1
|
Park TY, Jeon J, Cha Y, Kim KS. Past, present, and future of cell replacement therapy for parkinson's disease: a novel emphasis on host immune responses. Cell Res 2024; 34:479-492. [PMID: 38777859 PMCID: PMC11217403 DOI: 10.1038/s41422-024-00971-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024] Open
Abstract
Parkinson's disease (PD) stands as the second most common neurodegenerative disorder after Alzheimer's disease, and its prevalence continues to rise with the aging global population. Central to the pathophysiology of PD is the specific degeneration of midbrain dopamine neurons (mDANs) in the substantia nigra. Consequently, cell replacement therapy (CRT) has emerged as a promising treatment approach, initially supported by various open-label clinical studies employing fetal ventral mesencephalic (fVM) cells. Despite the initial favorable results, fVM cell therapy has intrinsic and logistical limitations that hinder its transition to a standard treatment for PD. Recent efforts in the field of cell therapy have shifted its focus towards the utilization of human pluripotent stem cells, including human embryonic stem cells and induced pluripotent stem cells, to surmount existing challenges. However, regardless of the transplantable cell sources (e.g., xenogeneic, allogeneic, or autologous), the poor and variable survival of implanted dopamine cells remains a major obstacle. Emerging evidence highlights the pivotal role of host immune responses following transplantation in influencing the survival of implanted mDANs, underscoring an important area for further research. In this comprehensive review, building upon insights derived from previous fVM transplantation studies, we delve into the functional ramifications of host immune responses on the survival and efficacy of grafted dopamine cells. Furthermore, we explore potential strategic approaches to modulate the host immune response, ultimately aiming for optimal outcomes in future clinical applications of CRT for PD.
Collapse
Affiliation(s)
- Tae-Yoon Park
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Jeha Jeon
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Young Cha
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Kwang-Soo Kim
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA.
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA.
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard Medical School, Belmont, MA, USA.
| |
Collapse
|
2
|
Amer MH, Rose FRAJ, Shakesheff KM, Modo M, White LJ. Translational considerations in injectable cell-based therapeutics for neurological applications: concepts, progress and challenges. NPJ Regen Med 2017; 2:23. [PMID: 29302358 PMCID: PMC5677964 DOI: 10.1038/s41536-017-0028-x] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 06/27/2017] [Accepted: 07/12/2017] [Indexed: 12/11/2022] Open
Abstract
Significant progress has been made during the past decade towards the clinical adoption of cell-based therapeutics. However, existing cell-delivery approaches have shown limited success, with numerous studies showing fewer than 5% of injected cells persisting at the site of injection within days of transplantation. Although consideration is being increasingly given to clinical trial design, little emphasis has been given to tools and protocols used to administer cells. The different behaviours of various cell types, dosing accuracy, precise delivery, and cell retention and viability post-injection are some of the obstacles facing clinical translation. For efficient injectable cell transplantation, accurate characterisation of cellular health post-injection and the development of standardised administration protocols are required. This review provides an overview of the challenges facing effective delivery of cell therapies, examines key studies that have been carried out to investigate injectable cell delivery, and outlines opportunities for translating these findings into more effective cell-therapy interventions.
Collapse
Affiliation(s)
- Mahetab H. Amer
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD UK
| | | | | | - Michel Modo
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA USA
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA USA
| | - Lisa J. White
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD UK
| |
Collapse
|
3
|
Borlongan CV, Su TP, Wang Y. Delta Opioid Peptide Augments Functional Effects and Intrastriatal Graft Survival of Rat Fetal Ventral Mesencephalic Cells. Cell Transplant 2017. [DOI: 10.3727/000000001783987007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Cesario V. Borlongan
- Cellular Neurobiology, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 5500 Nathan Shock Drive, Baltimore, MD 21224
| | - Tsung-Ping Su
- Cellular Neurobiology, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 5500 Nathan Shock Drive, Baltimore, MD 21224
| | - Yun Wang
- Cellular Neurobiology, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 5500 Nathan Shock Drive, Baltimore, MD 21224
| |
Collapse
|
4
|
Rossetti T, Nicholls F, Modo M. Intracerebral Cell Implantation: Preparation and Characterization of Cell Suspensions. Cell Transplant 2015; 25:645-64. [PMID: 26720923 DOI: 10.3727/096368915x690350] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Intracerebral cell transplantation is increasingly finding a clinical translation. However, the number of cells surviving after implantation is low (5-10%) compared to the number of cells injected. Although significant efforts have been made with regard to the investigation of apoptosis of cells after implantation, very little optimization of cell preparation and administration has been undertaken. Moreover, there is a general neglect of the biophysical aspects of cell injection. Cell transplantation can only be an efficient therapeutic approach if an optimal transfer of cells from the dish to the brain can be ensured. We therefore focused on the in vitro aspects of cell preparation of a clinical-grade human neural stem cell (NSC) line for intracerebral cell implantation. NSCs were suspended in five different vehicles: phosphate-buffered saline (PBS), Dulbecco's modified Eagle medium (DMEM), artificial cerebral spinal fluid (aCSF), HypoThermosol, and Pluronic. Suspension accuracy, consistency, and cell settling were determined for different cell volume fractions in addition to cell viability, cell membrane damage, and clumping. Maintenance of cells in suspension was evaluated while being stored for 8 h on ice, at room temperature, or physiological normothermia. Significant differences between suspension vehicles and cellular volume fractions were evident. HypoThermosol and Pluronic performed best, with PBS, aCSF, and DMEM exhibiting less consistency, especially in maintaining a suspension and preserving viability under different storage conditions. These results provide the basis to further investigate these preparation parameters during the intracerebral delivery of NSCs to provide an optimized delivery process that can ensure an efficient clinical translation.
Collapse
Affiliation(s)
- Tiziana Rossetti
- Departments of Radiology and Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | |
Collapse
|
5
|
Jiang W, Büchele F, Papazoglou A, Döbrössy M, Nikkhah G. Multitract microtransplantation increases the yield of DARPP-32-positive embryonic striatal cells in a rodent model of Huntington's disease. Cell Transplant 2010; 20:1515-27. [PMID: 21176402 DOI: 10.3727/096368910x547435] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Embryonic striatal graft-mediated functional recovery in the rodent lesion model of Huntington's disease (HD) has been shown to correlate with the proportion of dopamine- and adenosine 3',5'-monophosphate-regulated phosphoprotein with a molecular weight of 32 kDa (DARPP-32)-positive neurons in the graft. The current study investigated the impact of graft distribution on the yield of DARPP-32-positive cells in the grafts following either single-tract or multitract cell delivery protocols using the microtransplantation approach. Cells derived from the whole ganglionic eminence of E15 rat embryos, ubiquitously expressing green fluorescent protein (GFP), were implanted into unilaterally QA-lesioned rat striatum either as 2 × 1.8 μl macrodeposits in a single tract, or as 18 × 0.2 μl microdeposits disseminated over six needle, multitract, penetrations. For both groups, an ultrathin glass capillary with an outer diameter of 50 μm was used. Histological assessment at 4 months after transplantation showed nearly twofold increase of DARRP-32-positive striatal-like neurons in the multitract compared to the single-tract group. However, the cellular make-up of the grafts did not translate into functional differences as tested in a basic spontaneous behavior test. Furthermore, the volumetric values for overall volume, DARPP-32-positive patches, and dopaminergic projection zones were similar between both groups. The results show that distribution of fetal striatal tissue in multiple submicroliter deposits provides for an increased yield of striatal-like neurons, potentially due to the enlargement of the graft-host border area intensifying the graft's exposure to host-derived factors. Furthermore, the use of embryonic tissue from GFP donors was validated in cell-based therapy studies in the HD model.
Collapse
Affiliation(s)
- Wei Jiang
- Laboratory of Molecular Neurosurgery, Department of Stereotactic and Functional Neurosurgery, Neurocentre, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | | | | | | | | |
Collapse
|
6
|
Hurelbrink CB, Tyers P, Armstrong RJE, Dunnett SB, Barker RA, Rosser AE. Long-term hibernation of human fetal striatal tissue does not adversely affect its differentiation in vitro or graft survival: implications for clinical trials in Huntington's disease. Cell Transplant 2004; 12:687-95. [PMID: 14653616 DOI: 10.3727/000000003108747307] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Transplantation of human fetal CNS tissue is a promising therapy for neurodegenerative conditions such as Huntington's disease (HD), but its widespread adoption is limited by restricted tissue availability. One method of overcoming this problem would be to store the tissue in hibernation medium, an approach that we reported previously for human fetal striatal tissue stored for up to 24 h. We now demonstrate the feasibility of storing such tissue for up to 8 days in hibernation medium. When either fresh or 8-day hibernated striatal cells were cultured under standard conditions for 4 days, the proportion of DARPP-32-positive neurons did not differ significantly, although the total number of cells was significantly less from tissue that had been hibernated. Six weeks after transplantation into cyclosporin A-immunosuppressed unilateral quinolinic acid-lesioned rats, there was no significant difference between fresh and hibernated grafts, both in terms of graft volume and extent of striatal phenotypic markers. This study therefore clearly demonstrates that hibernation of human fetal striatal tissue for up to 8 days is not deleterious to its differentiation in culture or survival following transplantation, and is therefore an appropriate method of storage for this tissue.
Collapse
Affiliation(s)
- Carrie B Hurelbrink
- Cambridge Centre for Brain Repair, Forvie Site, Robinson Way, Cambridge CB2 2PY, UK.
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
The concept of replacing lost dopamine neurons in Parkinson's disease using mesencephalic brain cells from fetal cadavers has been supported by over 20 years of research in animals and over a decade of clinical studies. The ambitious goal of these studies was no less than a molecular and cellular "cure" for Parkinson's disease, other neurodegenerative diseases, and spinal cord injury. Much research has been done in rodents, and a few studies have been done in nonhuman primate models. Early uncontrolled clinical reports were enthusiastic, but the outcome of the first randomized, double blind, controlled study challenged the idea that dopamine replacement cells can cure Parkinson's disease, although there were some significant positive findings. Were the earlier animal studies and clinical reports wrong? Should we give up on the goal? Some aspects of the trial design and implantation methods may have led to lack of effects and to some side effects such as dyskinesias. But a detailed review of clinical neural transplants published to date still suggests that neural transplantation variably reverses some aspects of Parkinson's disease, although differing methods make exact comparisons difficult. While the randomized clinical studies have been in progress, new methods have shown promise for increasing transplant survival and distribution, reconstructing the circuits to provide dopamine to the appropriate targets and with normal regulation. Selected promising new strategies are reviewed that block apoptosis induced by tissue dissection, promote vascularization of grafts, reduce oxidant stress, provide key growth factors, and counteract adverse effects of increased age. New sources of replacement cells and stem cells may provide additional advantages for the future. Full recovery from parkinsonism appears not only to be possible, but a reliable cell replacement treatment may finally be near.
Collapse
Affiliation(s)
- D Eugene Redmond
- Department of Psychiatry, Yale University School of Medicine, USA.
| |
Collapse
|
8
|
Hurelbrink CB, Armstrong RJ, Barker RA, Dunnett SB, Rosser AE. Hibernated human fetal striatal tissue: successful transplantation in a rat model of Huntington's disease. Cell Transplant 2000; 9:743-9. [PMID: 11202561 DOI: 10.1177/096368970000900601] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The use of fresh human fetal tissue in neural transplantation presents considerable logistical difficulties and limits the clinical applicability of this promising therapy. This study compared the survival of human fetal striatal tissue that had been stored for 24 h in a defined hibernation medium with that of fresh human fetal striatal tissue following xenotransplantation in a rat model of Huntington's disease (HD). Six to 7 weeks postgrafting, there was no significant difference between fresh and hibernated grafts in volume or in various striatal phenotypic markers, although there was a trend towards decreased graft volume. We conclude that short-term hibernation of this tissue is without significant adverse effects on the survival of grafted human fetal striatal tissue. This has important implications for the practical implementation of clinical neural transplant programs in HD.
Collapse
Affiliation(s)
- C B Hurelbrink
- Cambridge Centre for Brain Repair, University of Cambridge, UK.
| | | | | | | | | |
Collapse
|
9
|
Watts C, Brasted PJ, Dunnett SB. The morphology, integration, and functional efficacy of striatal grafts differ between cell suspensions and tissue pieces. Cell Transplant 2000; 9:395-407. [PMID: 10972338 DOI: 10.1177/096368970000900310] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In order to develop a surgical protocol for use in clinical trials of striatal transplantation in Huntington's disease (HD), the issues involved in the preparation and implantation of the embryonic striatal tissue must be addressed. Rodent models of HD offer the best experimental paradigm with which to study various aspects of striatal transplantation. In this article we present the results of an investigation of the role of trypsin and the process of trituration in the preparation of cell suspensions compared to the use of solid pieces of tissue. The embryonic material was derived from the lateral ganglionic eminence (LGE) and implanted into the excitotoxically lesioned striatum of the host rats. Twelve weeks following implantation, retrograde tracing of projections from the graft to the globus pallidus was performed. Grafts derived from cell suspensions triturated in the presence of trypsin contained larger quantities of striatal tissue within the graft and more DARPP-32-positive medium spiny neurons than grafts implanted as fragments of tissue. Afferent and efferent connectivity was also better in the trypsinized suspension graft group. Modest recovery in paw reaching was observed contralateral to the grafted side in animals implanted with solid fragments of embryonic striatal tissue. No relationship was observed between functional effect and the graft anatomy. These results suggest that local graft host interaction may also be involved in graft-mediated functional recovery.
Collapse
Affiliation(s)
- C Watts
- MRC Cambridge Centre for Brain Repair, Department of Neurosurgery, University of Cambridge, UK.
| | | | | |
Collapse
|
10
|
Watts C, Dunnett SB. Towards a protocol for the preparation and delivery of striatal tissue for clinical trials of transplantation in Huntington's disease. Cell Transplant 2000; 9:223-34. [PMID: 10811395 DOI: 10.1177/096368970000900208] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
There is a growing body of scientific evidence contributing to the development of clinical transplantation programs in patients with Huntington's disease. Phase I clinical trials have already commenced in France and North America and are starting in the near future in Sweden and the UK. Protocols for patient selection, surgical implantation, and pre- and postoperative follow-up are well defined. However, considerable variability exists with respect to the harvesting, preparation, and timing of implantation of the donor material. In this article we review the scientific evidence on which a rational protocol for donor tissue preparation and delivery may be based. Strategies aimed at minimizing the variability of tissue preparation should reduce the variability of functional outcome of striatal transplantation observed in animal models of Huntington's disease.
Collapse
Affiliation(s)
- C Watts
- MRC Cambridge Centre for Brain Repair, Department of Neurosurgery, University of Cambridge, UK.
| | | |
Collapse
|
11
|
Brundin P, Karlsson J, Emgård M, Schierle GS, Hansson O, Petersén A, Castilho RF. Improving the survival of grafted dopaminergic neurons: a review over current approaches. Cell Transplant 2000; 9:179-95. [PMID: 10811392 DOI: 10.1177/096368970000900205] [Citation(s) in RCA: 255] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Neural transplantation is developing into a therapeutic alternative in Parkinson's disease. A major limiting factor is that only 3-20% of grafted dopamine neurons survive the procedure. Recent advances regarding how and when the neurons die indicate that events preceding actual tissue implantation and during the first week thereafter are crucial, and that apoptosis plays a pivotal role. Triggers that may initiate neuronal death in grafts include donor tissue hypoxia and hypoglycemia, mechanical trauma, free radicals, growth factor deprivation, and excessive extracellular concentrations of excitatory amino acids in the host brain. Four distinct phases during grafting that can involve cell death have been identified: retrieval of the embryo; dissection and preparation of the donor tissue; implantation procedure followed by the immediate period after graft injection; and later stages of graft maturation. During these phases, cell death processes involving free radicals and caspase activation (leading to apoptosis) may be triggered, possibly involving an increase in intracellular calcium. We review different approaches that reduce cell death and increase survival of grafted neurons, typically by a factor of 2-4. For example, changes in transplantation procedure such as improved media and implantation technique can be beneficial. Calcium channel antagonists such as nimodipine and flunarizine improve nigral graft survival. Agents that counteract oxidative stress and its consequences, such as superoxide dismutase overexpression, and lazaroids can significantly increase the survival of transplanted dopamine neurons. Also, the inhibition of apoptosis by a caspase inhibitor has marked positive effects. Finally, basic fibroblast growth factor and members of the transforming growth factor-beta superfamily, such as glial cell line-derived neurotrophic factor, significantly improve the outcome of nigral transplants. These recent advances provide hope for improved survival of transplanted neurons in patients with Parkinson's disease, reducing the need for human embryonic donor tissue and increasing the likelihood of a successful outcome.
Collapse
Affiliation(s)
- P Brundin
- Wallenberg Neuroscience Center, Department of Physiological Sciences, Lund University, Sweden.
| | | | | | | | | | | | | |
Collapse
|
12
|
Brundin P, Kaminski Schierle GS. Neuroprotective Strategies in Neural Grafting. NEUROMETHODS 2000. [DOI: 10.1007/978-1-59259-690-4_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
13
|
Watts C, McNamara IR, Dunnett SB. Volume and differentiation of striatal grafts in rats: relationship to the number of cells implanted. Cell Transplant 2000; 9:65-72. [PMID: 10784068 DOI: 10.1177/096368970000900109] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A growing body of evidence suggests that graft-mediated functional recovery in animal models of Huntington's disease is influenced by the morphology of the striatal grafts. Various parameters, including embryonic dissection, tissue preparation, and surgical delivery into the brain, have been investigated with the aim of increasing the proportion of the grafts comprising striatum-like tissue. While growing evidence suggests that implants derived from the selective dissection of the lateral ganglionic eminence (LGE) contain more striatal tissue, the relationship between the quantity of LGE tissue implanted and the striatum-like proportion of the resultant grafts has not been formally investigated. In this study the volume of striatum-like tissue within the grafts did not increase in a linear manner with increasing numbers of cells implanted. The proportion of the grafts that comprised the striatum-like patch compartment or P-zone remained constant after an initial rapid increase as the number of LGE cells implanted was increased. These results have important practical implications in determining the optimum number of LGE cells to implant and hence in the design of any surgical protocol for the clinical application of this technique.
Collapse
Affiliation(s)
- C Watts
- MRC Cambridge Centre for Brain Repair, and the Department of Neurosurgery, University of Cambridge, UK.
| | | | | |
Collapse
|
14
|
Petersén A, Emgård M, Brundin P. Impact of a preceding striatal excitotoxic lesion and treatment with ciliary neurotrophic factor on striatal graft survival. Brain Res Bull 1999; 50:275-81. [PMID: 10582525 DOI: 10.1016/s0361-9230(99)00202-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The survival of grafted embryonic striatal tissue, dissected from the lateral ganglionic eminence, depends on the status of the host striatum. We found significantly larger volumes of surviving graft tissue and of striatal-like tissue (P-zone) within the graft, when the host striatum had been subjected to an excitotoxic lesion prior to transplantation surgery. Concomitantly the numbers of surviving grafted cells, assessed in both cresyl violet-stained sections and in sections stained with an immunohistochemical marker for striatal neurons, increased as compared to when graft tissue was placed in an intact unlesioned striatum. Finally, we examined the impact of treatment of the donor tissue with ciliary neurotrophic factor (CNTF) on graft survival. CNTF has previously been shown to protect striatal neurons against excitotoxic insults both in vitro and in vivo, but it did not improve striatal graft survival when added to the cell suspension prior to implantation.
Collapse
Affiliation(s)
- A Petersén
- Wallenberg Neuroscience Center, Department of Physiological Sciences, Lund University, Sweden.
| | | | | |
Collapse
|
15
|
Affiliation(s)
- P R Sanberg
- Division of Neurological Surgery, University of South Florida College of Medicine, Tampa 33612, USA
| | | |
Collapse
|