1
|
Kataria S, Patel U, Yabut K, Patel J, Patel R, Patel S, Wijaya JH, Maniyar P, Karki Y, Makrani MP, Viswanath O, Kaye AD. Recent Advances in Management of Neuropathic, Nociceptive, and Chronic Pain: A Narrative Review with Focus on Nanomedicine, Gene Therapy, Stem Cell Therapy, and Newer Therapeutic Options. Curr Pain Headache Rep 2024; 28:321-333. [PMID: 38386244 PMCID: PMC11126447 DOI: 10.1007/s11916-024-01227-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2024] [Indexed: 02/23/2024]
Abstract
PURPOSE OF REVIEW This manuscript summarizes novel clinical and interventional approaches in the management of chronic, nociceptive, and neuropathic pain. RECENT FINDINGS Pain can be defined as a feeling of physical or emotional distress caused by an external stimulus. Pain can be grouped into distinct types according to characteristics including neuropathic pain, which is a pain caused by disease or lesion in the sensory nervous system; nociceptive pain, which is pain that can be sharp, aching, or throbbing and is caused by injury to bodily tissues; and chronic pain, which is long lasting or persisting beyond 6 months. With improved understanding of different signaling systems for pain in recent years, there has been an upscale of methods of analgesia to counteract these pathological processes. Novel treatment methods such as use of cannabinoids, stem cells, gene therapy, nanoparticles, monoclonal antibodies, and platelet-rich plasma have played a significant role in improved strategies for therapeutic interventions. Although many management options appear to be promising, extensive additional clinical research is warranted to determine best practice strategies in the future for clinicians.
Collapse
Affiliation(s)
- Saurabh Kataria
- Department of Neurology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, 71103, USA.
- LSU Health Science Center at Shreveport, 1501 Kings Highway, Shreveport, LA, 71104, USA.
| | | | - Kevin Yabut
- Louisiana State University Health Science Center, Shreveport, LA, 71103, USA
| | - Jayshil Patel
- Benchmark Physical Therapy, Upstream Rehabilitation, Knoxville, TN, 37920, USA
| | - Rajkumar Patel
- GMERS Medical College, Gotri, Vadodara, Gujarat, 390021, India
| | - Savan Patel
- Pramukhswami Medical College, Karamsad, Gujarat, 388325, India
| | | | - Pankti Maniyar
- GMERS Medical College, Gotri, Vadodara, Gujarat, 390021, India
| | - Yukti Karki
- Kathmandu Medical College and Teaching Hospital, Kathmandu, 44600, Nepal
| | - Moinulhaq P Makrani
- Department of Pharmacology, Parul Institute of Medical Science and Research, Waghodia, Gujarat, 291760, India
| | - Omar Viswanath
- Department of Anesthesiology and Interventional Pain, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, 71103, USA
| | - Alan D Kaye
- Department of Anesthesiology and Interventional Pain, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, 71103, USA
- Louisiana Addiction Research Center, Shreveport, LA, 71103, USA
| |
Collapse
|
2
|
Askarian-Amiri S, Maleki SN, Alavi SNR, Neishaboori AM, Toloui A, Gubari MIM, Sarveazad A, Hosseini M, Yousefifard M. The efficacy of GABAergic precursor cells transplantation in alleviating neuropathic pain in animal models: a systematic review and meta-analysis. Korean J Pain 2022; 35:43-58. [PMID: 34966011 PMCID: PMC8728544 DOI: 10.3344/kjp.2022.35.1.43] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 12/11/2022] Open
Abstract
Background Current therapies are quite unsuccessful in the management of neuropathic pain. Therefore, considering the inhibitory characteristics of GABA mediators, the present systematic review and meta-analysis aimed to determine the efficacy of GABAergic neural precursor cells on neuropathic pain management. Methods Search was conducted on Medline, Embase, Scopus, and Web of Science databases. A search strategy was designed based on the keywords related to GABAergic cells combined with neuropathic pain. The outcomes were allodynia and hyperalgesia. The results were reported as a pooled standardized mean difference (SMD) with a 95% confidence interval (95% CI). Results Data of 13 studies were analyzed in the present meta-analysis. The results showed that administration of GABAergic cells improved allodynia (SMD = 1.79; 95% CI 0.87, 271; P < 0.001) and hyperalgesia (SMD = 1.29; 95% CI 0.26, 2.32; P = 0.019). Moreover, the analyses demonstrated that the efficacy of GABAergic cells in the management of allodynia and hyperalgesia is only observed in rats. Also, only genetically modified cells are effective in improving both of allodynia, and hyperalgesia. Conclusions A moderate level of pre-clinical evidence showed that transplantation of genetically-modified GABAergic cells is effective in the management of neuropathic pain. However, it seems that the transplantation efficacy of these cells is only statistically significant in improving pain symptoms in rats. Hence, caution should be exercised regarding the generalizability and the translation of the findings from rats and mice studies to large animal studies and clinical trials.
Collapse
Affiliation(s)
| | | | | | | | - Amirmohammad Toloui
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammed I M Gubari
- Department of Family and Community Medicine, College of Medicine, University of Sulaimani, Sulaimani, Iraq
| | - Arash Sarveazad
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran.,Nursing Care Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mostafa Hosseini
- Pediatric Chronic Kidney Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Yousefifard
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Uddin MS, Mamun AA, Rahman MA, Kabir MT, Alkahtani S, Alanazi IS, Perveen A, Ashraf GM, Bin-Jumah MN, Abdel-Daim MM. Exploring the Promise of Flavonoids to Combat Neuropathic Pain: From Molecular Mechanisms to Therapeutic Implications. Front Neurosci 2020; 14:478. [PMID: 32587501 PMCID: PMC7299068 DOI: 10.3389/fnins.2020.00478] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/17/2020] [Indexed: 01/10/2023] Open
Abstract
Neuropathic pain (NP) is the result of irregular processing in the central or peripheral nervous system, which is generally caused by neuronal injury. The management of NP represents a great challenge owing to its heterogeneous profile and the significant undesirable side effects of the frequently prescribed psychoactive agents, including benzodiazepines (BDZ). Currently, several established drugs including antidepressants, anticonvulsants, topical lidocaine, and opioids are used to treat NP, but they exert a wide range of adverse effects. To reduce the burden of adverse effects, we need to investigate alternative therapeutics for the management of NP. Flavonoids are the most common secondary metabolites of plants used in folkloric medicine as tranquilizers, and have been claimed to have a selective affinity to the BDZ binding site. Several studies in animal models have reported that flavonoids can reduce NP. In this paper, we emphasize the potentiality of flavonoids for the management of NP.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Abdullah Al Mamun
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Md Ataur Rahman
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | | | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ibtesam S Alanazi
- Department of Biology, Faculty of Sciences, Univesity of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - May N Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.,Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
4
|
Human induced pluripotent stem cell-derived GABAergic interneuron transplants attenuate neuropathic pain. Pain 2020; 161:379-387. [DOI: 10.1097/j.pain.0000000000001733] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Yoo SH, Lee SH, Lee S, Park JH, Lee S, Jin H, Park HJ. The effect of human mesenchymal stem cell injection on pain behavior in chronic post-ischemia pain mice. Korean J Pain 2020; 33:23-29. [PMID: 31888314 PMCID: PMC6944374 DOI: 10.3344/kjp.2020.33.1.23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 12/30/2022] Open
Abstract
Background Neuropathic pain (NP) is considered a clinically incurable condition despite various treatment options due to its diverse causes and complicated disease mechanisms. Since the early 2000s, multipotent human mesenchymal stem cells (hMSCs) have been used in the treatment of NP in animal models. However, the effects of hMSC injections have not been studied in chronic post-ischemia pain (CPIP) mice models. Here, we investigated whether intrathecal (IT) and intrapaw (IP) injections of hMSCs can reduce mechanical allodynia in CPIP model mice. Methods Seventeen CPIP C57/BL6 mice were selected and randomized into four groups: IT sham (n = 4), IT stem (n = 5), IP sham (n = 4), and IP stem (n = 4). Mice in the IT sham and IT stem groups received an injection of 5 μL saline and 2 × 104 hMSCs, respectively, while mice in the IP sham and IP stem groups received an injection of 5 μL saline and 2 × 105 hMSCs, respectively. Mechanical allodynia was assessed using von Frey filaments from pre-injection to 30 days post-injection. Glial fibrillary acidic protein (GFAP) expression in the spinal cord and dorsal root ganglia were also evaluated. Results IT and IP injections of hMSCs improved mechanical allodynia. GFAP expression was decreased on day 25 post-injection compared with the sham group. Injections of hMSCs improved allodynia and GFAP expression was decreased compared with the sham group. Conclusions These results suggested that hMSCs may be also another treatment modality in NP model by ischemia-reperfusion.
Collapse
Affiliation(s)
- Sie Hyeon Yoo
- Department of Anesthesiology and Pain Medicine, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Sung Hyun Lee
- Department of Anesthesiology and Pain Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seunghwan Lee
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jae Hong Park
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seunghyeon Lee
- Department of Anesthesiology and Pain Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Heecheol Jin
- Department of Anesthesiology and Pain Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Hue Jung Park
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
6
|
Manion J, Waller MA, Clark T, Massingham JN, Neely GG. Developing Modern Pain Therapies. Front Neurosci 2019; 13:1370. [PMID: 31920521 PMCID: PMC6933609 DOI: 10.3389/fnins.2019.01370] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 12/04/2019] [Indexed: 12/24/2022] Open
Abstract
Chronic pain afflicts as much as 50% of the population at any given time but our methods to address pain remain limited, ineffective and addictive. In order to develop new therapies an understanding of the mechanisms of painful sensitization is essential. We discuss here recent progress in the understanding of mechanisms underlying pain, and how these mechanisms are being targeted to produce modern, specific therapies for pain. Finally, we make recommendations for the next generation of targeted, effective, and safe pain therapies.
Collapse
Affiliation(s)
- John Manion
- The Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Matthew A. Waller
- The Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Teleri Clark
- The Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Joshua N. Massingham
- The Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - G. Gregory Neely
- The Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
- Genome Editing Initiative, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
7
|
Shehab S, Rehmathulla S, Javed H. A single GABA neuron receives contacts from myelinated primary afferents of two adjacent peripheral nerves. A possible role in neuropathic pain. J Comp Neurol 2018; 526:2984-2999. [PMID: 30069880 DOI: 10.1002/cne.24509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/19/2022]
Abstract
GAD67-EGFP mice were used in a series of experiments to provide anatomical evidence for the role of the reduction in myelinated primary afferent input to GABA spinal neurons in the production of neuropathic pain following peripheral L5 nerve injury. First, we confirmed that L5 injury in these mice produced mechanical and thermal hyperalgesia in the ipsilateral foot. Second, we injected a mixture of cholera toxin subunit-B (CTb) and isolectin B4 (IB4) in the sciatic nerve to selectively label its myelinated and unmyelinated primary afferents. Results showed that primary afferents of sciatic nerve extend from L2-L6 spinal segments. Third, we determined the central terminations of myelinated primary afferents of L4 and L5 spinal nerves following CTb injection in either nerve. The myelinated primary afferents of both nerves terminated in the corresponding and two to three rostral spinal segments with some fibers descending to terminate in the segment caudal to the level at which they entered indicating an intermingling of their terminals at the dorsal horn of the spinal cord. Fourthly, we injected CTb in L5 nerve and CTb HRP-conjugate in L4 nerve. Confocal microscopy and subsequent image analyses showed that individual EGFP-labeled neurons in L4 segment receive myelinated primary afferent contacts from both L4 and L5 nerves. Eliminating inputs from L5 nerve following its injury would result in less involvement of spinal GABA neurons which would very likely initiate neuronal sensitization in L4 segment. This could lead to the development of hyperalgesia in response to the stimulation of the adjacent uninjured L4 nerve.
Collapse
Affiliation(s)
- Safa Shehab
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Sumisha Rehmathulla
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Hayate Javed
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
8
|
Braz JM, Etlin A, Juarez-Salinas D, Llewellyn-Smith IJ, Basbaum AI. Rebuilding CNS inhibitory circuits to control chronic neuropathic pain and itch. PROGRESS IN BRAIN RESEARCH 2018; 231:87-105. [PMID: 28554402 DOI: 10.1016/bs.pbr.2016.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cell transplantation offers an attractive alternative to pharmacotherapy for the management of a host of clinical conditions. Most importantly, the transplanted cells provide a continuous, local delivery of therapeutic compounds, which avoids many of the adverse side effects associated with systemically administered drugs. Here, we describe the broad therapeutic utility of transplanting precursors of cortical inhibitory interneurons derived from the embryonic medial ganglionic eminence (MGE), in a variety of chronic pain and itch models in the mouse. Despite the cortical environment in which the MGE cells normally develop, these cells survive transplantation and will even integrate into the circuitry of an adult host spinal cord. When transplanted into the spinal cord, the cells significantly reduce the hyperexcitability that characterizes both chronic neuropathic pain and itch conditions. This MGE cell-based strategy differs considerably from traditional pharmacological treatments as the approach is potentially disease modifying (i.e., the therapy targets the underlying etiology of the pain and itch pathophysiology).
Collapse
Affiliation(s)
- Joao M Braz
- University of California-San Francisco, San Francisco, CA, United States
| | - Alex Etlin
- University of California-San Francisco, San Francisco, CA, United States
| | | | - Ida J Llewellyn-Smith
- Cardiovascular Medicine, Human Physiology and Centre for Neuroscience, Flinders University, Bedford Park, SA, Australia
| | - Allan I Basbaum
- University of California-San Francisco, San Francisco, CA, United States.
| |
Collapse
|
9
|
Functional Synaptic Integration of Forebrain GABAergic Precursors into the Adult Spinal Cord. J Neurosci 2017; 36:11634-11645. [PMID: 27852772 DOI: 10.1523/jneurosci.2301-16.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/26/2016] [Accepted: 08/31/2016] [Indexed: 01/17/2023] Open
Abstract
Spinal cord transplants of embryonic cortical GABAergic progenitor cells derived from the medial ganglionic eminence (MGE) can reverse mechanical hypersensitivity in the mouse models of peripheral nerve injury- and paclitaxel-induced neuropathic pain. Here, we used electrophysiology, immunohistochemistry, and electron microscopy to examine the extent to which MGE cells integrate into host circuitry and recapitulate endogenous inhibitory circuits. Whether the transplants were performed before or after nerve injury, the MGE cells developed into mature neurons and exhibited firing patterns characteristic of subpopulations of cortical and spinal cord inhibitory interneurons. Conversely, the transplanted cells preserved cortical morphological and neurochemical properties. We also observed a robust anatomical and functional synaptic integration of the transplanted cells into host circuitry in both injured and uninjured animals. The MGE cells were activated by primary afferents, including TRPV1-expressing nociceptors, and formed GABAergic, bicuculline-sensitive, synapses onto host neurons. Unexpectedly, MGE cells transplanted before injury prevented the development of mechanical hypersensitivity. Together, our findings provide direct confirmation of an extensive, functional synaptic integration of MGE cells into host spinal cord circuits. This integration underlies normalization of the dorsal horn inhibitory tone after injury and may be responsible for the prophylactic effect of preinjury transplants. SIGNIFICANCE STATEMENT Spinal cord transplants of embryonic cortical GABAergic interneuron progenitors from the medial ganglionic eminence (MGE), can overcome the mechanical hypersensitivity produced in different neuropathic pain models in adult mice. Here, we examined the properties of transplanted MGE cells and the extent to which they integrate into spinal cord circuitry. Using electrophysiology, immunohistochemistry, and electron microscopy, we demonstrate that MGE cells, whether transplanted before or after nerve injury, develop into inhibitory neurons, are activated by nociceptive primary afferents, and form GABA-A-mediated inhibitory synapses with the host. Unexpectedly, cells transplanted into naive spinal cord prevented the development of nerve-injury-induced mechanical hypersensitivity. These results illustrate the remarkable plasticity of adult spinal cord and the potential of cell-based therapies against neuropathic pain.
Collapse
|
10
|
Lin CR, Wu PC, Shih HC, Cheng JT, Lu CY, Chou AK, Yang LC. Intrathecal Spinal Progenitor Cell Transplantation for the Treatment of Neuropathic Pain. Cell Transplant 2017. [DOI: 10.3727/096020198389744] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Injury to, or dysfunction of, the nervous system can lead to spontaneous pain, hyperalgesia, and/or allodynia. It is believed that the number and activity of GABAergic neurons gradually decreases over the dorsal horn. Glutamic acid decarboxylase (GAD) immunocompetence has been demonstrated on spinal progenitor cells (SPCs) cultivated in vitro. The intrathecal implantation of these cultivated progenitor cells may provide a means of alleviating neuropathic pain. Chronic constriction injury (CCI) of the sciatic nerve was used to induce chronic neuropathic pain in the hind paw of rats. SPCs (1 × 106) were implanted intrathecally on the third day after the CCI surgery. The behavioral response to thermal hyperalgesia was observed and recorded during the 14 days postsurgery. Various techniques were utilized to trace the progenitor cells, confirm the differentiation, and identify the neurotransmitters involved. GAD immunoactivity was revealed for 65% of the cultivated spinal progenitor cells in our study. We also determined that transplanted cells could survive more than 3 weeks postintrathecal implantation. Significant reductions were demonstrated for responses to thermal stimuli for the CCI rats that had received intrathecal SPC transplantation. A novel intrathecal delivery with SPCs reduced CCI-induced neuropathic pain.
Collapse
Affiliation(s)
- Chung-Ren Lin
- Department of Anesthesiology, Anesthesiology Research Laboratory, Kaohsiung Chang Gung Memorial Hospital 833, Taiwan
- Department of Biological Sciences Department, National Sun-Yat Sen University, Taiwan
| | - Ping-Ching Wu
- Department of Anesthesiology, Anesthesiology Research Laboratory, Kaohsiung Chang Gung Memorial Hospital 833, Taiwan
| | - Hsun-Chang Shih
- Department of Anesthesiology, Anesthesiology Research Laboratory, Kaohsiung Chang Gung Memorial Hospital 833, Taiwan
| | - Jiin-Tsuey Cheng
- Department of Biological Sciences Department, National Sun-Yat Sen University, Taiwan
| | - Cheng-Yuan Lu
- Department of Anesthesiology, Anesthesiology Research Laboratory, Kaohsiung Chang Gung Memorial Hospital 833, Taiwan
| | - An-Kuo Chou
- Department of Anesthesiology, Anesthesiology Research Laboratory, Kaohsiung Chang Gung Memorial Hospital 833, Taiwan
| | - Lin-Cheng Yang
- Department of Anesthesiology, Anesthesiology Research Laboratory, Kaohsiung Chang Gung Memorial Hospital 833, Taiwan
| |
Collapse
|
11
|
Antinociceptive Effect of Intrathecal Injection of Genetically Engineered Human Bone Marrow Stem Cells Expressing the Human Proenkephalin Gene in a Rat Model of Bone Cancer Pain. Pain Res Manag 2017; 2017:7346103. [PMID: 28286408 PMCID: PMC5329662 DOI: 10.1155/2017/7346103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 01/15/2017] [Accepted: 01/17/2017] [Indexed: 12/21/2022]
Abstract
Background. This study aimed to investigate the use of human bone marrow mesenchymal stem cells (hBMSCs) genetically engineered with the human proenkephalin (hPPE) gene to treat bone cancer pain (BCP) in a rat model. Methods. Primary cultured hBMSCs were passaged and modified with hPPE, and the cell suspensions (6 × 106) were then intrathecally injected into a rat model of BCP. Paw mechanical withdrawal threshold (PMWT) was measured before and after BCP. The effects of hPPE gene transfer on hBMSC bioactivity were analyzed in vitro and in vivo. Results. No changes were observed in the surface phenotypes and differentiation of hBMSCs after gene transfer. The hPPE-hBMSC group showed improved PMWT values on the ipsilateral side of rats with BCP from day 12 postoperatively, and the analgesic effect was reversed by naloxone. The levels of proinflammatory cytokines such as IL-1β and IL-6 were ameliorated, and leucine-enkephalin (L-EK) secretion was augmented, in the hPPE-engineered hBMSC group. Conclusion. The intrathecal administration of BMSCs modified with the hPPE gene can effectively relieve pain caused by bone cancer in rats and might be a potentially therapeutic tool for cancer-related pain in humans.
Collapse
|
12
|
Recombinant neural progenitor transplants in the spinal dorsal horn alleviate chronic central neuropathic pain. Pain 2017; 157:977-989. [PMID: 26761378 DOI: 10.1097/j.pain.0000000000000471] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Neuropathic pain induced by spinal cord injury (SCI) is clinically challenging with inadequate long-term treatment options. Partial pain relief offered by pharmacologic treatment is often counterbalanced by adverse effects after prolonged use in chronic pain patients. Cell-based therapy for neuropathic pain using GABAergic neuronal progenitor cells (NPCs) has the potential to overcome untoward effects of systemic pharmacotherapy while enhancing analgesic potency due to local activation of GABAergic signaling in the spinal cord. However, multifactorial anomalies underlying chronic pain will likely require simultaneous targeting of multiple mechanisms. Here, we explore the analgesic potential of genetically modified rat embryonic GABAergic NPCs releasing a peptidergic NMDA receptor antagonist, Serine-histogranin (SHG), thus targeting both spinal hyperexcitability and reduced inhibitory processes. Recombinant NPCs were designed using either lentiviral or adeno-associated viral vectors (AAV2/8) encoding single and multimeric (6 copies of SHG) cDNA. Intraspinal injection of recombinant cells elicited enhanced analgesic effects compared with nonrecombinant NPCs in SCI-induced pain in rats. Moreover, potent and sustained antinociception was achieved, even after a 5-week postinjury delay, using recombinant multimeric NPCs. Intrathecal injection of SHG antibody attenuated analgesic effects of the recombinant grafts suggesting active participation of SHG in these antinociceptive effects. Immunoblots and immunocytochemical assays indicated ongoing recombinant peptide production and secretion in the grafted host spinal cords. These results support the potential for engineered NPCs grafted into the spinal dorsal horn to alleviate chronic neuropathic pain.
Collapse
|
13
|
Jergova S, Gajavelli S, Varghese MS, Shekane P, Sagen J. Analgesic Effect of Recombinant GABAergic Cells in a Model of Peripheral Neuropathic Pain. Cell Transplant 2016; 25:629-43. [DOI: 10.3727/096368916x690782] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Chronic neuropathic pain represents a clinically challenging state with a poor response to current treatment options. Long-term management of chronic pain is often associated with the development of tolerance, addiction, and other side effects, reducing the therapeutic value of treatment. Alternative strategies based on cell therapy and gene manipulation, balancing the inhibitory and excitatory events in the spinal cord, may provide sustained pain relief in the long term. Transplantation of GABAergic cells has been successfully used to enhance inhibition and to restore physiological spinal pain processing. However, since the underlying mechanism of chronic pain development involves changes in several pain-signaling pathways, it is essential to develop an approach that targets several components of pain signaling. Recombinant cell therapy offers the possibility to deliver additional analgesic substances to the restricted area in the nervous system. The current study explores the analgesic potential of genetically modified rat embryonic GABAergic cells releasing a peptidergic NMDA receptor antagonist, Serine1-histogranin (SHG). Overactivation of glutamate NMDA receptors contributes to the hyperexcitability of spinal neurons observed in chronic pain models. Our approach allows us to simultaneously target spinal hyperexcitability and reduced inhibitory processes. Transplantable cells were transduced by viral vectors encoding either one or six copies of SHG cDNAs. The analgesic potential of recombinant cells after their intraspinal transplantation was evaluated in a model of peripheral nerve injury. Enhanced reduction of hypersensitivity to thermal and mechanical stimuli was observed in animals treated by recombinant cells compared to the nonrecombinant group. The recombinant peptide was detected in the spinal tissue, suggesting its successful production by transplanted cells. Our results demonstrate the feasibility of using recombinant cells releasing adjunct analgesic peptides in the therapy of neuropathic pain.
Collapse
Affiliation(s)
- Stanislava Jergova
- Miller School of Medicine, Miami Project, University of Miami, Miami, FL, USA
| | - Shyam Gajavelli
- Miller School of Medicine, Miami Project, University of Miami, Miami, FL, USA
| | - Mathew S. Varghese
- Miller School of Medicine, Miami Project, University of Miami, Miami, FL, USA
| | - Paul Shekane
- Miller School of Medicine, Miami Project, University of Miami, Miami, FL, USA
| | - Jacqueline Sagen
- Miller School of Medicine, Miami Project, University of Miami, Miami, FL, USA
| |
Collapse
|
14
|
Hwang I, Hahm SC, Choi KA, Park SH, Jeong H, Yea JH, Kim J, Hong S. Intrathecal Transplantation of Embryonic Stem Cell-Derived Spinal GABAergic Neural Precursor Cells Attenuates Neuropathic Pain in a Spinal Cord Injury Rat Model. Cell Transplant 2016; 25:593-607. [DOI: 10.3727/096368915x689460] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neuropathic pain following spinal cord injury (SCI) is a devastating disease characterized by spontaneous pain such as hyperalgesia and allodynia. In this study, we investigated the therapeutic potential of ESC-derived spinal GABAergic neurons to treat neuropathic pain in a SCI rat model. Mouse embryonic stem cell–derived neural precursor cells (mESC-NPCs) were cultured in media supplemented with sonic hedgehog (SHH) and retinoic acid (RA) and efficiently differentiated into GABAergic neurons. Interestingly, low doses of SHH and RA induced MGE-like progenitors, which expressed low levels of DARPP32 and Nkx2.1 and high levels of Irx3 and Pax6. These cells subsequently generated the majority of the DARPP32- GABAergic neurons after in vitro differentiation. The spinal mESC-NPCs were intrathecally transplanted into the lesion area of the spinal cord around T10–T11 at 21 days after SCI. The engrafted spinal GABAergic neurons remarkably increased both the paw withdrawal threshold (PWT) below the level of the lesion and the vocalization threshold (VT) to the level of the lesion (T12, T11, and T10 vertebrae), which indicates attenuation of chronic neuropathic pain by the spinal GABAergic neurons. The transplanted cells were positive for GABA antibody staining in the injured region, and cells migrated to the injured spinal site and survived for more than 7 weeks in L4–L5. The mESC-NPC-derived spinal GABAergic neurons dramatically attenuated the chronic neuropathic pain following SCI, suggesting that the spinal GABAergic mESC-NPCs cultured with low doses of SHH and RA could be alternative cell sources for treatment of SCI neuropathic pain by stem cell-based therapies.
Collapse
Affiliation(s)
- Insik Hwang
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
- Department of Public Health Sciences, Graduate School, Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
| | - Suk-Chan Hahm
- Department of Public Health Sciences, Graduate School, Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
- Department of Physical Therapy, College of Health Science, Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
| | - Kyung-Ah Choi
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
- Department of Chemistry, College of Science; Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
| | - Sung-Ho Park
- Department of Physical Therapy, College of Health Science, Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
| | - Hyesun Jeong
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
- Department of Public Health Sciences, Graduate School, Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
| | - Ji-Hye Yea
- Department of Public Health Sciences, Graduate School, Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
- Department of Physical Therapy, College of Health Science, Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
| | - Junesun Kim
- Department of Public Health Sciences, Graduate School, Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
- Department of Physical Therapy, College of Health Science, Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
| | - Sunghoi Hong
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
- Department of Public Health Sciences, Graduate School, Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
| |
Collapse
|
15
|
Wang Y, Lin ZP, Zheng HZ, Zhang S, Zhang ZL, Chen Y, You YS, Yang MH. Abnormal DNA methylation in the lumbar spinal cord following chronic constriction injury in rats. Neurosci Lett 2016; 610:1-5. [DOI: 10.1016/j.neulet.2015.10.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 12/18/2022]
|
16
|
Potential of GABA-ergic cell therapy for schizophrenia, neuropathic pain, and Alzheimer's and Parkinson's diseases. Brain Res 2015; 1638:74-87. [PMID: 26423935 DOI: 10.1016/j.brainres.2015.09.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/26/2015] [Accepted: 09/08/2015] [Indexed: 12/17/2022]
Abstract
Several neurological and psychiatric disorders present hyperexcitability of neurons in specific regions of the brain or spinal cord, partly because of some loss and/or dysfunction of gamma-amino butyric acid positive (GABA-ergic) inhibitory interneurons. Strategies that enhance inhibitory neurotransmission in the affected brain regions may therefore ease several or most deficits linked to these disorders. This perception has incited a huge interest in testing the efficacy of GABA-ergic interneuron cell grafting into regions of the brain or spinal cord exhibiting hyperexcitability, dearth of GABA-ergic interneurons or impaired inhibitory neurotransmission, using preclinical models of neurological and psychiatric disorders. Interneuron progenitors from the embryonic ventral telencephalon capable of differentiating into diverse subclasses of interneurons have particularly received much consideration because of their ability for dispersion, migration and integration with the host neural circuitry after grafting. The goal of this review is to discuss the premise, scope and advancement of GABA-ergic cell therapy for easing neurological deficits in preclinical models of schizophrenia, chronic neuropathic pain, Alzheimer's disease and Parkinson's disease. As grafting studies in these prototypes have so far utilized either primary cells from the embryonic medial and lateral ganglionic eminences or neural progenitor cells expanded from these eminences as donor material, the proficiency of these cell types is highlighted. Moreover, future studies that are essential prior to considering the possible clinical application of these cells for the above neurological conditions are proposed. Particularly, the need for grafting studies utilizing medial ganglionic eminence-like progenitors generated from human pluripotent stem cells via directed differentiation approaches or somatic cells through direct reprogramming methods are emphasized. This article is part of a Special Issue entitled SI: PSC and the brain.
Collapse
|
17
|
Hosseini M, Yousefifard M, Aziznejad H, Nasirinezhad F. The Effect of Bone Marrow-Derived Mesenchymal Stem Cell Transplantation on Allodynia and Hyperalgesia in Neuropathic Animals: A Systematic Review with Meta-Analysis. Biol Blood Marrow Transplant 2015; 21:1537-44. [PMID: 25985918 DOI: 10.1016/j.bbmt.2015.05.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 05/07/2015] [Indexed: 01/02/2023]
Abstract
Stem cell transplantation has been considered a possible therapeutic method for neuropathic pain. However, no quantitative data synthesis of stem cell therapy for neuropathic pain exists. Therefore, the present systematic review and meta-analysis assessed the efficacy of bone marrow mesenchymal stem cell (BMMSC) transplantation on alleviating pain symptoms in animal models of neuropathic pain. In the present meta-analysis, controlled animal studies assessing the effect of administrating BMMSC on neuropathic pain were included through an extensive literature search of online databases. After collecting data, effect sizes were computed and the standardized mean difference (SMD) with 95% confidence interval (CI) was entered in all analyses. Random-effects models were used for data analysis. Sensitivity and subgroup analyses were performed to investigate expected or measured heterogeneity. Finally, 14 study were included. The analyses showed that BMMSC transplantation lead to significant improvement on allodynia (SMD = 2.06; 95% CI, 1.09 to 3.03; I(2) = 99.7%; P < .001). The type of neuropathy (P = .036), time between injury and intervention (P = .02), and the number of transplanted cells (P = .023) influence the improvement of allodynia after BMMSC transplantation. BMMSC transplantation has no effect on hyperalgesia (SMD = .3; 95% CI, -1.09 to 1.68; I(2) = 100%; P < .001) unless it occurs during the first 4 days after injury (P = .02). The present systematic review with meta-analysis suggests that BMMSC transplantation improves allodynia but does not have any significant effect on hyperalgesia unless it is given during the first 4 days after injury.
Collapse
Affiliation(s)
- Mostafa Hosseini
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Yousefifard
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Heidar Aziznejad
- The Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Farinaz Nasirinezhad
- Physiology Research Center, Department of Physiology, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Synaptic Inhibition and Disinhibition in the Spinal Dorsal Horn. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:359-83. [DOI: 10.1016/bs.pmbts.2014.11.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Tyson JA, Anderson SA. GABAergic interneuron transplants to study development and treat disease. Trends Neurosci 2014; 37:169-77. [PMID: 24508416 PMCID: PMC4396846 DOI: 10.1016/j.tins.2014.01.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/06/2014] [Accepted: 01/06/2014] [Indexed: 01/06/2023]
Abstract
Advances in stem cell technology have engendered keen interest in cell-based therapies for neurological disorders. Postnatal engraftments of most neuronal precursors result in little cellular migration, a crucial prerequisite for transplants to integrate within the host circuitry. This may occur because most neurons migrate along substrates, such as radial glial processes, that are not abundant in adults. However, cortical GABAergic interneurons migrate tangentially from the subcortical forebrain into the cerebral cortex. Accordingly, transplants of cortical interneuron precursors migrate extensively after engraftment into a variety of CNS tissues, where they can become synaptically connected with host circuitry. We review how this remarkable ability to integrate post-transplant is being applied to the development of cell-based therapies for a variety of CNS disorders.
Collapse
Affiliation(s)
- Jennifer A Tyson
- Department of Psychiatry, Weill Medical College of Cornell University, New York, NY 10021, USA; Department of Psychiatry, Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Stewart A Anderson
- Department of Psychiatry, Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
20
|
Goss JR, Krisky D, Wechuck J, Wolfe D. Herpes simplex virus-based nerve targeting gene therapy in pain management. J Pain Res 2014; 7:71-9. [PMID: 24470772 PMCID: PMC3901742 DOI: 10.2147/jpr.s36619] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chronic pain represents a major medical burden not only in terms of suffering but also in terms of economic costs. Traditional medical approaches have so far proven insufficient in treating chronic pain and new approaches are necessary. Gene therapy with herpes simplex virus (HSV)-based vectors offers the ability to directly target specific regions of the neuraxis involved in pain transmission including the primary afferent nociceptor. This opens up new targets to interact with that are either not available to traditional systemic drugs or cannot be adequately acted upon without substantial adverse off-target effects. Having access to the entire neuron, which HSV-based vector gene therapy enables, expands treatment options beyond merely treating symptoms and allows for altering the basic biology of the nerve. In this paper, we discuss several HSV-based gene therapy vectors that our group and others have used to target specific neuronal functions involved in the processing of nociception in order to develop new therapies for the treatment of chronic pain.
Collapse
|
21
|
Dong Z, Sun Y, Lu P, Wang Y, Wu G. Electroacupuncture and lumbar transplant of GDNF-secreting fibroblasts synergistically attenuate hyperalgesia after sciatic nerve constriction. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2013; 41:459-72. [PMID: 23711135 DOI: 10.1142/s0192415x1350033x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Electroacupuncture (EA) has been shown to induce potent analgesic effects on neuropathic pain in both patients and rodents. Cell therapy to release antinociceptive agents near the pain processing centers of the spinal cord is a promising next step in the development of treatment modalities. This study investigated the effects of the combination of EA and cell therapy by glial cell line-derived neurotrophic factor (GDNF) on neuropathic pain in rats. The hyperalgesic state was induced by chronic constriction injury (CCI) of the sciatic nerve and fibroblasts genetically modified to secrete bioactive GDNF (FBs-GDNF) were used for cell therapy. Fifty-eight rats with neuropathic pain were randomly divided into five groups (CCI+PBS, n = 11; CCI+FBs-GDNF, n = 12; CCI+EA+PBS, n = 11; CCI+EA+FBs-pLNCX2, n = 12; CCI+EA+FBs-GDNF, n = 12). On the 7th day after CCI, the rats received intrathecal transplantation of FBs-GDNF or control fibroblasts (FBs-pLNCX2). In the meantime, EA was administered once every other day from the 7th day after CCI surgery for 21 days. The paw withdrawal latency (PWL) to radiant heat was measured every other day. The results showed that the ipsilateral PWL of the rats from all three EA treatment groups significantly increased starting on the 12th day compared with the PBS control group. Strikingly, the group which received EA treatment and FBs-GDNF transplantation (CCI+EA+FBs-GDNF) showed a significantly decreased thermal hyperalgesia after 2 weeks post CCI surgery compared with the groups which received EA treatment and FBs-pLNCX2 transplantation (CCI+EA+FBs-pLNCX2) or PBS (CCI+EA+PBS) as well as the FBs-GDNF transplantation group without EA treatment (CCI+FBs-GDNF). Our data suggest that EA and cell therapy can synergistically attenuate hyperalgesia in neuropathic pain rats.
Collapse
Affiliation(s)
- Zhiqiang Dong
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Institute of Brain Research, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | | | | | | | | |
Collapse
|
22
|
Mohammad-Gharibani P, Tiraihi T, Delshad A, Arabkheradmand J, Taheri T. Improvement of contusive spinal cord injury in rats by co-transplantation of gamma-aminobutyric acid-ergic cells and bone marrow stromal cells. Cytotherapy 2013; 15:1073-85. [PMID: 23806239 DOI: 10.1016/j.jcyt.2013.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 04/25/2013] [Accepted: 05/07/2013] [Indexed: 01/01/2023]
Abstract
BACKGROUND AIMS Cell therapy is considered a promising option for treatment of spinal cord injury (SCI). The purpose of this study is to use combined therapy of bone marrow stromal cells (BMSCs) and BMSC-derived gamma-aminobutyric acid (GABA)ergic inhibitory neurotransmitter cells (BDGCs) for the contusion model of SCI in rats. METHODS BDGCs were prepared from BMSCs by pre-inducing them with β-mercaptoethanol followed by retinoic acid and then inducing them by creatine. They were immunostained with BMSC, proneuronal, neural and GABA markers. The BDGCs were intraspinally transplanted into the contused rats, whereas the BMSCs were delivered intravenously. The animals were sacrificed after 12 weeks. RESULTS The Basso, Beattie and Bresnahan test showed improvement in the animals with the combined therapy compared with the untreated animals, the animals treated with GABAergic cells only and the animals that received BMSCs. The immunohistochemistry analysis of the tissue sections prepared from the animals receiving the combined therapy showed that the transplanted cells were engrafted and integrated into the injured spinal cord; in addition, a significant reduction was seen in the cavitation. CONCLUSIONS The study shows that the combination of GABAergic cells with BMSCs can improve SCI.
Collapse
Affiliation(s)
- Payam Mohammad-Gharibani
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | |
Collapse
|
23
|
Takikawa S, Yamamoto A, Sakai K, Shohara R, Iwase A, Kikkawa F, Ueda M. Human umbilical cord-derived mesenchymal stromal cells promote sensory recovery in a spinal cord injury rat model. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/scd.2013.33020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Ambriz-Tututi M, Monjaraz-Fuentes F, Drucker-Colín R. Chromaffin cell transplants: From the lab to the clinic. Life Sci 2012; 91:1243-51. [DOI: 10.1016/j.lfs.2012.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 09/13/2012] [Accepted: 10/05/2012] [Indexed: 11/29/2022]
|
25
|
Li H, Hader AT, Han YR, Wong JA, Babiarz J, Ricupero CL, Godfrey SB, Corradi JP, Fennell M, Hart RP, Plummer MR, Grumet M. Isolation of a novel rat neural progenitor clone that expresses Dlx family transcription factors and gives rise to functional GABAergic neurons in culture. Dev Neurobiol 2012; 72:805-20. [PMID: 21913335 DOI: 10.1002/dneu.20977] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gamma-aminobutyric acid (GABA) ergic interneurons are lost in conditions including epilepsy and central nervous system injury, but there are few culture models available to study their function. Toward the goal of obtaining renewable sources of GABAergic neurons, we used the molecular profile of a functionally incomplete GABAergic precursor clone to screen 17 new clones isolated from GFP(+) rat E14.5 cortex and ganglionic eminence (GE) that were generated by viral introduction of v-myc. The clones grow as neurospheres in medium with FGF2, and after withdrawal of FGF2, they exhibit varying patterns of differentiation. Transcriptional profiling and quantitative reverse transcriptase polymerase chain reaction (RT-PCR) indicated that one clone (GE6) expresses high levels of mRNAs encoding Dlx1, 2, 5, and 6, glutamate decarboxylases, and presynaptic proteins including neuropeptide Y and somatostatin. Protein expression confirmed that GE6 is a progenitor with restricted differentiation giving rise mostly to neurons with GABAergic markers. In cocultures with hippocampal neurons, GE6 neurons became electrically excitable and received both inhibitory and excitatory synapses. After withdrawal of FGF2 in cultures of GE6 alone, neurons matured to express βIII-tubulin, and staining for synaptophysin and vesicular GABA transporter were robust after 1-2 weeks of differentiation. GE6 neurons also became electrically excitable and displayed synaptic activity, but synaptic currents were carried by chloride and were blocked by bicuculline. The results suggest that the GE6 clone, which is ventrally derived from the GE, resembles GABAergic interneuron progenitors that migrate into the developing forebrain. This is the first report of a relatively stable fetal clone that can be differentiated into GABAergic interneurons with functional synapses.
Collapse
Affiliation(s)
- Hedong Li
- W.M. Keck Center for Collaborative Neuroscience, Rutgers Stem Cell Research Center, Rutgers, State University of New Jersey, Piscataway, New Jersey 08854-8082, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bráz JM, Sharif-Naeini R, Vogt D, Kriegstein A, Alvarez-Buylla A, Rubenstein JL, Basbaum AI. Forebrain GABAergic neuron precursors integrate into adult spinal cord and reduce injury-induced neuropathic pain. Neuron 2012; 74:663-75. [PMID: 22632725 DOI: 10.1016/j.neuron.2012.02.033] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2012] [Indexed: 10/28/2022]
Abstract
Neuropathic pain is a chronic debilitating disease characterized by mechanical allodynia and spontaneous pain. Because symptoms are often unresponsive to conventional methods of pain treatment, new therapeutic approaches are essential. Here, we describe a strategy that not only ameliorates symptoms of neuropathic pain but is also potentially disease modifying. We show that transplantation of immature telencephalic GABAergic interneurons from the mouse medial ganglionic eminence (MGE) into the adult mouse spinal cord completely reverses the mechanical hypersensitivity produced by peripheral nerve injury. Underlying this improvement is a remarkable integration of the MGE transplants into the host spinal cord circuitry, in which the transplanted cells make functional connections with both primary afferent and spinal cord neurons. By contrast, MGE transplants were not effective against inflammatory pain. Our findings suggest that MGE-derived GABAergic interneurons overcome the spinal cord hyperexcitability that is a hallmark of nerve injury-induced neuropathic pain.
Collapse
Affiliation(s)
- João M Bráz
- Department of Anatomy, W.M. Keck Foundation Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Eaton MJ, Berrocal Y, Wolfe SQ, Widerström-Noga E. Review of the history and current status of cell-transplant approaches for the management of neuropathic pain. PAIN RESEARCH AND TREATMENT 2012; 2012:263972. [PMID: 22745903 PMCID: PMC3382629 DOI: 10.1155/2012/263972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 04/09/2012] [Indexed: 11/18/2022]
Abstract
Treatment of sensory neuropathies, whether inherited or caused by trauma, the progress of diabetes, or other disease states, are among the most difficult problems in modern clinical practice. Cell therapy to release antinociceptive agents near the injured spinal cord would be the logical next step in the development of treatment modalities. But few clinical trials, especially for chronic pain, have tested the transplant of cells or a cell line to treat human disease. The history of the research and development of useful cell-transplant-based approaches offers an understanding of the advantages and problems associated with these technologies, but as an adjuvant or replacement for current pharmacological treatments, cell therapy is a likely near future clinical tool for improved health care.
Collapse
Affiliation(s)
- Mary J. Eaton
- Miami VA Health System Center, D806C, 1201 NW 16th Street, Miami, FL 33125, USA
| | - Yerko Berrocal
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Stacey Q. Wolfe
- Department of Neurosurgery, Tripler Army Medical Center, 1 Jarrett White Road, Honolulu, HI 96859, USA
| | - Eva Widerström-Noga
- Miami VA Health System Center, D806C, 1201 NW 16th Street, Miami, FL 33125, USA
- The Miami Project to Cure Paralysis, Miller School of Medicine at the University of Miami, Miami, FL 33136, USA
| |
Collapse
|
28
|
Goins WF, Cohen JB, Glorioso JC. Gene therapy for the treatment of chronic peripheral nervous system pain. Neurobiol Dis 2012; 48:255-70. [PMID: 22668775 DOI: 10.1016/j.nbd.2012.05.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 05/11/2012] [Accepted: 05/24/2012] [Indexed: 11/30/2022] Open
Abstract
Chronic pain is a major health concern affecting 80 million Americans at some time in their lives with significant associated morbidity and effects on individual quality of life. Chronic pain can result from a variety of inflammatory and nerve damaging events that include cancer, infectious diseases, autoimmune-related syndromes and surgery. Current pharmacotherapies have not provided an effective long-term solution as they are limited by drug tolerance and potential abuse. These concerns have led to the development and testing of gene therapy approaches to treat chronic pain. The potential efficacy of gene therapy for pain has been reported in numerous pre-clinical studies that demonstrate pain control at the level of the spinal cord. This promise has been recently supported by a Phase-I human trial in which a replication-defective herpes simplex virus (HSV) vector was used to deliver the human pre-proenkephalin (hPPE) gene, encoding the natural opioid peptides met- and leu-enkephalin (ENK), to cancer patients with intractable pain resulting from bone metastases (Fink et al., 2011). The study showed that the therapy was well tolerated and that patients receiving the higher doses of therapeutic vector experienced a substantial reduction in their overall pain scores for up to a month post vector injection. These exciting early clinical results await further patient testing to demonstrate treatment efficacy and will likely pave the way for other gene therapies to treat chronic pain.
Collapse
Affiliation(s)
- William F Goins
- Dept of Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA 15219, USA.
| | | | | |
Collapse
|
29
|
Lee JW, Jergova S, Furmanski O, Gajavelli S, Sagen J. Predifferentiated GABAergic neural precursor transplants for alleviation of dysesthetic central pain following excitotoxic spinal cord injury. Front Physiol 2012; 3:167. [PMID: 22754531 PMCID: PMC3385582 DOI: 10.3389/fphys.2012.00167] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 05/08/2012] [Indexed: 12/26/2022] Open
Abstract
Intraspinal quisqualic acid (QUIS) injury induce (i) mechanical and thermal hyperalgesia, (ii) progressive self-injurious overgrooming of the affected dermatome. The latter is thought to resemble painful dysesthesia observed in spinal cord injury (SCI) patients. We have reported previously loss of endogenous GABA immunoreactive (IR) cells in the superficial dorsal horn of QUIS rats 2 weeks post injury. Further histological evaluation showed that GABA-, glycine-, and synaptic vesicular transporter VIAAT-IR persisted but were substantially decreased in the injured spinal cord. In this study, partially differentiated GABA-IR embryonic neural precursor cells (NPCs) were transplanted into the spinal cord of QUIS rats to reverse overgrooming by replenishing lost inhibitory circuitry. Rat E14 NPCs were predifferentiated in 0.1 ng/ml FGF-2 for 4 h prior to transplantation. In vitro immunocytochemistry of transplant cohort showed large population of GABA-IR NPCs that double labeled with nestin but few colocalized with NeuN, indicating partial maturation. Two weeks following QUIS lesion at T12-L1, and following the onset of overgrooming, NPCs were transplanted into the QUIS lesion sites; bovine adrenal fibroblast cells were used as control. Overgrooming was reduced in >55.5% of NPC grafted animals, with inverse relationship between the number of surviving GABA-IR cells and the size of overgrooming. Fibroblast-control animals showed a progressive worsening of overgrooming. At 3 weeks post-transplantation, numerous GABA-, nestin-, and GFAP-IR cells were present in the lesion site. Surviving grafted GABA-IR NPCs were NeuN+ and GFAP−. These results indicate that partially differentiated NPCs survive and differentiate in vivo into neuronal cells following transplantation into an injured spinal cord. GABA-IR NPC transplants can restore lost dorsal horn inhibitory signaling and are useful in alleviating central pain following SCI.
Collapse
Affiliation(s)
- Jeung Woon Lee
- Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami Miami, FL, USA
| | | | | | | | | |
Collapse
|
30
|
Eaton MJ, Berrocal Y, Wolfe SQ. Potential for Cell-Transplant Therapy with Human Neuronal Precursors to Treat Neuropathic Pain in Models of PNS and CNS Injury: Comparison of hNT2.17 and hNT2.19 Cell Lines. PAIN RESEARCH AND TREATMENT 2012; 2012:356412. [PMID: 22619713 PMCID: PMC3348681 DOI: 10.1155/2012/356412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 01/15/2012] [Indexed: 01/07/2023]
Abstract
Effective treatment of sensory neuropathies in peripheral neuropathies and spinal cord injury (SCI) is one of the most difficult problems in modern clinical practice. Cell therapy to release antinociceptive agents near the injured spinal cord is a logical next step in the development of treatment modalities. But few clinical trials, especially for chronic pain, have tested the potential of transplant of cells to treat chronic pain. Cell lines derived from the human neuronal NT2 cell line parentage, the hNT2.17 and hNT2.19 lines, which synthesize and release the neurotransmitters gamma-aminobutyric acid (GABA) and serotonin (5HT), respectively, have been used to evaluate the potential of cell-based release of antinociceptive agents near the lumbar dorsal (horn) spinal sensory cell centers to relieve neuropathic pain after PNS (partial nerve and diabetes-related injury) and CNS (spinal cord injury) damage in rat models. Both cell lines transplants potently and permanently reverse behavioral hypersensitivity without inducing tumors or other complications after grafting. Functioning as cellular minipumps for antinociception, human neuronal precursors, like these NT2-derived cell lines, would likely provide a useful adjuvant or replacement for current pharmacological treatments for neuropathic pain.
Collapse
Affiliation(s)
- Mary J. Eaton
- Miami VA Health System Center, D806C, 1201 NW 16th Street, Miami, FL 33199, USA
| | - Yerko Berrocal
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Stacey Q. Wolfe
- Department of Neurosurgery, Tripler Army Medical Center, 1 Jarrett White Road, Honolulu, HI 96859-5000, USA
| |
Collapse
|
31
|
Subburaju S, Benes FM. Induction of the GABA cell phenotype: an in vitro model for studying neurodevelopmental disorders. PLoS One 2012; 7:e33352. [PMID: 22457755 PMCID: PMC3310062 DOI: 10.1371/journal.pone.0033352] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 02/10/2012] [Indexed: 12/30/2022] Open
Abstract
Recent studies of the hippocampus have suggested that a network of genes is associated with the regulation of the GAD₆₇ (GAD1) expression and may play a role in γ-amino butyric acid (GABA) dysfunction in schizophrenia (SZ) and bipolar disorder (BD). To obtain a more detailed understanding of how GAD₆₇ regulation may result in GABAergic dysfunction, we have developed an in vitro model in which GABA cells are differentiated from the hippocampal precursor cell line, HiB5. Growth factors, such as PDGF, and BDNF, regulate the GABA phenotype by inducing the expression of GAD₆₇ and stimulating the growth of cellular processes, many with growth cones that form appositions with the cell bodies and processes of other GAD₆₇-positive cells. These changes are associated with increased expression of acetylated tubulin, microtubule-associated protein 2 (MAP2) and the post-synaptic density protein 95 (PSD95). The addition of BDNF, together with PDGF, increases the levels of mRNA and protein for GAD₆₇, as well as the high affinity GABA uptake protein, GAT1. These changes are associated with increased concentrations of GABA in the cytoplasm of "differentiated" HiB5 neurons. In the presence of Ca²⁺ and K⁺, newly synthesized GABA is released extracellularly. When the HiB5 cells appear to be fully differentiated, they also express GAD₆₅, parvalbumin and calbindin, and GluR subtypes as well as HDAC1, DAXX, PAX5, Runx2, associated with GAD₆₇ regulation. Overall, these results suggest that the HiB5 cells can differentiate into functionally mature GABA neurons in the presence of gene products that are associated with GAD₆₇ regulation in the adult hippocampus.
Collapse
Affiliation(s)
- Sivan Subburaju
- Program in Structural and Molecular Neuroscience, McLean Hospital, Belmont, Massachusetts, United States of America
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Francine M. Benes
- Program in Structural and Molecular Neuroscience, McLean Hospital, Belmont, Massachusetts, United States of America
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
32
|
Leung L. Cellular therapies for treating pain associated with spinal cord injury. J Transl Med 2012; 10:37. [PMID: 22394650 PMCID: PMC3320547 DOI: 10.1186/1479-5876-10-37] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 03/06/2012] [Indexed: 12/21/2022] Open
Abstract
Spinal cord injury leads to immense disability and loss of quality of life in human with no satisfactory clinical cure. Cell-based or cell-related therapies have emerged as promising therapeutic potentials both in regeneration of spinal cord and mitigation of neuropathic pain due to spinal cord injury. This article reviews the various options and their latest developments with an update on their therapeutic potentials and clinical trialing.
Collapse
Affiliation(s)
- Lawrence Leung
- Centre of Neurosciences Study, Queen's University, 18 Stuart Street, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
33
|
Jergova S, Hentall ID, Gajavelli S, Varghese MS, Sagen J. Intraspinal transplantation of GABAergic neural progenitors attenuates neuropathic pain in rats: a pharmacologic and neurophysiological evaluation. Exp Neurol 2011; 234:39-49. [PMID: 22193109 DOI: 10.1016/j.expneurol.2011.12.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 10/27/2011] [Accepted: 12/05/2011] [Indexed: 02/03/2023]
Abstract
Dysfunctional γ-aminobutyric acid (GABA)-ergic inhibitory neurotransmission is hypothesized to underlie chronic neuropathic pain. Intraspinal transplantation of GABAergic neural progenitor cells (NPCs) may reduce neuropathic pain by restoring dorsal horn inhibition. Rat NPCs pre-differentiated to a GABAergic phenotype were transplanted into the dorsal horn of rats with unilateral chronic constriction injury (CCI) of the sciatic nerve. GABA signaling in antinociceptive effects of NPC grafts was tested with the GABA(A) receptor antagonist bicuculline (BIC), GABA(B) receptor antagonist CGP35348 (CGP) and GABA reuptake inhibitor SKF 89976A (SKF). NPC-treated animals showed decreased hyperalgesia and allodynia 1-3week post-transplantation; vehicle-injected CCI rats continued displaying pain behaviors. Intrathecal application of BIC or CGP attenuated the antinociceptive effects of the NPC transplants while SKF injection induced analgesia in control rats. Electrophysiological recordings in NPC treated rats showed reduced responses of wide dynamic range (WDR) neurons to peripheral stimulation compared to controls. A spinal application of BIC or CGP increased wind-up response and post-discharges of WDR neurons in NPC treated animals. Results suggest that transplantation of GABAergic NPCs attenuate pain behaviors and reduce exaggerated dorsal horn neuronal firing induced by CCI. The effects of GABA receptor inhibitors suggest participation of continuously released GABA in the grafted animals.
Collapse
Affiliation(s)
- Stanislava Jergova
- University of Miami, Miller School of Medicine, Miami Project to Cure Paralysis, 1095 NW 14 Terrace, Miami, Florida 33136, USA.
| | | | | | | | | |
Collapse
|
34
|
Mejía-Toiber J, Castillo CG, Giordano M. Strategies for the Development of Cell Lines for Ex Vivo Gene Therapy in the Central Nervous System. Cell Transplant 2011; 20:983-1001. [DOI: 10.3727/096368910x546599] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Disorders of the central nervous system (CNS) as a result of trauma or ischemic or neurodegenerative processes still pose a challenge for modern medicine. Due to the complexity of the CNS, and in spite of the advances in the knowledge of its anatomy, pharmacology, and molecular and cellular biology, treatments for these diseases are still limited. The development of cell lines as a source for transplantation into the damaged CNS (cell therapy), and more recently their genetic modification to favor the expression and delivery of molecules with therapeutic potential (ex vivo gene therapy), are some of the techniques used in search of novel restorative strategies. This article reviews the different approaches that have been used and perfected during the last decade to generate cell lines and their use in experimental models of neuronal damage, and evaluates the prospects of applying these methods to treat CNS disorders.
Collapse
Affiliation(s)
- Jana Mejía-Toiber
- Laboratorio de Plasticidad Neuronal, Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de Mexico, Querétaro, Mexico
| | - Claudia G. Castillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Magda Giordano
- Laboratorio de Plasticidad Neuronal, Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de Mexico, Querétaro, Mexico
| |
Collapse
|
35
|
Handy CR, Krudy C, Boulis N. Gene therapy: a potential approach for cancer pain. PAIN RESEARCH AND TREATMENT 2011; 2011:987597. [PMID: 22110939 PMCID: PMC3196247 DOI: 10.1155/2011/987597] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 12/14/2010] [Accepted: 01/21/2011] [Indexed: 12/21/2022]
Abstract
Chronic pain is experienced by as many as 90% of cancer patients at some point during the disease. This pain can be directly cancer related or arise from a sensory neuropathy related to chemotherapy. Major pharmacological agents used to treat cancer pain often lack anatomical specificity and can have off-target effects that create new sources of suffering. These concerns establish a need for improved cancer pain management. Gene therapy is emerging as an exciting prospect. This paper discusses the potential for viral vector-based treatment of cancer pain. It describes studies involving vector delivery of transgenes to laboratory pain models to modulate the nociceptive cascade. It also discusses clinical investigations aimed at regulating pain in cancer patients. Considering the prevalence of pain among cancer patients and the growing potential of gene therapy, these studies could set the stage for a new class of medicines that selectively disrupt nociceptive signaling with limited off-target effects.
Collapse
Affiliation(s)
- Chalonda R. Handy
- Department of Neurosurgery, Emory University, 101 Woodruff Circle, Rm 6339, Atlanta, GA 30322, USA
| | - Christina Krudy
- Department of Neurosurgery, Emory University, 101 Woodruff Circle, Rm 6339, Atlanta, GA 30322, USA
| | - Nicholas Boulis
- Department of Neurosurgery, Emory University, 101 Woodruff Circle, Rm 6339, Atlanta, GA 30322, USA
| |
Collapse
|
36
|
|
37
|
Berger JV, Knaepen L, Janssen SPM, Jaken RJP, Marcus MAE, Joosten EAJ, Deumens R. Cellular and molecular insights into neuropathy-induced pain hypersensitivity for mechanism-based treatment approaches. ACTA ACUST UNITED AC 2011; 67:282-310. [PMID: 21440003 DOI: 10.1016/j.brainresrev.2011.03.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 02/16/2011] [Accepted: 03/18/2011] [Indexed: 12/15/2022]
Abstract
Neuropathic pain is currently being treated by a range of therapeutic interventions that above all act to lower neuronal activity in the somatosensory system (e.g. using local anesthetics, calcium channel blockers, and opioids). The present review highlights novel and often still largely experimental treatment approaches based on insights into pathological mechanisms, which impact on the spinal nociceptive network, thereby opening the 'gate' to higher brain centers involved in the perception of pain. Cellular and molecular mechanisms such as ectopia, sensitization of nociceptors, phenotypic switching, structural plasticity, disinhibition, and neuroinflammation are discussed in relation to their involvement in pain hypersensitivity following either peripheral neuropathies or spinal cord injury. A mechanism-based treatment approach may prove to be successful in effective treatment of neuropathic pain, but requires more detailed insights into the persistence of cellular and molecular pain mechanisms which renders neuropathic pain unremitting. Subsequently, identification of the therapeutic window-of-opportunities for each specific intervention in the particular peripheral and/or central neuropathy is essential for successful clinical trials. Most of the cellular and molecular pain mechanisms described in the present review suggest pharmacological interference for neuropathic pain management. However, also more invasive treatment approaches belong to current and/or future options such as neuromodulatory interventions (including spinal cord stimulation) and cell or gene therapies, respectively.
Collapse
Affiliation(s)
- Julie V Berger
- Department of Anesthesiology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
38
|
Kim DS, Jung SJ, Nam TS, Jeon YH, Lee DR, Lee JS, Leem JW, Kim DW. Transplantation of GABAergic neurons from ESCs attenuates tactile hypersensitivity following spinal cord injury. Stem Cells 2011; 28:2099-108. [PMID: 20848655 DOI: 10.1002/stem.526] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dae-Sung Kim
- Department of Physiology,Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
39
|
GABAergic pathway in a rat model of chronic neuropathic pain: Modulation after intrathecal transplantation of a human neuronal cell line. Neurosci Res 2011; 69:111-20. [DOI: 10.1016/j.neures.2010.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 09/09/2010] [Accepted: 10/14/2010] [Indexed: 12/30/2022]
|
40
|
Jeon Y. Cell based therapy for the management of chronic pain. Korean J Anesthesiol 2011; 60:3-7. [PMID: 21359073 PMCID: PMC3040428 DOI: 10.4097/kjae.2011.60.1.3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 07/14/2010] [Accepted: 07/14/2010] [Indexed: 01/14/2023] Open
Abstract
The management of chronic pain, particularly neuropathic pain, still has significant unmet needs. In addition to inadequate symptomatic relief, there are concerns about adverse effects and addiction associated with treatments. The transplantation of cells that secrete neuroactive substances with analgesic properties into the central nervous system has only become of practical interest in more recent years, but provides a novel strategy to challenge current approaches in treating chronic pain. This review covers pre-clinical and clinical studies from both allogeneic and xenogeneic sources for management of chronic refractory pain.
Collapse
Affiliation(s)
- Younghoon Jeon
- Department of Anesthesiology and Pain Medicine, School of Dentistry, Kyungpook National University, Daegu, Korea
| |
Collapse
|
41
|
Mejía-Toiber J, Márquez-Ramos JA, Díaz-Muñoz M, Peña F, Aguilar MB, Giordano M. Glutamatergic Excitation and GABA Release from a Transplantable Cell Line. Cell Transplant 2010; 19:1307-23. [DOI: 10.3727/096368910x509059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The cell line M213-2O CL-4 was derived from cell line M213-2O and further modified to express human glutamate decarboxylase (hGAD-67), the enzyme that synthesizes GABA. Brain transplants of this cell line in animal models of epilepsy have been shown to modulate seizures. However, the mechanisms that underlie such actions are unknown. The purpose of the present study was to characterize this cell line and its responsiveness to several depolarizing conditions, in order to better understand how these cells exert their effects. Intracellular GABA levels were 34-fold higher and GAD activity was 16-fold higher in clone M213-2O CL-4 than in M213-2O. Both cell lines could take up [3H]GABA in vitro, and this uptake was prevented by nipecotic acid. By combining GABA release measurements and calcium imaging in vitro, we found that high extracellular K+, zero Mg2+, or glutamate activated M213-2O CL-4 cells and resulted in GABA release. The response to glutamate appeared to be mediated by AMPA/NMDA-like receptors. High KCl-induced GABA release was prevented when a Ca2+-free Krebs solution was used, suggesting an exocytotic-like mechanism. These results indicate that the cell line M213-2O CL-4 synthesizes, releases, and takes up GABA in vitro, and can be activated by depolarizing stimuli.
Collapse
Affiliation(s)
- Jana Mejía-Toiber
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | | | - Mauricio Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Quéretaro, México
| | - Fernando Peña
- Departamento de Farmacobiología, CINVESTAV-Sur. Calzada de los Tenorios 235, Delegación Tlalpan, México
| | - Manuel B. Aguilar
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Quéretaro, México
| | - Magda Giordano
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| |
Collapse
|
42
|
Calcagnotto ME, Zipancic I, Piquer-Gil M, Mello LE, Alvarez-Dolado M. Grafting of GABAergic precursors rescues deficits in hippocampal inhibition. Epilepsia 2010; 51 Suppl 3:66-70. [PMID: 20618404 DOI: 10.1111/j.1528-1167.2010.02613.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
gamma-Aminobutyric acid (GABA) has an important role in the mechanism of epilepsy. Cell grafts from different sources have been performed to modulate local circuits or increase GABAergic inhibition in animal models of epilepsy. Among the different transplanted cell types, the medial ganglionic eminence (MGE)-derived cells present the best properties to be used in cell-based therapy. In this work we review previous experiences with these cells. In addition, we present new evidence showing their ability to modulate the levels of inhibition in the host brain of mice with alterations in the GABAergic system, caused by the specific ablation of hippocampal interneurons. Grafted GFP(+) MGE-derived cells occupied the area of ablation and differentiated into mature NK-1-, SOM-, PV-, CR-, and NPY-expressing interneurons. Inhibitory postsynaptic current (IPSC) frequency and amplitude on CA1 pyramidal cells of the ablated hippocampus significantly increased after transplantation, reaching levels similar to controls. Our data strongly suggest the suitability of MGE-derived cells for the treatment of neurologic conditions for which an increase or modulation of synaptic inhibition is required.
Collapse
Affiliation(s)
- Maria E Calcagnotto
- Department of Cell Therapy and Regenerative Medicine, Andalusian Center for Molecular Biology and Regenerative Medicine CABIMER, Seville, Spain
| | | | | | | | | |
Collapse
|
43
|
Zipancic I, Calcagnotto ME, Piquer-Gil M, Mello LE, Álvarez-Dolado M. Transplant of GABAergic Precursors Restores Hippocampal Inhibitory Function in a Mouse Model of Seizure Susceptibility. Cell Transplant 2010; 19:549-64. [DOI: 10.3727/096368910x491383] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Defects in GABAergic function can cause epilepsy. In the last years, cell-based therapies have attempted to correct these defects with disparate success on animal models of epilepsy. Recently, we demonstrated that medial ganglionic eminence (MGE)-derived cells grafted into the neonatal normal brain migrate and differentiate into functional mature GABAergic interneurons. These cells are able to modulate the local level of GABA-mediated synaptic inhibition, which suggests their suitability for cell-based therapies. However, it is unclear whether they can integrate in the host circuitry and rescue the loss of inhibition in pathological conditions. Thus, as proof of principle, we grafted MGE-derived cells into a mouse model of seizure susceptibility caused by specific elimination of GABAergic interneuron subpopulations in the mouse hippocampus after injection of the neurotoxic saporin conjugated to substance P (SSP-Sap). This ablation was associated with significant decrease in inhibitory postsynaptic currents (IPSC) on CA1 pyramidal cells and increased seizure susceptibility induced by pentylenetetrazol (PTZ). Grafting of GFP+ MGE-derived cells in SSP-Sap-treated mice repopulates the hippocampal ablated zone with cells expressing molecular markers of mature interneurons. Interestingly, IPSC kinetics on CA1 pyramidal cells of ablated hippocampus significantly increased after transplantation, reaching levels similar to the normal mice. More importantly, this was associated with reduction in seizure severity and decrease in postseizure mortality induced by PTZ. Our data show that MGE-derived cells fulfill most of the requirements for an appropriate cell-based therapy, and indicate their suitability for neurological conditions where a modulation of synaptic inhibition is needed, such as epilepsy.
Collapse
Affiliation(s)
- I. Zipancic
- Department of Cell Therapy and Regenerative Medicine, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Seville, Spain
- Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - M. E. Calcagnotto
- Department of Cell Therapy and Regenerative Medicine, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Seville, Spain
| | - M. Piquer-Gil
- Department of Cell Therapy and Regenerative Medicine, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Seville, Spain
| | - L. E. Mello
- Department of Physiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - M. Álvarez-Dolado
- Department of Cell Therapy and Regenerative Medicine, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Seville, Spain
| |
Collapse
|
44
|
Huang H, Chen L, Sanberg P. Cell Therapy From Bench to Bedside Translation in CNS Neurorestoratology Era. CELL MEDICINE 2010; 1:15-46. [PMID: 21359168 DOI: 10.3727/215517910x516673] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent advances in cell biology, neural injury and repair, and the progress towards development of neurorestorative interventions are the basis for increased optimism. Based on the complexity of the processes of demyelination and remyelination, degeneration and regeneration, damage and repair, functional loss and recovery, it would be expected that effective therapeutic approaches will require a combination of strategies encompassing neuroplasticity, immunomodulation, neuroprotection, neurorepair, neuroreplacement, and neuromodulation. Cell-based restorative treatment has become a new trend, and increasing data worldwide have strongly proven that it has a pivotal therapeutic value in CNS disease. Moreover, functional neurorestoration has been achieved to a certain extent in the CNS clinically. Up to now, the cells successfully used in preclinical experiments and/or clinical trial/treatment include fetal/embryonic brain and spinal cord tissue, stem cells (embryonic stem cells, neural stem/progenitor cells, hematopoietic stem cells, adipose-derived adult stem/precursor cells, skin-derived precursor, induced pluripotent stem cells), glial cells (Schwann cells, oligodendrocyte, olfactory ensheathing cells, astrocytes, microglia, tanycytes), neuronal cells (various phenotypic neurons and Purkinje cells), mesenchymal stromal cells originating from bone marrow, umbilical cord, and umbilical cord blood, epithelial cells derived from the layer of retina and amnion, menstrual blood-derived stem cells, Sertoli cells, and active macrophages, etc. Proof-of-concept indicates that we have now entered a new era in neurorestoratology.
Collapse
Affiliation(s)
- Hongyun Huang
- Center for Neurorestoratology, Beijing Rehabilitation Center, Beijing, P.R. China
| | | | | |
Collapse
|
45
|
Cobacho N, Serrano AB, Casarejos MJ, Mena MA, Paíno CL. Use of Transduced Adipose Tissue Stromal Cells as Biologic Minipumps to Deliver Levodopa for the Treatment of Neuropathic Pain: Possibilities and Limitations. Cell Transplant 2009; 18:1341-58. [DOI: 10.3727/096368909x12483162197367] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Subarachnoidal grafting of monoamine-producing cells has been used with success to treat chronic pain in animal models. In the search for a source of autologous transplantable cells, capable of delivering neuroactive substances to the cerebrospinal fluid (CSF) to treat pain, we have tested adipose tissue-derived stromal cells (ADSCs) transduced to produce levodopa. Intrathecally grafted ADSCs survive for long term adhered to spinal cord and nerve root meninges. Cultured ADSCs were retrovirally transduced with tyrosine hydroxylase (TH) and/or GTP cyclohydroxylase 1 (GCH1) genes and stably expressed them for at least 6 weeks in culture. Singly transduced cultures did not produce measurable levodopa but doubly transduced or a mixture of singly transduced ADSCs were able to efficiently synthesize and release levodopa. When 0.5–1 × 106 TH-and GCH1-expressing ADSCs were intrathecally grafted in rats, elevated levels of levodopa and dopamine metabolites were found in CSF at 3 days, although at lower concentrations than expected. Unexpectedly, no levodopa was measurable in CSF at 6 days. In a rat model of neuropathic pain, intrathecal grafting of doubly transduced cells did not produce antiallodynic effects at 2 or 6 days, even when histological analysis revealed the presence of weak TH-immunoreactive subarachnoidal cell clusters. These results suggested that doubly transduced cells could indeed function as biological minipumps to enhance the dopaminergic neurotransmission at the spinal cord level but transgenes were rapidly silenced after intrathecal grafting. Transgene silencing was mimicked in culture by serum deprivation for 3 days. Serum addition at this point recovered trans-gene expression in just 6 h, as did, to a smaller degree, dbcAMP or histone deacetylase inhibitors. Transgene expression silencing in serum deprivation conditions was prevented by 5′-terminal IRES sequences. The present study does not discard the use of transduced cells as a strategy to treat chronic pain but shows that controlling transgene silencing in implanted cells needs to be achieved first.
Collapse
Affiliation(s)
- Nuria Cobacho
- Servicio de Neurobiología-Investigación, Hospital Ramón y Cajal, 28034 Madrid, Spain
| | - Ana Belén Serrano
- Servicio de Neurobiología-Investigación, Hospital Ramón y Cajal, 28034 Madrid, Spain
| | - Maria José Casarejos
- Servicio de Neurobiología-Investigación, Hospital Ramón y Cajal, 28034 Madrid, Spain
| | - Mari Angeles Mena
- Servicio de Neurobiología-Investigación, Hospital Ramón y Cajal, 28034 Madrid, Spain
| | - Carlos Luis Paíno
- Servicio de Neurobiología-Investigación, Hospital Ramón y Cajal, 28034 Madrid, Spain
| |
Collapse
|
46
|
Furmanski O, Gajavelli S, Lee JW, Collado ME, Jergova S, Sagen J. Combined extrinsic and intrinsic manipulations exert complementary neuronal enrichment in embryonic rat neural precursor cultures: an in vitro and in vivo analysis. J Comp Neurol 2009; 515:56-71. [PMID: 19399893 DOI: 10.1002/cne.22027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Numerous central nervous system (CNS) disorders share a common pathology in dysregulation of gamma-aminobutyric acid (GABA) inhibitory signaling. Transplantation of GABA-releasing cells at the site of disinhibition holds promise for alleviating disease symptoms with fewer side effects than traditional drug therapies. We manipulated fibroblast growth factor (FGF)-2 deprivation and mammalian achaete-scute homolog (MASH)1 transcription factor levels in an attempt to amplify the default GABAergic neuronal fate in cultured rat embryonic neural precursor cells (NPCs) for use in transplantation studies. Naïve and MASH1 lentivirus-transduced NPCs were maintained in FGF-2 or deprived of FGF-2 for varying lengths of time. Immunostaining and quantitative analysis showed that GABA- and beta-III-tubulin-immunoreactive cells generally decreased through successive passages, suggesting a loss of neurogenic potential in rat neurospheres expanded in vitro. However, FGF-2 deprivation resulted in a small, but significantly increased population of GABAergic cells derived from passaged neurospheres. In contrast to naïve and GFP lentivirus-transduced clones, MASH1 transduction resulted in increased bromodeoxyuridine (BrdU) incorporation and clonal colony size. Western blotting showed that MASH1 overexpression and FGF-2 deprivation additively increased beta-III-tubulin and decreased cyclic nucleotide phosphodiesterase (CNPase) expression, whereas FGF-2 deprivation alone attenuated glial fibrillary acidic protein (GFAP) expression. These results suggest that low FGF-2 signaling and MASH1 activity can operate in concert to enrich NPC cultures for a GABA neuronal phenotype. When transplanted into the adult rat spinal cord, this combination also yielded GABAergic neurons. These findings indicate that, even for successful utilization of the default GABAergic neuronal precursor fate, a combination of both extrinsic and intrinsic manipulations will likely be necessary to realize the full potential of NSC grafts in restoring function.
Collapse
Affiliation(s)
- Orion Furmanski
- The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | | | |
Collapse
|
47
|
Price TJ, Cervero F, Gold MS, Hammond DL, Prescott SA. Chloride regulation in the pain pathway. BRAIN RESEARCH REVIEWS 2009; 60:149-70. [PMID: 19167425 PMCID: PMC2903433 DOI: 10.1016/j.brainresrev.2008.12.015] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/29/2008] [Indexed: 12/18/2022]
Abstract
Melzack and Wall's Gate Control Theory of Pain laid the theoretical groundwork for a role of spinal inhibition in endogenous pain control. While the Gate Control Theory was based on the notion that spinal inhibition is dynamically regulated, mechanisms underlying the regulation of inhibition have turned out to be far more complex than Melzack and Wall could have ever imagined. Recent evidence indicates that an exquisitely sensitive form of regulation involves changes in anion equilibrium potential (E(anion)), which subsequently impacts fast synaptic inhibition mediated by GABA(A), and to a lesser extent, glycine receptor activation, the prototypic ligand gated anion channels. The cation-chloride co-transporters (in particular NKCC1 and KCC2) have emerged as proteins that play a critical role in the dynamic regulation of E(anion) which in turn appears to play a critical role in hyperalgesia and allodynia following peripheral inflammation or nerve injury. This review summarizes the current state of knowledge in this area with particular attention to how such findings relate to endogenous mechanisms of hyperalgesia and allodynia and potential applications for therapeutics based on modulation of intracellular Cl(-) gradients or pharmacological interventions targeting GABA(A) receptors.
Collapse
Affiliation(s)
| | - Fernando Cervero
- McGill University, Department of Anesthesia, McGill Centre for Research on Pain,
| | | | - Donna L Hammond
- University of Iowa, Department of Anesthesia, Department of Pharmacology,
| | | |
Collapse
|
48
|
Abstract
BACKGROUND Management of chronic pain remains a challenge in spite of numerous drugs that are either approved or still in development. Apart from inadequate relief, there are concerns about adverse effects and addiction. Cell therapy is being explored for relief of pain. OBJECTIVE To address the rationale for cell therapy for treatment of pain and its advantages over conventional pharmaceuticals. The prospects of translation of these techniques from experimental animals to clinical use are discussed. METHODS This review is based on the literature on cell therapy in relation to pain and is confined to experimental work as there are no approved therapies in this category. RESULTS/CONCLUSIONS A number of promising cell therapy technologies have been identified. These provide targeted approaches to delivery of antinociceptive molecules, avoiding subjecting the patient to systemic toxicity of drugs. There has been considerable progress in treating degenerative joint diseases causing pain. Management of neuropathic pain is a challenge and a number of ongoing studies are addressing it. Overall the future of cell therapy for pain is promising.
Collapse
Affiliation(s)
- K K Jain
- Jain PharmaBiotech, Blaesiring 7, CH-4057 Basel, Switzerland.
| |
Collapse
|
49
|
Mukhida K, Mendez I, McLeod M, Kobayashi N, Haughn C, Milne B, Baghbaderani B, Sen A, Behie LA, Hong M. Spinal GABAergic Transplants Attenuate Mechanical Allodynia in a Rat Model of Neuropathic Pain. Stem Cells 2007; 25:2874-85. [PMID: 17702982 DOI: 10.1634/stemcells.2007-0326] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Injury to the spinal cord or peripheral nerves can lead to the development of allodynia due to the loss of inhibitory tone involved in spinal sensory function. The potential of intraspinal transplants of GABAergic cells to restore inhibitory tone and thus decrease pain behaviors in a rat model of neuropathic pain was investigated. Allodynia of the left hind paw was induced in rats by unilateral L5- 6 spinal nerve root ligation. Mechanical sensitivity was assessed using von Frey filaments. Postinjury, transgenic fetal green fluorescent protein mouse GABAergic cells or human neural precursor cells (HNPCs) expanded in suspension bioreactors and differentiated into a GABAergic phenotype were transplanted into the spinal cord. Control rats received undifferentiated HNPCs or cell suspension medium only. Animals that received either fetal mouse GABAergic cell or differentiated GABAergic HNPC intraspinal transplants demonstrated a significant increase in paw withdrawal thresholds at 1 week post-transplantation that was sustained for 6 weeks. Transplanted fetal mouse GABAergic cells demonstrated immunoreactivity for glutamic acid decarboxylase and GABA that colocalized with green fluorescent protein. Intraspinally transplanted differentiated GABAergic HNPCs demonstrated immunoreactivity for GABA and beta-III tubulin. In contrast, intraspinal transplantation of undifferentiated HNPCs, which predominantly differentiated into astrocytes, or cell suspension medium did not affect any behavioral recovery. Intraspinally transplanted GABAergic cells can reduce allodynia in a rat model of neuropathic pain. In addition, HNPCs expanded in a standardized fashion in suspension bioreactors and differentiated into a GABAergic phenotype may be an alternative to fetal cells for cell-based therapies to treat chronic pain syndromes.
Collapse
Affiliation(s)
- Karim Mukhida
- Cell Restoration Laboratory, Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Rainov NG, Heidecke V. Experimental therapies for chronic pain. ACTA NEUROCHIRURGICA. SUPPLEMENT 2007; 97:473-7. [PMID: 17691412 DOI: 10.1007/978-3-211-33079-1_62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Chronic pain, an underestimated but complex medical and social phenomenon, is often resistant to currently used analgesic drugs. The effect of these substances is frequently self-limiting, with increasing level of unwanted side effects caused by increased doses. Moreover, most pharmacological therapies for pain are administered systemically, either via the enteral or the parenteral route, and exert their effects on a multitude of organs and structures in the body regardless of their involvement in chronic pain pathways. Unlike pharmacological agents, biological pain therapies provide a means to target single molecules or specific types of neural cells in spatially limited areas in the central nervous system. Biological therapies utilize externally administered natural or synthetic agents acting at specific receptors on the spinal or supraspinal level, or virus or cell vectors allowing the expression and secretion of such agents in small compartments. By targeting a particular receptor or other specific protein involved in signal transmission, biological approaches to the treatment of chronic pain may provide greater analgesic efficacy without the limitations associated with current pharmacological therapies. This review summarizes published data on the most important of the currently known targets for biological therapy of chronic pain, and focuses on therapeutic approaches for modulation of these targets and on results from preclinical and clinical trials. Biological therapies for chronic pain hold great promise and are rapidly developing, but currently still are in a very early stage and therefore deemed experimental and not suitable for routine clinical use.
Collapse
Affiliation(s)
- N G Rainov
- Department of Neurosurgery, Central Clinic Augsburg, Augsburg, Germany.
| | | |
Collapse
|