1
|
Kheradmand T, Ho S. Undiagnosed lymphoma detected during routine histocompatibility crossmatch: 3 case reports. Am J Transplant 2025:S1600-6135(25)00101-7. [PMID: 40074064 DOI: 10.1016/j.ajt.2025.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025]
Abstract
Unexpected transmission of donor-derived diseases, including infections and malignancies, through organ transplantation are occasionally observed and reported. Subclinical, or otherwise undiagnosed, hematological malignancies in potential donors are rare events and typically not identifiable via standard donor evaluation or laboratory testing. Flow cytometric crossmatching is a specialized assay routinely performed in clinical histocompatibility laboratories for the evaluation of immunological compatibility between recipients and organ donors through the detection of donor-specific antibodies. Here, we report 3 unusual cases of undiagnosed hematological malignancies in the organ donors that were identified during routine pretransplant flow cytometric crossmatching evaluation through abnormalities observed in the lymphocyte staining profile, size, and relative cell events that effectively prevented potential transmission of such donor-derived malignancies to the immunocompromised recipients.
Collapse
Affiliation(s)
- Taba Kheradmand
- Transplant Immunology Laboratory, Montefiore Medical Center, The Bronx, New York, USA; Fred H. Allen Immunogenetics Laboratory, New York Blood Center, Long Island City, New York, USA.
| | - Sam Ho
- Histocompatibility and Infectious Disease Testing Laboratory, Gift of Hope Organ & Tissue Donor Network, Itasca, Illinois, USA; Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
2
|
Gavrila EI, Dowell JS, Gorrai A, Wrobel C, Hendren N, Hardin EA, Moayedi Y, Tapaskar N, Peltz M, Farr M, Truby LK. Primary Graft Dysfunction after Heart Transplantation: Current Evidence and Implications for Clinical Practice. Curr Cardiol Rep 2025; 27:24. [PMID: 39812899 DOI: 10.1007/s11886-024-02153-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/04/2024] [Indexed: 01/16/2025]
Abstract
PURPOSE OF REVIEW This review summarizes the current literature on primary graft dysfunction highlighting the current definition, reviewing epidemiology, and describing donor, recipient, and perioperative risk factors in the contemporary era. RECENT FINDINGS PGD, in its most severe form, complicates 8% of heart transplants and portends a 1-year mortality of close to 40%. PGD is multifactorial and heterogeneous with contributions from donor and recipient risk as well as organ recovery and preservation modalities. Biomarkers may enhance risk stratification and lend insight into the underlying mechanism of PGD. Temperature-controlled storage and hypothermic oxygenation perfusion systems, in particular, may have significant potential to mitigate PGD risk. PGD is a devastating early complication of heart transplantation that is both complex and multifactorial. Despite its incidence and impact the underlying biology of PGD remains poorly understood. Future studies mechanistic studies are needed to address the underlying pathophysiology of PGD to develop targeted prophylactic and/or therapeutic interventions.
Collapse
Affiliation(s)
- Elena I Gavrila
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Ananya Gorrai
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Nicholas Hendren
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - E Ashley Hardin
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Natalie Tapaskar
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matthias Peltz
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Maryjane Farr
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lauren K Truby
- University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
3
|
Ream RS, Li Y, Marklin GF. Circulating Levels of Vitamins A, C, and E-Alpha in Organ Donors After the Neurologic Determination of Death. Prog Transplant 2024; 34:176-182. [PMID: 39380414 DOI: 10.1177/15269248241288561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
INTRODUCTION The antioxidant effects of vitamins may attenuate the oxidative stress on organs imposed by ischemia-reperfusion injury during the process of organ transplantation from brain-dead donors. Circulating levels of vitamins A, C, and E-α in donors after brain death and their relationships to donor demographics, management, organ utilization, and recipient outcomes are largely unknown. METHODS An observational, prospective, cohort study of 84 consecutive brain-dead organ donors managed at a single organ procurement recovery center was conducted. Vitamin levels were drawn immediately prior to procurement. RESULTS Levels of serum vitamins A and E-α and plasma vitamin C were below normal in 80%, 85%, and 92% of donors and deficient in 40%, 62%, and 63%, respectively. Vitamin C deficiency was associated with a longer time between death and specimen collection (P = .004). Death from head trauma and stroke were associated with lower levels of vitamin A than from anoxic causes (P = .003) and smokers had greater vitamin C deficiency (P = .03). During donor management, vitamin C deficiency was associated with longer vasopressor support (P = .03) and normal levels of vitamin E-α were associated with reaching a lower alanine transferase compared to those with subnormal levels (P < .05). Donors deficient in vitamin E-α were less likely to have a liver recovered for transplantation (P = .005). Vitamin levels were not associated with the recipient outcomes examined. CONCLUSION Circulating vitamins A, C, and E-α is profoundly low in brain-dead organ donors, associated with relevant demographic features of the donor, and may influence donor management and organ utilization.
Collapse
Affiliation(s)
- Robert S Ream
- Department of Pediatric Critical Care, St Louis University, St. Louis, MO, USA
| | - Yi Li
- Department of Nutrition and Dietetics, Doisy College of Health Sciences, St Louis University, St. Louis, MO, USA
| | | |
Collapse
|
4
|
Martins B, Mossemann J, Aguilar F, Zhao S, Bilan PJ, Sayed BA. Liver Transplantation: A Test of Cellular Physiology, Preservation, and Injury. Physiology (Bethesda) 2024; 39:401-411. [PMID: 39078382 DOI: 10.1152/physiol.00020.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024] Open
Abstract
Liver transplantation has evolved into a mature clinical field, but scarcity of usable organs poses a unique challenge. Expanding the donor pool requires novel approaches for protecting hepatic physiology and cellular homeostasis. Here we define hepatocellular injury during transplantation, with an emphasis on modifiable cell death pathways as future therapeutics.
Collapse
Affiliation(s)
- B Martins
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - J Mossemann
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - F Aguilar
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - S Zhao
- Neuroscience and Mental Health Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - P J Bilan
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - B A Sayed
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
- Division of General Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Malik AK, Tingle SJ, Varghese C, Owen R, Mahendran B, Figueiredo R, Amer AO, Currie IS, White SA, Manas DM, Wilson CH. Does Time to Asystole in Donors After Circulatory Death Impact Recipient Outcome in Liver Transplantation? Transplantation 2024; 108:2238-2246. [PMID: 38780399 PMCID: PMC11495538 DOI: 10.1097/tp.0000000000005074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/06/2024] [Accepted: 04/04/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND The agonal phase can vary following treatment withdrawal in donor after circulatory death (DCD). There is little evidence to support when procurement teams should stand down in relation to donor time to death (TTD). We assessed what impact TTD had on outcomes following DCD liver transplantation. METHODS Data were extracted from the UK Transplant Registry on DCD liver transplant recipients from 2006 to 2021. TTD was the time from withdrawal of life-sustaining treatment to asystole, and functional warm ischemia time was the time from donor systolic blood pressure and/or oxygen saturation falling below 50 mm Hg and 70%, respectively, to aortic perfusion. The primary endpoint was 1-y graft survival. Potential predictors were fitted into Cox proportional hazards models. Adjusted restricted cubic spline models were generated to further delineate the relationship between TTD and outcome. RESULTS One thousand five hundred fifty-eight recipients of a DCD liver graft were included. Median TTD in the entire cohort was 13 min (interquartile range, 9-17 min). Restricted cubic splines revealed that the risk of graft loss was significantly greater when TTD ≤14 min. After 14 min, there was no impact on graft loss. Prolonged hepatectomy time was significantly associated with graft loss (hazard ratio, 1.87; 95% confidence interval, 1.23-2.83; P = 0.003); however, functional warm ischemia time had no impact (hazard ratio, 1.00; 95% confidence interval, 0.44-2.27; P > 0.9). CONCLUSIONS A very short TTD was associated with increased risk of graft loss, possibly because of such donors being more unstable and/or experiencing brain stem death as well as circulatory death. Expanding the stand down times may increase the utilization of donor livers without significantly impairing graft outcome.
Collapse
Affiliation(s)
- Abdullah K. Malik
- Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, United Kingdom
- NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Samuel J. Tingle
- Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, United Kingdom
- NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Chris Varghese
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Ruth Owen
- Department of Surgery, The Royal Oldham Hospital, Greater Manchester, United Kingdom
| | - Balaji Mahendran
- Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, United Kingdom
- NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rodrigo Figueiredo
- Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Aimen O. Amer
- Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Ian S. Currie
- National Health Service Blood and Transplant, Bristol, United Kingdom
- Edinburgh Transplant Centre, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Steven A. White
- Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Derek M. Manas
- Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, United Kingdom
- NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Newcastle University, Newcastle upon Tyne, United Kingdom
- National Health Service Blood and Transplant, Bristol, United Kingdom
| | - Colin H. Wilson
- Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, United Kingdom
- NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
6
|
Weiss MG, de Jong AM, Seegert H, Moeslund N, Maassen H, Schjalm C, de Boer E, Leuvenink H, Mollnes TE, Eijken M, Keller AK, Dijkstra G, Jespersen B, Pischke SE. Activation of the Innate Immune System in Brain-Dead Donors Can Be Reduced by Luminal Intestinal Preservation During Organ Procurement Surgery - A Porcine Model. Transpl Int 2024; 37:13569. [PMID: 39544322 PMCID: PMC11560447 DOI: 10.3389/ti.2024.13569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024]
Abstract
Organs obtained from brain dead donors can have suboptimal outcomes. Activation of the innate immune system and translocation of intestinal bacteria could be causative. Thirty two pigs were assigned to control, brain death (BD), BD + luminal intestinal polyethylene glycol (PEG), and BD + luminal intestinal University of Wisconsin solution (UW) groups. Animals were observed for 360 min after BD before organ retrieval. 2,000 mL luminal intestinal preservation solution was instilled into the duodenum at the start of organ procurement. Repeated measurements of plasma C3a, Terminal Complement Complex (TCC), IL-8, TNF, and lipopolysaccharide binding protein were analysed by immunoassays. C3a was significantly higher in the BD groups compared to controls at 480 min after brain death. TCC was significantly higher in BD and BD + UW, but not BD + PEG, compared to controls at 480 min. TNF was significantly higher in the BD group compared to all other groups at 480 min. LPS binding protein increased following BD in all groups except BD + PEG, which at 480 min was significantly lower compared with all other groups. Brain death induced innate immune system activation was decreased by luminal preservation using PEG during organ procurement, possibly due to reduced bacterial translocation.
Collapse
Affiliation(s)
- Marc Gjern Weiss
- Department of Nephrology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anne Marye de Jong
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Helene Seegert
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Niels Moeslund
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Hanno Maassen
- Department of Surgery, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Camilla Schjalm
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Eline de Boer
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Henri Leuvenink
- Department of Surgery, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Laboratory, Nordland Hospital, Bodø, Norway
| | - Marco Eijken
- Department of Nephrology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Anna Krarup Keller
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Urology, Aarhus University Hospital, Aarhus, Denmark
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Bente Jespersen
- Department of Nephrology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Søren Erik Pischke
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Anaesthesiology and Intensive Care, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
7
|
van Zyl M, Cramer E, Sanders JSF, Leuvenink HGD, Lisman T, van Rooy MJ, Hillebrands JL. The role of neutrophil extracellular trap formation in kidney transplantation: Implications from donors to the recipient. Am J Transplant 2024; 24:1547-1557. [PMID: 38719094 DOI: 10.1016/j.ajt.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/19/2024] [Accepted: 04/05/2024] [Indexed: 05/23/2024]
Abstract
Kidney transplantation remains the gold standard for patients with end-stage renal disease, but severe donor organ shortage has led to long waiting lists. The utilization of expanded criteria donor kidneys within the category of deceased donors has enlarged the pool of available kidneys for transplantation; however, these grafts often have an increased risk for delayed graft function or reduced graft survival following transplantation. During brain or circulatory death, neutrophils are recruited to the vascular beds of kidneys where a proinflammatory microenvironment might prime the formation of neutrophil extracellular traps (NETs), web-like structures, containing proteolytic enzymes, DNA, and histones. NETs are known to cause tissue damage and specifically endothelial damage while activating other systems such as coagulation and complement, contributing to tissue injury and an unfavorable prognosis in various diseases. In lung transplantation and kidney transplantation studies, NETs have also been associated with primary graft dysfunction or rejection. In this review, the role that NETs might play across the different phases of transplantation, already initiated in the donor, during preservation, and in the recipient, will be discussed. Based on current knowledge, NETs might be a promising therapeutic target to improve graft outcomes.
Collapse
Affiliation(s)
- Maryna van Zyl
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, the Netherlands; Department of Physiology, School of Medicine, University of Pretoria, Pretoria, South Africa
| | - Elodie Cramer
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, the Netherlands
| | - Jan-Stephan F Sanders
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, the Netherlands
| | - Henri G D Leuvenink
- Department of Surgery, University Medical Center Groningen, Groningen, the Netherlands
| | - Ton Lisman
- Department of Surgery, University Medical Center Groningen, Groningen, the Netherlands
| | - Mia-Jeanne van Rooy
- Department of Physiology, School of Medicine, University of Pretoria, Pretoria, South Africa
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
8
|
Idouz K, Belhaj A, Rondelet B, Dewachter L, Flamion B, Kirschvink N, Dogné S. Cascading renal injury after brain death: Unveiling glycocalyx alteration and the potential protective role of tacrolimus. Front Cell Dev Biol 2024; 12:1449209. [PMID: 39165663 PMCID: PMC11333349 DOI: 10.3389/fcell.2024.1449209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024] Open
Abstract
Brain death (BD) is a complex medical state that triggers systemic disturbances and a cascade of pathophysiological processes. This condition significantly impairs both kidney function and structural integrity, thereby presenting considerable challenges to graft viability and the long-term success of transplantation endeavors. Tacrolimus (FK506), an immunosuppressive drug, was used in this study to assess its impact as a pretreatment on brain death-induced renal injury. This study aimed to investigate changes associated with brain death-induced renal injury in a 4-month-old female porcine model. The experimental groups included brain death placebo-pretreated (BD; n = 9), brain death tacrolimus-pretreated using the clinical dose of 0.25 mg/kg the day before surgery, followed by 0.05 mg/kg/day 1 hour before the procedure (BD + FK506; n = 8), and control (ctrl, n = 7) piglets, which did not undergo brain death induction. Furthermore, we aimed to assess the effect of FK506 on these renal alterations through graft preconditioning. We hypothesized that immunosuppressive properties of FK506 reduce tissue inflammation and preserve the glycocalyx. Our findings revealed a series of interconnected events triggered by BD, leading to a deterioration of renal function and increased proteinuria, increased apoptosis in the vessels, glomeruli and tubules, significant leukocyte infiltration into renal tissue, and degradation of the glycocalyx in comparison with ctrl group. Importantly, treatment with FK506 demonstrated significant efficacy in attenuating these adverse effects. FK506 helped reduce apoptosis, maintain glycocalyx integrity, regulate neutrophil infiltration, and mitigate renal injury following BD. This study offers new insights into the pathophysiology of BD-induced renal injury, emphasizing the potential of FK506 pretreatment as a promising therapeutic intervention for organ preservation, through maintaining endothelial function with the additional benefit of limiting the risk of rejection.
Collapse
Affiliation(s)
- Kaoutar Idouz
- Molecular Physiology Research Unit (URPhyM), Namur Research Institute for Life Sciences (NARILIS), University of Namur (Unamur), Namur, Belgium
| | - Asmae Belhaj
- Department of Cardio-Vascular, Thoracic Surgery and Lung Transplantation, CHU UCL Namur, UCLouvain, Yvoir, Belgium
| | - Benoit Rondelet
- Department of Cardio-Vascular, Thoracic Surgery and Lung Transplantation, CHU UCL Namur, UCLouvain, Yvoir, Belgium
| | - Laurence Dewachter
- Laboratory of Physiology and Pharmacology, Université Libre de Bruxelles, Brussels, Belgium
| | - Bruno Flamion
- Molecular Physiology Research Unit (URPhyM), Namur Research Institute for Life Sciences (NARILIS), University of Namur (Unamur), Namur, Belgium
- Clinical Development, Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Nathalie Kirschvink
- Molecular Physiology Research Unit (URPhyM), Namur Research Institute for Life Sciences (NARILIS), University of Namur (Unamur), Namur, Belgium
| | - Sophie Dogné
- Molecular Physiology Research Unit (URPhyM), Namur Research Institute for Life Sciences (NARILIS), University of Namur (Unamur), Namur, Belgium
| |
Collapse
|
9
|
Zirpe K, Pandit R, Gurav S, Mani RK, Prabhakar H, Clerk A, Wanchoo J, Reddy KS, Ramachandran P, Karanth S, George N, Vaity C, Shetty RM, Samavedam S, Dixit S, Kulkarni AP. Management of Potential Organ Donor: Indian Society of Critical Care Medicine-Position Statement. Indian J Crit Care Med 2024; 28:S249-S278. [PMID: 39234232 PMCID: PMC11369920 DOI: 10.5005/jp-journals-10071-24698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/18/2024] [Indexed: 09/06/2024] Open
Abstract
This position statement is documented based on the input from all contributing coauthors from the Indian Society of Critical Care Medicine (ISCCM), following a comprehensive literature review and summary of current scientific evidence. Its objective is to provide the standard perspective for the management of potential organ/tissue donors after brain death (BD) in adults only, regardless of the availability of technology. This document should only be used for guidance only and is not a substitute for proper clinical decision making in particular circumstances of any case. Endorsement by the ISCCM does not imply that the statements given in the document are applicable in all or in a particular case; however, they may provide guidance for the users thus facilitating maximum organ availability from brain-dead patients. Thus, the care of potential brain-dead organ donors is "caring for multiple recipients." How to cite this article Zirpe K, Pandit R, Gurav S, Mani RK, Prabhakar H, Clerk A, et al. Management of Potential Organ Donor: Indian Society of Critical Care Medicine-Position Statement. Indian J Crit Care Med 2024;28(S2):S249-278.
Collapse
Affiliation(s)
- Kapil Zirpe
- Department of Neurotrauma Unit, Grant Medical Foundation, Pune, Maharashtra, India
| | - Rahul Pandit
- Department of Critical Care, Fortis Hospital, Mumbai, Maharashtra, India
| | - Sushma Gurav
- Department of Neurotrauma Unit, Grant Medical Foundation, Pune, Maharashtra, India
| | - RK Mani
- Department of Critical Care and Pulmonology, Yashoda Super Specialty Hospital, Ghaziabad, Uttar Pradesh, India
| | - Hemanshu Prabhakar
- Department of Anesthesia, All India Institute of Medical Sciences, New Delhi, India
| | - Anuj Clerk
- Department of Intensive Care, Sunshine Global Hospital, Surat, Gujarat, India
| | - Jaya Wanchoo
- Department of Neuroanesthesia and Critical Care, Medanta The Medicity, Gurugram, Haryana, India
| | | | | | - Sunil Karanth
- Department of Critical Care Medicine, Manipal Hospital, Bengaluru, Karnataka, India
| | - Nita George
- Department of Critical Care Medicine, VPS Lakeshore Hospital & Research Center Kochi, Kerala, India
| | - Charudatt Vaity
- Department of Intensive Care, Fortis Hospital, Mumbai, Maharashtra, India
| | - Rajesh Mohan Shetty
- Department of Critical Care Medicine, Manipal Hospital, Bengaluru, Karnataka, India
| | - Srinivas Samavedam
- Department of Critical Care, Ramdev Rao Hospital, Hyderabad, Telangana, India
| | - Subhal Dixit
- Department of Critical Care Medicine, Sanjeevan & MJM Hospital, Pune, Maharashtra, India
| | - Atul P Kulkarni
- Department of Critical Care Medicine, Tata Memorial Centre, Mumbai, Maharashtra, India
| |
Collapse
|
10
|
Custódio G, Massutti AM, da Igreja MR, Lemos NE, Crispim D, Visioli F, Palma VDM, Leitão CB, Rech TH. Does liraglutide alleviate inflammation in brain-dead donors? A randomized clinical trial. Liver Transpl 2024; 30:607-617. [PMID: 37938130 DOI: 10.1097/lvt.0000000000000298] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/14/2023] [Indexed: 11/09/2023]
Abstract
Brain death triggers an inflammatory cascade that damages organs before procurement, adversely affecting the quality of grafts. This randomized clinical trial aimed to compare the efficacy of liraglutide compared to placebo in attenuating brain death-induced inflammation, endoplasmic reticulum stress, and oxidative stress. We conducted a double-blinded, placebo-controlled, randomized clinical trial with brain-dead donors. Fifty brain-dead donors were randomized to receive subcutaneous liraglutide or placebo. The primary outcome was the reduction in IL-6 plasma levels. Secondary outcomes were changes in other plasma pro-inflammatory (IL-1β, interferon-γ, TNF) and anti-inflammatory cytokines (IL-10), expression of antiapoptotic ( BCL2 ), endoplasmic reticulum stress markers ( DDIT3/CHOP , HSPA5/BIP ), and antioxidant ( superoxide dismutase 2 , uncoupling protein 2 ) genes, and expression TNF, DDIT3, and superoxide dismutase 2 proteins in liver biopsies. The liraglutide group showed lower cytokine levels compared to the placebo group during follow-up: Δ IL-6 (-28 [-182, 135] vs. 32 [-10.6, 70.7] pg/mL; p = 0.041) and Δ IL-10 (-0.01 [-2.2, 1.5] vs. 1.9 [-0.2, 6.1] pg/mL; p = 0.042), respectively. The administration of liraglutide did not significantly alter the expression of inflammatory, antiapoptotic, endoplasmic reticulum stress, or antioxidant genes in the liver tissue. Similar to gene expression, expressions of proteins in the liver were not affected by the administration of liraglutide. Treatment with liraglutide did not increase the organ recovery rate [OR = 1.2 (95% CI: 0.2-8.6), p = 0.82]. Liraglutide administration reduced IL-6 and prevented the increase of IL-10 plasma levels in brain-dead donors without affecting the expression of genes and proteins related to inflammation, apoptosis, endoplasmic reticulum stress, or oxidative stress.
Collapse
Affiliation(s)
- Geisiane Custódio
- Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Intensive Care Unit, Hospital Santa Isabel, Blumenau, SC, Brazil
| | | | | | - Natália Emerim Lemos
- Diabetes and Metabolism Group, Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Daisy Crispim
- Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Diabetes and Metabolism Group, Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Fernanda Visioli
- Department of Oral Pathology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Victor de Mello Palma
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Cristiane Bauermann Leitão
- Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Diabetes and Metabolism Group, Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Tatiana Helena Rech
- Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Diabetes and Metabolism Group, Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Intensive Care Unit, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
11
|
Bera KD, Tabak J, Ploeg RJ. No Evidence of Progressive Proinflammatory Cytokine Storm in Brain-dead Organ Donors-A Time-course Analysis Using Clinical Samples. Transplantation 2024; 108:923-929. [PMID: 38192028 PMCID: PMC10962432 DOI: 10.1097/tp.0000000000004900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/04/2023] [Accepted: 10/25/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Solid organ transplantation is a cost-effective treatment for end-stage organ failure. Organ donation after brain death is an important source of transplanted organs. Data are limited on the effects of brain injury or donor management on grafts. The consensus view has been that brain death creates a progressively proinflammatory environment. We aimed to investigate time-course changes across a range of cytokines in a donation after brain death cohort of donors who died of intracranial hemorrhage without any other systemic source of inflammation. METHODS A donor cohort was defined using the UK Quality in Organ Donation biobank. Serum levels of proteins involved in proinflammatory and brain injury pathways (tumor necrosis factor-alpha, interleukin-6, complement C5a, neuron-specific enolase, and glial fibrillary acidic protein) were measured from admission to organ recovery. Moving median analysis was used to combine donor trajectories and delineate a time-course. RESULTS A cohort of 27 donors with brain death duration between 10 and 30 h was created, with 24 donors contributing to the time-course analysis. We observed no increase in tumor necrosis factor-alpha or interleukin-6 throughout the donor management period. Neuronal injury marker and complement C5a remain high from admission to organ recovery, whereas glial fibrillary acidic protein rises around the confirmation of brain death. CONCLUSIONS We found no evidence of a progressive rise of proinflammatory mediators with prolonged duration of brain death, questioning the hypothesis of a progressively proinflammatory environment. Furthermore, the proposed approach allows us to study chronological changes and identify biomarkers or target pathways when logistical or ethical considerations limit sample availability.
Collapse
Affiliation(s)
- Katarzyna D. Bera
- Nuffield Department of Surgical Sciences, Oxford Transplant Centre, Oxford, United Kingdom
- Oxford University NHS Foundation Trust, Oxford, United Kingdom
| | - Joel Tabak
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, United Kingdom
| | - Rutger J. Ploeg
- Nuffield Department of Surgical Sciences, Oxford Transplant Centre, Oxford, United Kingdom
- Oxford University NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
12
|
Schoene D, Freigang N, Trabitzsch A, Pleul K, Kaiser DPO, Roessler M, Winzer S, Hugo C, Günther A, Puetz V, Barlinn K. Identification of patients at high risk for brain death using an automated digital screening tool: a prospective diagnostic accuracy study. J Neurol 2023; 270:5935-5944. [PMID: 37626244 PMCID: PMC10632197 DOI: 10.1007/s00415-023-11938-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND An automated digital screening tool (DETECT) has been developed to aid in the early identification of patients who are at risk of developing brain death during critical care. METHODS This prospective diagnostic accuracy study included consecutive patients ≥ 18 years admitted to neurocritical care for primary or secondary acute brain injury. The DETECT screening tool searched routinely monitored patient data in the electronic medical records every 12 h for a combination of coma and absence of bilateral pupillary light reflexes. In parallel, daily neurological assessment was performed by expert neurointensivists in all patients blinded to the index test results. The primary target condition was the eventual diagnosis of brain death. Estimates of diagnostic accuracy along with their 95%-confidence intervals were calculated to assess the screening performance of DETECT. RESULTS During the 12-month study period, 414 patients underwent neurological assessment, with 8 (1.9%) confirmed cases of brain death. DETECT identified 54 positive patients and sent 281 notifications including 227 repeat notifications. The screening tool had a sensitivity of 100% (95% CI 63.1-100%) in identifying patients who eventually developed brain death, with no false negatives. The mean time from notification to confirmed diagnosis of brain death was 3.6 ± 3.2 days. Specificity was 88.7% (95% CI 85.2-91.6%), with 46 false positives. The overall accuracy of DETECT for confirmed brain death was 88.9% (95% CI 85.5-91.8%). CONCLUSIONS Our findings suggest that an automated digital screening tool that utilizes routinely monitored clinical data may aid in the early identification of patients at risk of developing brain death.
Collapse
Affiliation(s)
- Daniela Schoene
- Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
| | - Norman Freigang
- Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Anne Trabitzsch
- Department of Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Konrad Pleul
- Deutsche Stiftung Organtransplantation (DSO), Frankfurt am Main, Germany
| | - Daniel P O Kaiser
- Institute of Neuroradiology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Martin Roessler
- Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
- BARMER Institute for Health Care System Research (Bifg), Berlin, Germany
| | - Simon Winzer
- Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Christian Hugo
- Division of Nephrology, Department of Internal Medicine III, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Albrecht Günther
- Department of Neurology, University Hospital Jena, Jena, Germany
| | - Volker Puetz
- Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Kristian Barlinn
- Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| |
Collapse
|
13
|
Ravichandran R, Itabashi Y, Zhou F, Lin Y, Mohanakumar T, Chapman WC. Circulating exosomes from brain death and cardiac death donors have distinct molecular and immunologic properties: A pilot study. Clin Transplant 2023; 37:e15067. [PMID: 37428019 PMCID: PMC11019898 DOI: 10.1111/ctr.15067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 05/15/2023] [Accepted: 06/19/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND AND AIMS Comparison of donation after brain death (DBD) and donation after cardiac death (DCD) lung tissue before transplantation have demonstrated activation of pro-inflammatory cytokine pathway in DBD donors. The molecular and immunological properties of circulating exosomes from DBD and DCD donors were not previously described. METHODS We collected plasma from 18 deceased donors (12 DBD and six DCD). Cytokines were analyzed by 30-Plex luminex Panels. Exosomes were analyzed for liver self-antigen (SAg), Transcription Factors and HLA class II (HLA-DR/DQ) using western blot. C57BL/6 animals were immunized with isolated exosomes to determine strength and magnitude of immune responses. Interferon (IFN)-γ and tumor necrosis factor-α producing cells were quantified by ELISPOT, specific antibodies to HLA class II antigens were measured by ELISA RESULTS: We demonstrate increased plasma levels of IFNγ, EGF, EOTAXIN, IP-10, MCP-1, RANTES, MIP-β, VEGF, and interleukins - 6/8 in DBD plasma versus DCD. MiRNA isolated from exosome of DBD donors demonstrated significant increase in miR-421, which has been reported to correlate with higher level of Interleukin-6. Higher levels of liver SAg Collagen III (p = .008), pro-inflammatory transcription factors (NF-κB, p < .05; HIF1α, p = .021), CIITA (p = .011), and HLA class II (HLA-DR, p = .0003 and HLA-DQ, p = .013) were detected in exosomes from DBD versus DCD plasma. The circulating exosomes isolated from DBD donors were immunogenic in mice and led to the development of Abs to HLA-DR/DQ. CONCLUSIONS This study provides potential new mechanisms by which DBD organs release exosomes that can activate immune pathways leading to cytokine release and allo-immune response.
Collapse
Affiliation(s)
| | - Yoshihiro Itabashi
- Norton Thoracic Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ
| | - Fangyu Zhou
- Division of General Surgery, Washington University School of Medicine, St. Louis, MO 63110
| | - Yiing Lin
- Division of General Surgery, Washington University School of Medicine, St. Louis, MO 63110
| | | | - William C. Chapman
- Division of General Surgery, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
14
|
Blondeel J, Gilbo N, Heedfeld V, Wylin T, Libbrecht L, Jochmans I, Pirenne J, Korf H, Monbaliu D. The Distinct Innate Immune Response of Warm Ischemic Injured Livers during Continuous Normothermic Machine Perfusion. Int J Mol Sci 2023; 24:12831. [PMID: 37629012 PMCID: PMC10454045 DOI: 10.3390/ijms241612831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Although normothermic machine perfusion (NMP) provides superior preservation of liver grafts compared to static cold storage and allows for viability testing of high-risk grafts, its effect on the liver immune compartment remains unclear. We investigated the innate immune response during 6 h of continuous NMP (cNMP) of livers that were directly procured (DP, n = 5) or procured after 60 min warm ischemia (WI, n = 5), followed by 12 h of whole blood (WB) reperfusion. WI livers showed elevated transaminase levels during cNMP but not after WB reperfusion. Perfusate concentrations of TNF-α were lower in WI livers during cNMP and WB reperfusion, whereas IL-8 concentrations did not differ significantly. TGF-β concentrations were higher in WI livers during NMP but not after WB reperfusion, whereas IL-10 concentrations were similar. Endoplasmic stress and apoptotic signaling were increased in WI livers during cNMP but not after WB reperfusion. Additionally, neutrophil mobilization increased to a significantly lesser extent in WI livers at the end of NMP. In conclusion, WI livers exhibit a distinct innate immune response during cNMP compared to DP livers. The cytokine profile shifted towards an anti-inflammatory phenotype during cNMP and WB reperfusion, and pro-apoptotic signaling was stronger during cNMP. During WB reperfusion, livers exhibited a blunted cytokine release, regardless of ischemic damage, supporting the potential reconditioning effect of cNMP.
Collapse
Affiliation(s)
- Joris Blondeel
- Department of Abdominal Transplant Surgery and Transplant Coordination, University Hospitals Leuven, 3000 Leuven, Belgium; (J.B.); (N.G.); (V.H.); (T.W.); (I.J.); (J.P.)
- Laboratory of Abdominal Transplantation, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Nicholas Gilbo
- Department of Abdominal Transplant Surgery and Transplant Coordination, University Hospitals Leuven, 3000 Leuven, Belgium; (J.B.); (N.G.); (V.H.); (T.W.); (I.J.); (J.P.)
- Laboratory of Abdominal Transplantation, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Veerle Heedfeld
- Department of Abdominal Transplant Surgery and Transplant Coordination, University Hospitals Leuven, 3000 Leuven, Belgium; (J.B.); (N.G.); (V.H.); (T.W.); (I.J.); (J.P.)
- Laboratory of Abdominal Transplantation, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Tine Wylin
- Department of Abdominal Transplant Surgery and Transplant Coordination, University Hospitals Leuven, 3000 Leuven, Belgium; (J.B.); (N.G.); (V.H.); (T.W.); (I.J.); (J.P.)
- Laboratory of Abdominal Transplantation, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Louis Libbrecht
- Department of Pathology, AZ Groeninge, 8500 Kortrijk, Belgium;
- Laboratory of Hepatology, CHROMETA Department, KU Leuven, 3000 Leuven, Belgium;
| | - Ina Jochmans
- Department of Abdominal Transplant Surgery and Transplant Coordination, University Hospitals Leuven, 3000 Leuven, Belgium; (J.B.); (N.G.); (V.H.); (T.W.); (I.J.); (J.P.)
- Laboratory of Abdominal Transplantation, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Jacques Pirenne
- Department of Abdominal Transplant Surgery and Transplant Coordination, University Hospitals Leuven, 3000 Leuven, Belgium; (J.B.); (N.G.); (V.H.); (T.W.); (I.J.); (J.P.)
- Laboratory of Abdominal Transplantation, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Hannelie Korf
- Laboratory of Hepatology, CHROMETA Department, KU Leuven, 3000 Leuven, Belgium;
| | - Diethard Monbaliu
- Department of Abdominal Transplant Surgery and Transplant Coordination, University Hospitals Leuven, 3000 Leuven, Belgium; (J.B.); (N.G.); (V.H.); (T.W.); (I.J.); (J.P.)
- Laboratory of Abdominal Transplantation, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
15
|
Pállinger É, Székely A, Töreki E, Bencsáth EZ, Szécsi B, Losoncz E, Oleszka M, Hüttl T, Kosztin A, Buzas EI, Radovits T, Merkely B. Donor Pericardial Interleukin and Apolipoprotein Levels May Predict the Outcome after Human Orthotopic Heart Transplantation. Int J Mol Sci 2023; 24:ijms24076780. [PMID: 37047753 PMCID: PMC10095178 DOI: 10.3390/ijms24076780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
The proinflammatory cascade that is activated at the time of brain death plays a crucial role in organ procurement. Our aim of this study was to explore the relationship between the clinical outcome of orthotopic heart transplantation, as well as cytokine and apolipoprotein profiles of the pericardial fluid obtained at donation. Interleukin, adipokine and lipoprotein levels in the pericardial fluid, as well as clinical data of twenty donors after brain death, were investigated. Outcome variables included primary graft dysfunction, the need for posttransplantation mechanical cardiac support and International Society for Heart and Lung Transplantation grade ≥ 2R rejection. Hormone management and donor risk scores were also investigated. Lower levels of IL-6 were observed in primary graft dysfunction (median: 36.72 [IQR: 19.47–62.90] versus 183.67 [41.21–452.56]; p = 0.029) and in the need for mechanical cardiac support (44.12 [20.12–85.70] versus 247.13 [38.51–510.38]; p = 0.043). Rejection was associated with lower ApoAII (p = 0.021), ApoB100 (p = 0.032) and ApoM levels (p = 0.025). Lower adipsin levels were detected in those patients receiving desmopressin (p = 0.037); moreover, lower leptin levels were found in those patients receiving glucocorticoid therapy (p = 0.045), and higher T3 levels were found in those patients treated with L-thyroxine (p = 0.047) compared to those patients not receiving these hormone replacement therapies. IL-5 levels were significantly associated with UNOS-D score (p = 0.004), Heart Donor Score (HDS) and Adapted HDS (p < 0.001). The monitoring of immunological and metabolic changes in donors after brain death may help in the prediction of potential complications after heart transplantation, thus potentially optimizing donor heart allocation.
Collapse
Affiliation(s)
- Éva Pállinger
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1085 Budapest, Hungary
| | - Andrea Székely
- Department of Anesthesiology and Intensive Therapy, Semmelweis University, 1085 Budapest, Hungary
- Heart and Vascular Center, Semmelweis University, 1085 Budapest, Hungary
| | - Evelin Töreki
- Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
| | - Erzsébet Zsófia Bencsáth
- Doctoral School of Theoretical and Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
| | - Balázs Szécsi
- Doctoral School of Theoretical and Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
| | - Eszter Losoncz
- Doctoral School of Theoretical and Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
| | - Máté Oleszka
- Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
| | - Tivadar Hüttl
- Heart and Vascular Center, Semmelweis University, 1085 Budapest, Hungary
| | - Annamária Kosztin
- Heart and Vascular Center, Semmelweis University, 1085 Budapest, Hungary
| | - Edit I. Buzas
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1085 Budapest, Hungary
- HCEMM-SU Extracellular Vesicle Research Group, Semmelweis University, 1085 Budapest, Hungary
- ELKH-SE Translational Extracellular Vesicle Research Group, Semmelweis University, 1085 Budapest, Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, 1085 Budapest, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
16
|
Akalay S, Hosgood SA. How to Best Protect Kidneys for Transplantation-Mechanistic Target. J Clin Med 2023; 12:jcm12051787. [PMID: 36902572 PMCID: PMC10003664 DOI: 10.3390/jcm12051787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
The increasing number of patients on the kidney transplant waiting list underlines the need to expand the donor pool and improve kidney graft utilization. By protecting kidney grafts adequately from the initial ischemic and subsequent reperfusion injury occurring during transplantation, both the number and quality of kidney grafts could be improved. The last few years have seen the emergence of many new technologies to abrogate ischemia-reperfusion (I/R) injury, including dynamic organ preservation through machine perfusion and organ reconditioning therapies. Although machine perfusion is gradually making the transition to clinical practice, reconditioning therapies have not yet progressed from the experimental setting, pointing towards a translational gap. In this review, we discuss the current knowledge on the biological processes implicated in I/R injury and explore the strategies and interventions that are being proposed to either prevent I/R injury, treat its deleterious consequences, or support the reparative response of the kidney. Prospects to improve the clinical translation of these therapies are discussed with a particular focus on the need to address multiple aspects of I/R injury to achieve robust and long-lasting protective effects on the kidney graft.
Collapse
Affiliation(s)
- Sara Akalay
- Department of Development and Regeneration, Laboratory of Pediatric Nephrology, KU Leuven, 3000 Leuven, Belgium
| | - Sarah A. Hosgood
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
- Correspondence:
| |
Collapse
|
17
|
Duceau B, Blatzer M, Bardon J, Chaze T, Giai Gianetto Q, Castelli F, Fenaille F, Duarte L, Lescot T, Tresallet C, Riou B, Matondo M, Langeron O, Rocheteau P, Chrétien F, Bouglé A. Using a multiomics approach to unravel a septic shock specific signature in skeletal muscle. Sci Rep 2022; 12:18776. [PMID: 36335235 PMCID: PMC9637214 DOI: 10.1038/s41598-022-23544-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022] Open
Abstract
Sepsis is defined as a dysregulated host response to infection leading to organs failure. Among them, sepsis induces skeletal muscle (SM) alterations that contribute to acquired-weakness in critically ill patients. Proteomics and metabolomics could unravel biological mechanisms in sepsis-related organ dysfunction. Our objective was to characterize a distinctive signature of septic shock in human SM by using an integrative multi-omics approach. Muscle biopsies were obtained as part of a multicenter non-interventional prospective study. Study population included patients in septic shock (S group, with intra-abdominal source of sepsis) and two critically ill control populations: cardiogenic shock (C group) and brain dead (BD group). The proteins and metabolites were extracted and analyzed by High-Performance Liquid Chromatography-coupled to tandem Mass Spectrometry, respectively. Fifty patients were included, 19 for the S group (53% male, 64 ± 17 years, SAPS II 45 ± 14), 12 for the C group (75% male, 63 ± 4 years, SAPS II 43 ± 15), 19 for the BD group (63% male, 58 ± 10 years, SAPS II 58 ± 9). Biopsies were performed in median 3 days [interquartile range 1-4]) after intensive care unit admission. Respectively 31 patients and 40 patients were included in the proteomics and metabolomics analyses of 2264 proteins and 259 annotated metabolites. Enrichment analysis revealed that mitochondrial pathways were significantly decreased in the S group at protein level: oxidative phosphorylation (adjusted p = 0.008); branched chained amino acids degradation (adjusted p = 0.005); citrate cycle (adjusted p = 0.005); ketone body metabolism (adjusted p = 0.003) or fatty acid degradation (adjusted p = 0.008). Metabolic reprogramming was also suggested (i) by the differential abundance of the peroxisome proliferator-activated receptors signaling pathway (adjusted p = 0.007), and (ii) by the accumulation of fatty acids like octanedioic acid dimethyl or hydroxydecanoic. Increased polyamines and depletion of mitochondrial thioredoxin or mitochondrial peroxiredoxin indicated a high level of oxidative stress in the S group. Coordinated alterations in the proteomic and metabolomic profiles reveal a septic shock signature in SM, highlighting a global impairment of mitochondria-related metabolic pathways, the depletion of antioxidant capacities, and a metabolic shift towards lipid accumulation.ClinicalTrial registration: NCT02789995. Date of first registration 03/06/2016.
Collapse
Affiliation(s)
- Baptiste Duceau
- grid.428999.70000 0001 2353 6535Experimental Neuropathology Unit, Institut Pasteur, Paris, France ,grid.411439.a0000 0001 2150 9058Department of Anesthesiology and Critical Care Medicine, Cardiology Institute, University Hospital Pitié-Salpêtrière (AP-HP. Sorbonne Université), GRC 29, Assistance Publique, 47-83 Boulevard de L’Hôpital, 75013 Paris, France
| | - Michael Blatzer
- grid.428999.70000 0001 2353 6535Experimental Neuropathology Unit, Institut Pasteur, Paris, France
| | - Jean Bardon
- grid.428999.70000 0001 2353 6535Experimental Neuropathology Unit, Institut Pasteur, Paris, France ,grid.412116.10000 0001 2292 1474AP-HP, Department of Anesthesiology and Critical Care Medicine, Hôpital Henri Mondor, Créteil, France
| | - Thibault Chaze
- grid.428999.70000 0001 2353 6535Institut Pasteur, Proteomics Core Facility, Mass Spectrometry for Biology Unit USR CNRS 2000, Bioinformatics and Biostatistics Hub Computational Biology Department USR CNRS 3756, Paris, France
| | - Quentin Giai Gianetto
- grid.428999.70000 0001 2353 6535Institut Pasteur, Proteomics Core Facility, Mass Spectrometry for Biology Unit USR CNRS 2000, Bioinformatics and Biostatistics Hub Computational Biology Department USR CNRS 3756, Paris, France
| | - Florence Castelli
- grid.457334.20000 0001 0667 2738Département Médicaments Et Technologies Pour La Santé (MTS), Université Paris Saclay, CEA, INRAE, MetaboHUB, Gif-Sur-Yvette, France
| | - François Fenaille
- grid.457334.20000 0001 0667 2738Département Médicaments Et Technologies Pour La Santé (MTS), Université Paris Saclay, CEA, INRAE, MetaboHUB, Gif-Sur-Yvette, France
| | - Lucie Duarte
- grid.428999.70000 0001 2353 6535Experimental Neuropathology Unit, Institut Pasteur, Paris, France ,grid.411439.a0000 0001 2150 9058Department of Anesthesiology and Critical Care Medicine, Cardiology Institute, University Hospital Pitié-Salpêtrière (AP-HP. Sorbonne Université), GRC 29, Assistance Publique, 47-83 Boulevard de L’Hôpital, 75013 Paris, France
| | - Thomas Lescot
- grid.50550.350000 0001 2175 4109Department of Anesthesiology and Critical Care Medicine, Hôpital Saint-Antoine, Sorbonne Université, GRC 29, AP-HP, Paris, France
| | - Christophe Tresallet
- grid.50550.350000 0001 2175 4109Department of General and Endocrine Surgery, Hôpital La Pitié-Salpêtrière, Sorbonne Université, AP-HP, Paris, France
| | - Bruno Riou
- grid.50550.350000 0001 2175 4109Emergency Department, Hôpital La Pitié-Salpêtrière, Sorbonne Université, AP-HP, Paris, France
| | - Mariette Matondo
- grid.428999.70000 0001 2353 6535Institut Pasteur, Proteomics Core Facility, Mass Spectrometry for Biology Unit USR CNRS 2000, Bioinformatics and Biostatistics Hub Computational Biology Department USR CNRS 3756, Paris, France
| | - Olivier Langeron
- grid.412116.10000 0001 2292 1474AP-HP, Department of Anesthesiology and Critical Care Medicine, Hôpital Henri Mondor, Créteil, France
| | - Pierre Rocheteau
- grid.428999.70000 0001 2353 6535Experimental Neuropathology Unit, Institut Pasteur, Paris, France
| | - Fabrice Chrétien
- grid.428999.70000 0001 2353 6535Experimental Neuropathology Unit, Institut Pasteur, Paris, France ,grid.414435.30000 0001 2200 9055Hôpital Sainte Anne, GHU Paris Psychiatrie Et Neurosciences, Paris, France
| | - Adrien Bouglé
- grid.428999.70000 0001 2353 6535Experimental Neuropathology Unit, Institut Pasteur, Paris, France ,grid.411439.a0000 0001 2150 9058Department of Anesthesiology and Critical Care Medicine, Cardiology Institute, University Hospital Pitié-Salpêtrière (AP-HP. Sorbonne Université), GRC 29, Assistance Publique, 47-83 Boulevard de L’Hôpital, 75013 Paris, France
| |
Collapse
|
18
|
Ponticelli C, Reggiani F, Moroni G. Delayed Graft Function in Kidney Transplant: Risk Factors, Consequences and Prevention Strategies. J Pers Med 2022; 12:jpm12101557. [PMID: 36294695 PMCID: PMC9605016 DOI: 10.3390/jpm12101557] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/17/2022] [Accepted: 09/18/2022] [Indexed: 11/24/2022] Open
Abstract
Background. Delayed graft function is a frequent complication of kidney transplantation that requires dialysis in the first week posttransplant. Materials and Methods. We searched for the most relevant articles in the National Institutes of Health library of medicine, as well as in transplantation, pharmacologic, and nephrological journals. Results. The main factors that may influence the development of delayed graft function (DGF) are ischemia–reperfusion injury, the source and the quality of the donated kidney, and the clinical management of the recipient. The pathophysiology of ischemia–reperfusion injury is complex and involves kidney hypoxia related to the duration of warm and cold ischemia, as well as the harmful effects of blood reperfusion on tubular epithelial cells and endothelial cells. Ischemia–reperfusion injury is more frequent and severe in kidneys from deceased donors than in those from living donors. Of great importance is the quality and function of the donated kidney. Kidneys from living donors and those with normal function can provide better results. In the peri-operative management of the recipient, great attention should be paid to hemodynamic stability and blood pressure; nephrotoxic medicaments should be avoided. Over time, patients with DGF may present lower graft function and survival compared to transplant recipients without DGF. Maladaptation repair, mitochondrial dysfunction, and acute rejection may explain the worse long-term outcome in patients with DGF. Many different strategies meant to prevent DGF have been evaluated, but only prolonged perfusion of dopamine and hypothermic machine perfusion have proven to be of some benefit. Whenever possible, a preemptive transplant from living donor should be preferred.
Collapse
Affiliation(s)
| | - Francesco Reggiani
- Nephrology and Dialysis Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy
- Correspondence:
| | - Gabriella Moroni
- Nephrology and Dialysis Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| |
Collapse
|
19
|
Eerola V, Helanterä I, Åberg F, Lempinen M, Mäkisalo H, Nordin A, Isoniemi H, Sallinen V. Timing of Organ Procurement From Brain-Dead Donors Associates With Short- and Long-Term Outcomes After Liver Transplantation. Transpl Int 2022; 35:10364. [PMID: 36118016 PMCID: PMC9472133 DOI: 10.3389/ti.2022.10364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022]
Abstract
Brain death-induced cytokine storm is thought to harm transplantable organs. However, longer procurement times have been associated with non-inferior or better outcomes in kidney, heart, and lung transplants, while optimal procurement time for liver allografts is unknown. Our aim was to analyze the association of time interval from brain death to organ procurement with liver allograft outcomes in two nationwide cohorts. The association of procurement interval with graft survival and short-term complications was analysed in multivariable models. Altogether 643 and 58,017 orthotopic liver transplantations from brain-dead donors were included from Finland between June 2004 and December 2017 and the US between January 2008 and August 2018, respectively. Median time from brain death to organ procurement was 10.5 h in Finland and 34.6 h in the US. Longer interval associated with better graft survival (non-linearly, p = 0.016) and less acute rejections (OR 0.935 95% CI 0.894–0.978) in the US cohort, and better early allograft function (p = 0.005; Beta −0.048 95% CI −0.085 −(−0.011)) in the Finnish cohort, in multivariable models adjusted with Donor Risk Index, recipient age, Model for End-Stage Liver Disease and indication for transplantation. Progressive liver injury after brain death is unlikely. Rushing to recover seems unnecessary; rest and repair might prove beneficial.
Collapse
|
20
|
Mende N, Bastos HP, Santoro A, Mahbubani KT, Ciaurro V, Calderbank EF, Londoño MQ, Sham K, Mantica G, Morishima T, Mitchell E, Lidonnici MR, Meier-Abt F, Hayler D, Jardine L, Curd A, Haniffa M, Ferrari G, Takizawa H, Wilson NK, Göttgens B, Saeb-Parsy K, Frontini M, Laurenti E. Unique molecular and functional features of extramedullary hematopoietic stem and progenitor cell reservoirs in humans. Blood 2022; 139:3387-3401. [PMID: 35073399 PMCID: PMC7612845 DOI: 10.1182/blood.2021013450] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/05/2022] [Indexed: 02/02/2023] Open
Abstract
Rare hematopoietic stem and progenitor cell (HSPC) pools outside the bone marrow (BM) contribute to blood production in stress and disease but remain ill-defined. Although nonmobilized peripheral blood (PB) is routinely sampled for clinical management, the diagnosis and monitoring potential of PB HSPCs remain untapped, as no healthy PB HSPC baseline has been reported. Here we comprehensively delineate human extramedullary HSPC compartments comparing spleen, PB, and mobilized PB to BM using single-cell RNA-sequencing and/or functional assays. We uncovered HSPC features shared by extramedullary tissues and others unique to PB. First, in contrast to actively dividing BM HSPCs, we found no evidence of substantial ongoing hematopoiesis in extramedullary tissues at steady state but report increased splenic HSPC proliferative output during stress erythropoiesis. Second, extramedullary hematopoietic stem cells/multipotent progenitors (HSCs/MPPs) from spleen, PB, and mobilized PB share a common transcriptional signature and increased abundance of lineage-primed subsets compared with BM. Third, healthy PB HSPCs display a unique bias toward erythroid-megakaryocytic differentiation. At the HSC/MPP level, this is functionally imparted by a subset of phenotypic CD71+ HSCs/MPPs, exclusively producing erythrocytes and megakaryocytes, highly abundant in PB but rare in other adult tissues. Finally, the unique erythroid-megakaryocytic-skewing of PB is perturbed with age in essential thrombocythemia and β-thalassemia. Collectively, we identify extramedullary lineage-primed HSPC reservoirs that are nonproliferative in situ and report involvement of splenic HSPCs during demand-adapted hematopoiesis. Our data also establish aberrant composition and function of circulating HSPCs as potential clinical indicators of BM dysfunction.
Collapse
Affiliation(s)
- Nicole Mende
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Hugo P. Bastos
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Antonella Santoro
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Krishnaa T. Mahbubani
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Haematology and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Valerio Ciaurro
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Emily F. Calderbank
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Mariana Quiroga Londoño
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Kendig Sham
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Giovanna Mantica
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Tatsuya Morishima
- Laboratory of Stem Cell Stress, International Research Centre for Medical Sciences, and Centre for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
- Laboratory of Hematopoietic Stem Cell Engineering, International Research Center for Medical Sciences, Kumamoto University, 860-0811 Kumamoto, Japan
| | - Emily Mitchell
- Cancer, Ageing and Somatic Mutation Group, Wellcome Sanger Institute, Hinxton, UK
| | - Maria Rosa Lidonnici
- San Raffaele-Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabienne Meier-Abt
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Institute of Molecular Systems Biology (IMSB), ETH Zurich, Zurich, Switzerland
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Daniel Hayler
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Laura Jardine
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Haematology Department, Freeman Hospital, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, NE7 7DN, UK
| | - Abbie Curd
- Department of Surgery and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Muzlifah Haniffa
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4LP, UK
| | - Giuliana Ferrari
- San Raffaele-Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Hitoshi Takizawa
- Laboratory of Stem Cell Stress, International Research Centre for Medical Sciences, and Centre for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
| | - Nicola K. Wilson
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Berthold Göttgens
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Mattia Frontini
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Institute of Biomedical & Clinical Science, College of Medicine and Health, University of Exeter Medical School, Exeter, UK
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- British Heart Foundation Centre of Excellence, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Elisa Laurenti
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|
21
|
Yang Z, Qiu G, Li X, Li S, Yu C, Qin Y. Proteomic analysis of serum proteins in children with brain death. Transl Pediatr 2022; 11:58-72. [PMID: 35242652 PMCID: PMC8825943 DOI: 10.21037/tp-21-559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/07/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Brain death (BD) is a catastrophic physiological outcome that can occur in individuals with terminal illness and can adversely affect the graft quality after donation of their organs. As BD has no specific symptoms, it can be difficult to diagnose in a timely manner. The present study was designed to investigate the serum protein expression profiles of children affected by BD in an effort to define diagnostic biomarkers for this condition. METHODS Blood samples were collected from 8 patients with BD and 8 healthy controls during the same time period. Tandem mass tags and mass spectrometry were used to conduct a proteomic analysis of serum extracted from the samples. The potential regulatory roles of the top 5 upregulated and downregulated proteins identified through the analysis were then explored using bioinformatics analyses and a review of the related literature. RESULTS The top 5 upregulated proteins in the serum samples from patients with BD were lipopolysaccharide-binding protein (LBP), α1-acid glycoprotein (α1-AGP), α1-antichymotrypsin (α1-ACT), leucine-rich α1-glycoprotein (LRG1), and lactate dehydrogenase B heavy chain (LDHB), and the 5 most downregulated proteins in these samples were actin-binding protein 2 (transgelin-2), platelet basic protein (PBP), tropomyosin α4 chain (TPM4), tropomyosin α3 chain (TPM3), and peptidase inhibitor 16 (PI16). Literature searches indicated that several of the identified proteins influence the pathogeneses of various diseases, with LBP, α1-AGP, α1-ACT, LRG1, transgelin-2, and PBP all being related to inflammatory activity. CONCLUSIONS Through a proteomics-based analysis, several differentially expressed proteins were identified in patients with BD relative to healthy controls. Most of these proteins are associated with inflammatory responses that have the potential to persist after the occurrence of BD. Further clinical work is needed to clarify the functional roles of the identified proteins.
Collapse
Affiliation(s)
- Zhiyong Yang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guosheng Qiu
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xing Li
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Sijie Li
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chaoming Yu
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuanhan Qin
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
22
|
De Paep DL, Van Hulle F, Ling Z, Vanhoeij M, Hilbrands R, Distelmans W, Gillard P, Keymeulen B, Pipeleers D, Jacobs-Tulleneers-Thevissen D. Utility of Islet Cell Preparations From Donor Pancreases After Euthanasia. Cell Transplant 2022; 31:9636897221096160. [PMID: 35583214 PMCID: PMC9125111 DOI: 10.1177/09636897221096160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Patients fulfilling criteria for euthanasia can choose to donate their organs after circulatory death [donors after euthanasia (DCD V)]. This study assesses the outcome of islet cell isolation from DCD V pancreases. A procedure for DCD V procurement provided 13 pancreases preserved in Institut Georges Lopez-1 preservation solution and following acirculatory warm ischemia time under 10 minutes. Islet cell isolation outcomes are compared with those from reference donors after brain death (DBD, n = 234) and a cohort of donors after controlled circulatory death (DCD III, n = 29) procured under the same conditions. Islet cell isolation from DCD V organs resulted in better in vitro outcome than for selected DCD III or reference DBD organs. A 50% higher average beta cell number before and after culture and a higher average beta cell purity (35% vs 24% and 25%) was observed, which led to more frequent selection for our clinical protocol (77% of isolates vs 50%). The functional capacity of a DCD V islet cell preparation was illustrated by its in vivo effect following intraportal transplantation in a type 1 diabetes patient: injection of 2 million beta cells/kg body weight (1,900 IEQ/kg body weight) at 39% insulin purity resulted in an implant with functional beta cell mass that represented 30% of that in non-diabetic controls. In conclusion, this study describes procurement and preservation conditions for donor organs after euthanasia, which allow preparation of cultured islet cells, that more frequently meet criteria for clinical use than those from DBD or DCD III organs.
Collapse
Affiliation(s)
- Diedert L De Paep
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium.,Beta Cell Bank, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Surgery, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Freya Van Hulle
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Zhidong Ling
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium.,Beta Cell Bank, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marian Vanhoeij
- Department of Surgery, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Robert Hilbrands
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium.,Diabetes Clinic, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Wim Distelmans
- Supportive and Palliative Care, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Pieter Gillard
- Diabetes Clinic, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Bart Keymeulen
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium.,Diabetes Clinic, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Daniel Pipeleers
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Daniel Jacobs-Tulleneers-Thevissen
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium.,Beta Cell Bank, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Surgery, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
23
|
See Hoe LE, Wildi K, Obonyo NG, Bartnikowski N, McDonald C, Sato K, Heinsar S, Engkilde-Pedersen S, Diab S, Passmore MR, Wells MA, Boon AC, Esguerra A, Platts DG, James L, Bouquet M, Hyslop K, Shuker T, Ainola C, Colombo SM, Wilson ES, Millar JE, Malfertheiner MV, Reid JD, O'Neill H, Livingstone S, Abbate G, Sato N, He T, von Bahr V, Rozencwajg S, Byrne L, Pimenta LP, Marshall L, Nair L, Tung JP, Chan J, Haqqani H, Molenaar P, Li Bassi G, Suen JY, McGiffin DC, Fraser JF. A clinically relevant sheep model of orthotopic heart transplantation 24 h after donor brainstem death. Intensive Care Med Exp 2021; 9:60. [PMID: 34950993 PMCID: PMC8702587 DOI: 10.1186/s40635-021-00425-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/23/2021] [Indexed: 11/10/2022] Open
Abstract
Background Heart transplantation (HTx) from brainstem dead (BSD) donors is the gold-standard therapy for severe/end-stage cardiac disease, but is limited by a global donor heart shortage. Consequently, innovative solutions to increase donor heart availability and utilisation are rapidly expanding. Clinically relevant preclinical models are essential for evaluating interventions for human translation, yet few exist that accurately mimic all key HTx components, incorporating injuries beginning in the donor, through to the recipient. To enable future assessment of novel perfusion technologies in our research program, we thus aimed to develop a clinically relevant sheep model of HTx following 24 h of donor BSD.
Methods BSD donors (vs. sham neurological injury, 4/group) were hemodynamically supported and monitored for 24 h, followed by heart preservation with cold static storage. Bicaval orthotopic HTx was performed in matched recipients, who were weaned from cardiopulmonary bypass (CPB), and monitored for 6 h. Donor and recipient blood were assayed for inflammatory and cardiac injury markers, and cardiac function was assessed using echocardiography. Repeated measurements between the two different groups during the study observation period were assessed by mixed ANOVA for repeated measures.
Results Brainstem death caused an immediate catecholaminergic hemodynamic response (mean arterial pressure, p = 0.09), systemic inflammation (IL-6 - p = 0.025, IL-8 - p = 0.002) and cardiac injury (cardiac troponin I, p = 0.048), requiring vasopressor support (vasopressor dependency index, VDI, p = 0.023), with normalisation of biomarkers and physiology over 24 h. All hearts were weaned from CPB and monitored for 6 h post-HTx, except one (sham) recipient that died 2 h post-HTx. Hemodynamic (VDI - p = 0.592, heart rate - p = 0.747) and metabolic (blood lactate, p = 0.546) parameters post-HTx were comparable between groups, despite the observed physiological perturbations that occurred during donor BSD. All p values denote interaction among groups and time in the ANOVA for repeated measures. Conclusions We have successfully developed an ovine HTx model following 24 h of donor BSD. After 6 h of critical care management post-HTx, there were no differences between groups, despite evident hemodynamic perturbations, systemic inflammation, and cardiac injury observed during donor BSD. This preclinical model provides a platform for critical assessment of injury development pre- and post-HTx, and novel therapeutic evaluation. Supplementary Information The online version contains supplementary material available at 10.1186/s40635-021-00425-4.
Collapse
Affiliation(s)
- Louise E See Hoe
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia. .,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia. .,School of Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia.
| | - Karin Wildi
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,Cardiovascular Research Institute Basel, Basel, Switzerland
| | - Nchafatso G Obonyo
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,Wellcome Trust Centre for Global Health Research, Imperial College London, London, UK.,Initiative to Develop African Research Leaders (IDeAL), Kilifi, Kenya
| | - Nicole Bartnikowski
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Charles McDonald
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Department of Anaesthesia and Perfusion, The Prince Charles Hospital, Chermside, QLD, Australia
| | - Kei Sato
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Silver Heinsar
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,Second Department of Intensive Care, North Estonia Medical Centre, Tallinn, Estonia
| | - Sanne Engkilde-Pedersen
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Research and Development, Australian Red Cross Lifeblood, Brisbane, QLD, Australia
| | - Sara Diab
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Margaret R Passmore
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Matthew A Wells
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,School of Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia
| | - Ai-Ching Boon
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Arlanna Esguerra
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Research and Development, Australian Red Cross Lifeblood, Brisbane, QLD, Australia
| | - David G Platts
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Lynnette James
- Department of Cardiac Surgery, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Mahe Bouquet
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Kieran Hyslop
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Tristan Shuker
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Carmen Ainola
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Sebastiano M Colombo
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,Department of Pathophysiology and Transplantation, Università Degli Studi di Milano, Milan, Italy
| | - Emily S Wilson
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Jonathan E Millar
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Maximillian V Malfertheiner
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Department of Internal Medicine II, Cardiology and Pneumology, University Medical Center Regensburg, Regensburg, Germany
| | - Janice D Reid
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Hollier O'Neill
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Samantha Livingstone
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Gabriella Abbate
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Noriko Sato
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Ting He
- Department of Cardiac Surgery, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Viktor von Bahr
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Department of Physiology and Pharmacology, Section for Anesthesiology and Intensive Care Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sacha Rozencwajg
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Pitié-Salpêtrière University Hospital, Paris, France
| | - Liam Byrne
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,The Canberra Hospital Intensive Care, Garran, ACT, Australia.,Australia National University, Canberra, ACT, Australia
| | - Leticia P Pimenta
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Lachlan Marshall
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Department of Cardiac Surgery, Princess Alexandra Hospital, Brisbane, QLD, Australia.,Prince Charles Hospital, Brisbane, QLD, Australia
| | - Lawrie Nair
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Prince Charles Hospital, Brisbane, QLD, Australia
| | - John-Paul Tung
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,Research and Development, Australian Red Cross Lifeblood, Brisbane, QLD, Australia.,Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jonathan Chan
- Prince Charles Hospital, Brisbane, QLD, Australia.,School of Medicine, Griffith University, Southport, QLD, Australia
| | - Haris Haqqani
- Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,Prince Charles Hospital, Brisbane, QLD, Australia
| | - Peter Molenaar
- Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Gianluigi Li Bassi
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - Jacky Y Suen
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - David C McGiffin
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Cardiothoracic Surgery and Transplantation, The Alfred Hospital, Melbourne, VIC, Australia.,Monash University, Melbourne, VIC, Australia
| | - John F Fraser
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
24
|
Hobeika MJ, Casarin S, Saharia A, Mobley C, Yi S, McMillan R, Mark Ghobrial R, Osama Gaber A. In silico deceased donor intervention research: A potential accelerant for progress. Am J Transplant 2021; 21:2231-2239. [PMID: 33394565 DOI: 10.1111/ajt.16482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/09/2020] [Accepted: 12/28/2020] [Indexed: 01/25/2023]
Abstract
Progress in deceased donor intervention research has been limited. Development of an in silico model of deceased donor physiology may elucidate potential therapeutic targets and provide an efficient mechanism for testing proposed deceased donor interventions. In this study, we report a preliminary in silico model of deceased kidney donor injury built, calibrated, and validated based on data from published animal and human studies. We demonstrate that the in silico model behaves like animal studies of brain death pathophysiology with respect to upstream markers of renal injury including hemodynamics, oxygenation, cytokines expression, and inflammation. Therapeutic hypothermia, a deceased donor intervention studied in human trials, is performed to demonstrate the model's ability to mimic an established clinical trial. Finally, future directions for developing this concept into a functional, clinically applicable model are discussed.
Collapse
Affiliation(s)
- Mark J Hobeika
- J.C. Walter, Jr. Transplant Center, Sherrie and Alan Conover Center for Liver Disease and Transplantation, Houston Methodist Hospital, Houston, Texas.,Department of Surgery, Weill Cornell Medical College, New York, New York.,Department of Surgery, Houston Methodist Hospital, Houston, Texas.,Center for Outcomes Research, Houston Methodist, Houston, Texas.,Houston Methodist Academic Institute, Houston, Texas
| | - Stefano Casarin
- Department of Surgery, Houston Methodist Hospital, Houston, Texas.,Center for Computational Surgery, Houston Methodist Research Institute, Houston, Texas.,Houston Methodist Academic Institute, Houston, Texas
| | - Ashish Saharia
- J.C. Walter, Jr. Transplant Center, Sherrie and Alan Conover Center for Liver Disease and Transplantation, Houston Methodist Hospital, Houston, Texas.,Department of Surgery, Weill Cornell Medical College, New York, New York.,Department of Surgery, Houston Methodist Hospital, Houston, Texas.,Houston Methodist Academic Institute, Houston, Texas
| | - Constance Mobley
- J.C. Walter, Jr. Transplant Center, Sherrie and Alan Conover Center for Liver Disease and Transplantation, Houston Methodist Hospital, Houston, Texas.,Department of Surgery, Weill Cornell Medical College, New York, New York.,Department of Surgery, Houston Methodist Hospital, Houston, Texas.,Houston Methodist Academic Institute, Houston, Texas
| | - Stephanie Yi
- J.C. Walter, Jr. Transplant Center, Sherrie and Alan Conover Center for Liver Disease and Transplantation, Houston Methodist Hospital, Houston, Texas.,Department of Surgery, Weill Cornell Medical College, New York, New York.,Department of Surgery, Houston Methodist Hospital, Houston, Texas.,Center for Outcomes Research, Houston Methodist, Houston, Texas.,Houston Methodist Academic Institute, Houston, Texas
| | - Robert McMillan
- J.C. Walter, Jr. Transplant Center, Sherrie and Alan Conover Center for Liver Disease and Transplantation, Houston Methodist Hospital, Houston, Texas.,Department of Surgery, Weill Cornell Medical College, New York, New York.,Department of Surgery, Houston Methodist Hospital, Houston, Texas.,Houston Methodist Academic Institute, Houston, Texas
| | - Rafik Mark Ghobrial
- J.C. Walter, Jr. Transplant Center, Sherrie and Alan Conover Center for Liver Disease and Transplantation, Houston Methodist Hospital, Houston, Texas.,Department of Surgery, Weill Cornell Medical College, New York, New York.,Department of Surgery, Houston Methodist Hospital, Houston, Texas.,Houston Methodist Academic Institute, Houston, Texas
| | - Ahmed Osama Gaber
- J.C. Walter, Jr. Transplant Center, Sherrie and Alan Conover Center for Liver Disease and Transplantation, Houston Methodist Hospital, Houston, Texas.,Department of Surgery, Weill Cornell Medical College, New York, New York.,Department of Surgery, Houston Methodist Hospital, Houston, Texas.,Houston Methodist Academic Institute, Houston, Texas
| |
Collapse
|
25
|
Kattner N, Dyson N, Bury Y, Tiniakos D, White K, Davey T, Eliasson L, Tindale L, Wagner BE, Honkanen-Scott M, Doyle J, Ploeg RJ, Shaw JA, Scott WE. Development and validation of a quantitative electron microscopy score to assess acute cellular stress in the human exocrine pancreas. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2020; 7:173-187. [PMID: 33225596 PMCID: PMC7869933 DOI: 10.1002/cjp2.185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022]
Abstract
The pancreas is particularly sensitive to acute cellular stress, but this has been difficult to evaluate using light microscopy. Pancreatic ischaemia associated with deceased organ donation negatively impacts whole‐organ and isolated‐islet transplantation outcomes. Post‐mortem changes have also hampered accurate interpretation of ante‐mortem pancreatic pathology. A rigorous histological scoring system accurately quantifying ischaemia is required to experimentally evaluate innovations in organ preservation and to increase rigour in clinical/research evaluation of underlying pancreatic pathology. We developed and validated an unbiased electron microscopy (EM) score of acute pancreatic exocrine cellular stress in deceased organ donor cohorts (development [n = 28] and validation [n = 16]). Standardised assessment led to clearly described numerical scores (0–3) for nuclear, mitochondrial and endoplasmic reticulum (ER) morphology and intracellular vacuolisation; with a maximum (worst) aggregate total score of 12. In the Validation cohort, a trend towards higher scores was observed for tail versus head regions (nucleus score following donation after brainstem death [DBD]: head 0.67 ± 0.19; tail 0.86 ± 0.11; p = 0.027) and donation after circulatory death (DCD) versus DBD (mitochondrial score: DCD (head + tail) 2.59 ± 0.16; DBD (head + tail) 2.38 ± 0.21; p = 0.004). Significant mitochondrial changes were seen ubiquitously even with short cold ischaemia, whereas nuclear and vacuolisation changes remained mild even after prolonged ischaemia. ER score correlated with cold ischaemia time (CIT) following DBD (pancreatic tail region: r = 0.796; p = 0.018). No relationships between CIT and EM scores were observed following DCD. In conclusion, we have developed and validated a novel EM score providing standardised quantitative assessment of subcellular ultrastructural morphology in pancreatic acinar cells. This provides a robust novel tool for gold standard measurement of acute cellular stress in studies evaluating surrogate measures of peri‐transplant ischaemia, organ preservation technologies and in samples obtained for detailed pathological examination of underlying pancreatic pathology.
Collapse
Affiliation(s)
- Nicole Kattner
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Nicola Dyson
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Yvonne Bury
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,Department of Cellular Pathology, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Dina Tiniakos
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,Department of Pathology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Kathryn White
- Electron Microscopy Research Services, Newcastle University, Newcastle upon Tyne, UK
| | - Tracey Davey
- Electron Microscopy Research Services, Newcastle University, Newcastle upon Tyne, UK
| | - Lena Eliasson
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Lynn Tindale
- Department of Cellular Pathology, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Bart E Wagner
- Histopathology Department, Royal Hallamshire Hospital, Sheffield, UK
| | - Minna Honkanen-Scott
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Jennifer Doyle
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Rutger J Ploeg
- Nuffield Department of Surgical Science, University of Oxford, BRC Oxford and NHS Blood and Transplant, Oxford, UK
| | - James Am Shaw
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - William E Scott
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
26
|
17β-Estradiol as a New Therapy to Preserve Microcirculatory Perfusion in Small Bowel Donors. Transplantation 2020; 104:1862-1868. [PMID: 32345867 DOI: 10.1097/tp.0000000000003280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Intestine graft viability compromises retrieval in most brain-dead donors. Small bowel transplantation is a complex procedure with worse outcomes than transplantation of other abdominal organs. The hormone 17β-estradiol (E2) has shown vascular protective effects in lung tissue of brain death (BD) male rats. Thus, estradiol might be a treatment option to improve the quality of intestinal grafts. METHODS Male Wistar rats were divided into 3 groups (n = 10/group): rats that were trepanned only (sham-operated), rats subjected to rapid-onset BD, and brain-dead rats treated with E2 (280 µg/kg, intravenous) (BD-E2). Experiments performed for 180 minutes thereafter are included: (a) laser-Doppler flowmetry and intravital microscopy to evaluate mesenteric perfusion; (b) histopathological analysis; (c) real-time polymerase chain reaction of endothelial nitric oxide synthase (eNOS) and endothelin-1; (d) immunohistochemistry of eNOS, endothelin-1, P-selectin, intercellular adhesion molecule 1, and vascular cell adhesion molecule 1 expression; and (e) ELISA for cytokines and chemokines measurement. RESULTS 17β-Estradiol improved microcirculatory perfusion and reduced intestinal edema and hemorrhage after BD. The proportions of perfused small vessels were (mean ± scanning electron microscope) BD rats (40% ± 6%), sham-operated rats (75% ± 8%), and BD-E2 rats (67% ± 5%) (P = 0.011). 17β-Estradiol treatment was associated with 2-fold increase in eNOS protein (P < 0.0001) and gene (P = 0.0009) expression, with no differences in endothelin-1 expression. BD-E2 rats exhibited a reduction in vascular cell adhesion molecule 1 expression and reduced cytokine-induced neutrophil chemoattractant 1 and interleukina-10 serum levels. CONCLUSIONS 17β-Estradiol was effective in improving mesenteric perfusion and reducing intestinal edema and hemorrhage associated with BD. The suggestion is that E2 might be considered a therapy to mitigate, at least in part, the deleterious effects of BD in small bowel donors.
Collapse
|
27
|
Jarczyk J, Yard BA, Hoeger S. The Cholinergic Anti-Inflammatory Pathway as a Conceptual Framework to Treat Inflammation-Mediated Renal Injury. Kidney Blood Press Res 2020; 44:435-448. [PMID: 31307039 DOI: 10.1159/000500920] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/12/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The cholinergic anti-inflammatory pathway, positioned at the interface of the nervous and immune systems, is the efferent limb of the "inflammatory reflex" which mainly signals through the vagus nerve. As such, the brain can modulate peripheral inflammatory responses by the activation of vagal efferent fibers. Importantly, immune cells in the spleen express most cholinergic system components such as acetylcholine (ACh), choline acetyltransferase, acetylcholinesterase, and both muscarinic and nicotinic ACh receptors, making communication between both systems possible. In general, this communication down-regulates the inflammation, achieved through different mechanisms and depending on the cells involved. SUMMARY With the awareness that the cholinergic anti-inflammatory pathway serves to prevent or limit inflammation in peripheral organs, vagus nerve stimulation has become a promising strategy in the treatment of several inflammatory conditions. Both pharmacological and non-pharmacological methods have been used in many studies to limit organ injury as a consequence of inflammation. Key Messages: In this review, we will highlight our current knowledge of the cholinergic anti-inflammatory pathway, with emphasis on its potential clinical use in the treatment of inflammation-triggered kidney injury.
Collapse
Affiliation(s)
- Jonas Jarczyk
- Department of Urology, University Medical Center Mannheim, Medical Faculty Mannheim, Ruprecht-Karls-University Heidelberg, Mannheim, Germany
| | - Benito A Yard
- Vth Medical Department, University Medical Center Mannheim, Medical Faculty Mannheim, Ruprecht-Karls-University Heidelberg, Mannheim, Germany
| | - Simone Hoeger
- Vth Medical Department, University Medical Center Mannheim, Medical Faculty Mannheim, Ruprecht-Karls-University Heidelberg, Mannheim, Germany, .,Bioassay GmbH, Heidelberg, Germany,
| |
Collapse
|
28
|
Rech TH, Custódio G, Kroth LV, Henrich SF, Filho ÉMR, Crispim D, Leitão CB. Brain death-induced cytokine release is not associated with primary graft dysfunction: a cohort study. Rev Bras Ter Intensiva 2019; 31:86-92. [PMID: 30916235 PMCID: PMC6443307 DOI: 10.5935/0103-507x.20190009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/10/2018] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE To examine the association between donor plasma cytokine levels and the development of primary graft dysfunction of organs transplanted from deceased donors. METHODS Seventeen deceased donors and the respective 47 transplant recipients were prospectively included in the study. Recipients were divided into two groups: group 1, patients who developed primary graft dysfunction; and group 2, patients who did not develop primary graft dysfunction. Donor plasma levels of TNF, IL-6, IL-1β, and IFN-γ assessed by ELISA were compared between groups. RESULTS Sixty-nine organs were retrieved, and 48 transplants were performed. Donor plasma cytokine levels did not differ between groups (in pg/mL): TNF, group 1: 10.8 (4.3 - 30.8) versus group 2: 8.7 (4.1 - 33.1), p = 0.63; IL-6, group 1: 1617.8 (106.7 - 5361.7) versus group 2: 922.9 (161.7 - 5361.7), p = 0.56; IL-1β, group 1: 0.1 (0.1 - 126.1) versus group 2: 0.1 (0.1 - 243.6), p = 0.60; and IFN-γ, group 1: 0.03 (0.02 - 0.2) versus group 2: 0.03 (0.02 - 0.1), p = 0.93). Similar findings were obtained when kidney transplants were analyzed separately. CONCLUSION In this sample of transplant recipients, deceased donor plasma cytokines TNF, IL-6, IL-1β, and IFN-γ were not associated with the development of primary graft dysfunction.
Collapse
Affiliation(s)
- Tatiana Helena Rech
- Programa de Pós-Graduação em Ciências
Médicas: Endocrinologia, Universidade Federal do Rio Grande do Sul - Porto
Alegre (RS), Brasil
- Unidade de Terapia Intensiva, Hospital de Clínicas de Porto
Alegre, Universidade Federal do Rio Grande do Sul - Porto Alegre (RS), Brasil
| | - Geisiane Custódio
- Programa de Pós-Graduação em Ciências
Médicas: Endocrinologia, Universidade Federal do Rio Grande do Sul - Porto
Alegre (RS), Brasil
| | | | | | - Édison Moraes Rodrigues Filho
- Unidade de Terapia Intensiva, Hospital de Clínicas de Porto
Alegre, Universidade Federal do Rio Grande do Sul - Porto Alegre (RS), Brasil
- Unidade de Terapia Intensiva, Hospital Dom Vicente Scherer - Porto
Alegre (RS), Brasil
| | - Daisy Crispim
- Programa de Pós-Graduação em Ciências
Médicas: Endocrinologia, Universidade Federal do Rio Grande do Sul - Porto
Alegre (RS), Brasil
- Divisão de Endocrinologia, Hospital de Clínicas de
Porto Alegre, Universidade Federal do Rio Grande do Sul - Porto Alegre (RS),
Brasil
| | - Cristiane Bauermann Leitão
- Programa de Pós-Graduação em Ciências
Médicas: Endocrinologia, Universidade Federal do Rio Grande do Sul - Porto
Alegre (RS), Brasil
- Divisão de Endocrinologia, Hospital de Clínicas de
Porto Alegre, Universidade Federal do Rio Grande do Sul - Porto Alegre (RS),
Brasil
| |
Collapse
|