased adherence and migration capacity mediated by adhesion molecules, such as CD44. Ten different variant isoforms of this molecule have been described, and two of them, CD44v3 and CD44v6 have been found to be increased on SLE T cells compared to healthy controls, being proposed as biomarkers of disease and disease activity. The process of alternative splicing of CD44 transcripts is not fully understood. We investigated the mRNA expression of CD44v3 and CD44v6 and also analyzed possible CD44 splicing regulators (ESRP1 molecule and rs9666607 CD44 polymorphism) in a cohort of SLE patients compared to healthy controls. METHODS This study involved 18 SLE patients and 18 healthy controls. Total RNA and DNA were extracted by peripheral blood mononuclear cells. The expression study was conducted by quantitative RT-polymerase chain reaction, using SYBR Green protocol. Genotyping of rs9666607 SNP was performed by direct sequencing. RESULTS CD44v6 mRNA expression was higher in SLE patients compared to healthy controls (p = 0.028). CD44v3/v6 mRNA ratio in healthy controls was strongly unbalanced towards isoform v3 compared to SLE patients (p = 0.002) and decreased progressively from healthy controls to the SLE patients in remission and those with active disease (p = 0.015). The expression levels of CD44v3 and CD44v6 mRNA correlated with the disease duration (p = 0.038, Pearson r = 0.493 and p = 0.038, Pearson r = 0.495, respectively). Splicing regulator ESRP1 expression positively correlated with CD44v6 expression in healthy controls (p = 0.02, Pearson r = 0.532) but not in SLE patients. The variant A allele of rs9666607 of CD44 was associated with higher level of global CD44 mRNA (p = 0.04) but not with the variant isoforms. CONCLUSIONS In SLE patients, the increase in CD44v6 protein correlates with a higher transcript level of this isoform, confirming an impairment of CD44 splicing in the disease, whose regulatory mechanisms require further investigation.
Collapse
Affiliation(s)
- Andrea Latini
- Department of Biomedicine & Prevention, Genetics Section, University of Rome "Tor Vergata", Rome, Italy
| | - Lucia Novelli
- Lupus Clinic, Dipartimento di Scienze cliniche internistiche, anestesiologiche e cardiovascolari, Sapienza University of Rome, Rome, Italy
| | - Fulvia Ceccarelli
- Lupus Clinic, Dipartimento di Scienze cliniche internistiche, anestesiologiche e cardiovascolari, Sapienza University of Rome, Rome, Italy
| | - Cristiana Barbati
- Lupus Clinic, Dipartimento di Scienze cliniche internistiche, anestesiologiche e cardiovascolari, Sapienza University of Rome, Rome, Italy
| | - Carlo Perricone
- Rheumatology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giada De Benedittis
- Department of Biomedicine & Prevention, Genetics Section, University of Rome "Tor Vergata", Rome, Italy
| | - Fabrizio Conti
- Lupus Clinic, Dipartimento di Scienze cliniche internistiche, anestesiologiche e cardiovascolari, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Novelli
- Department of Biomedicine & Prevention, Genetics Section, University of Rome "Tor Vergata", Rome, Italy.,IRCCS Neuromed, Pozzilli (IS), Italy.,Department of Pharmacology, School of Medicine, University of Nevada, Reno, USA
| | - Cinzia Ciccacci
- Department of Biomedicine & Prevention, Genetics Section, University of Rome "Tor Vergata", Rome, Italy.,UniCamillus - Saint Camillus International University of Health Sciences, Rome, Italy
| | - Paola Borgiani
- Department of Biomedicine & Prevention, Genetics Section, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
6
|
Capecchi R, Puxeddu I, Pratesi F, Migliorini P. New biomarkers in SLE: from bench to bedside. Rheumatology (Oxford) 2021; 59:v12-v18. [PMID: 32911542 PMCID: PMC7719038 DOI: 10.1093/rheumatology/keaa484] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/23/2020] [Indexed: 12/20/2022] Open
Abstract
Biomarkers may have a diagnostic or monitoring value, or may predict response to therapy or disease course. The aim of this review is to discuss new serum and urinary biomarkers recently proposed for the diagnosis and management of SLE patients. Novel sensitive and specific assays have been proposed to evaluate complement proteins, ‘old’ biomarkers that are still a cornerstone in the management of this disease. Chemokines and lectins have been evaluated as surrogate biomarkers of IFN signature. Other cytokines like the B cell activating factor (BAFF) family cytokines are directly related to perturbations of the B cell compartment as key pathogenetic mechanism of the disease. A large number of urine biomarkers have been proposed, either related to the migration and homing of leukocytes to the kidney or to the local regulation of inflammatory circuits and the survival of renal intrinsic cells. The combination of traditional disease-specific biomarkers and novel serum or urine biomarkers may represent the best choice to correctly classify, stage and treat patients with SLE.
Collapse
Affiliation(s)
- Riccardo Capecchi
- Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ilaria Puxeddu
- Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Federico Pratesi
- Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paola Migliorini
- Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
7
|
Rodríguez Y, Novelli L, Rojas M, De Santis M, Acosta-Ampudia Y, Monsalve DM, Ramírez-Santana C, Costanzo A, Ridgway WM, Ansari AA, Gershwin ME, Selmi C, Anaya JM. Autoinflammatory and autoimmune conditions at the crossroad of COVID-19. J Autoimmun 2020; 114:102506. [PMID: 32563547 PMCID: PMC7296326 DOI: 10.1016/j.jaut.2020.102506] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19) has been categorized as evolving in overlapping phases. First, there is a viral phase that may well be asymptomatic or mild in the majority, perhaps 80% of patients. The pathophysiological mechanisms resulting in minimal disease in this initial phase are not well known. In the remaining 20% of cases, the disease may become severe and/or critical. In most patients of this latter group, there is a phase characterized by the hyperresponsiveness of the immune system. A third phase corresponds to a state of hypercoagulability. Finally, in the fourth stage organ injury and failure occur. Appearance of autoinflammatory/autoimmune phenomena in patients with COVID-19 calls attention for the development of new strategies for the management of life-threatening conditions in critically ill patients. Antiphospholipid syndrome, autoimmune cytopenia, Guillain-Barré syndrome and Kawasaki disease have each been reported in patients with COVID-19. Here we present a scoping review of the relevant immunological findings in COVID-19 as well as the current reports about autoinflammatory/autoimmune conditions associated with the disease. These observations have crucial therapeutic implications since immunomodulatory drugs are at present the most likely best candidates for COVID-19 therapy. Clinicians should be aware of these conditions in patients with COVID-19, and these observations should be considered in the current development of vaccines.
Collapse
Affiliation(s)
- Yhojan Rodríguez
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Lucia Novelli
- Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center (IRCCS), Rozzano, Milan, Italy
| | - Manuel Rojas
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Maria De Santis
- Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center (IRCCS), Rozzano, Milan, Italy
| | - Yeny Acosta-Ampudia
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Diana M Monsalve
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Carolina Ramírez-Santana
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Antonio Costanzo
- Dermatology, Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy; Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Milan, Italy
| | - William M Ridgway
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, CA, USA
| | - Aftab A Ansari
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, CA, USA
| | - M Eric Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, CA, USA.
| | - Carlo Selmi
- Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center (IRCCS), Rozzano, Milan, Italy; Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Milan, Italy.
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia.
| |
Collapse
|
8
|
Yang Z, Cheng C, Wang Z, Wang Y, Zhao J, Wang Q, Tian X, Hsieh E, Li M, Zeng X. Prevalence, predictors and prognostic benefits of remission achievement in patients with systemic lupus erythematosus: a systematic review. Arthritis Care Res (Hoboken) 2020; 74:208-218. [PMID: 32986933 DOI: 10.1002/acr.24464] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/13/2020] [Accepted: 09/22/2020] [Indexed: 11/10/2022]
Abstract
OBJECTIVES To systematically review and evaluate the prevalence, potential predictors and prognostic benefits of remission achievement in patients with systemic lupus erythematosus (SLE). METHODS Studies reporting prevalence, predictors and prognostic benefits of remission in adult SLE patients were searched and selected from Pubmed and EMBASE databases. Studies were reviewed for relevance and quality. Two reviewers independently assessed studies and extracted data. RESULTS Data from forty-one studies including 17270 patients were included and analyzed. Although no consensus has been achieved on the definition of remission, clinical disease activity, serological activity, duration and treatment are agreed to be critical components of defining remission status. In most studies published in the recent 5 years, 42.4% to 88% patients achieved and maintained the remission status for one year, and 21.1% to 70% for at least 5 years. Factors associated with remission included older age at diagnosis, lower baseline disease activity and absence of major organ involvement, while positive serological results were shown to be negatively associated with remission. Remission-especially prolonged remission-when achieved, demonstrated an association with lower accrual of damage and better quality of life among patients with SLE. CONCLUSIONS Remission is an achievable and desirable target for SLE patients, proven to be associated with prognostic benefits. Further development and assessment of a clear remission definition, a risk stratification model as well as a full algorithm with frequency of monitoring, timepoints for treatment adjustment and drug withdrawal are required.
Collapse
Affiliation(s)
- Ziyi Yang
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases, Ministry of Science & Technology, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Cheng Cheng
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases, Ministry of Science & Technology, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Ziqian Wang
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases, Ministry of Science & Technology, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Yanhong Wang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking, Union Medical College, Beijing, China
| | - Jiuliang Zhao
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases, Ministry of Science & Technology, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Qian Wang
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases, Ministry of Science & Technology, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xinping Tian
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases, Ministry of Science & Technology, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Evelyn Hsieh
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Mengtao Li
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases, Ministry of Science & Technology, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases, Ministry of Science & Technology, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| |
Collapse
|