1
|
Avni D, Harikumar KB, Sanyal AJ, Spiegel S. Deletion or inhibition of SphK1 mitigates fulminant hepatic failure by suppressing TNFα-dependent inflammation and apoptosis. FASEB J 2021; 35:e21415. [PMID: 33566377 PMCID: PMC8491138 DOI: 10.1096/fj.202002540r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022]
Abstract
Acute liver failure (ALF) causes severe liver dysfunction that can lead to multi-organ failure and death. Previous studies suggest that sphingosine kinase 1 (SphK1) protects against hepatocyte injury, yet not much is still known about its involvement in ALF. This study examines the role of SphK1 in D-galactosamine (GalN)/lipopolysaccharide (LPS)-induced ALF, which is a well-established experimental mouse model that mimics the fulminant hepatitis. Here we report that deletion of SphK1, but not SphK2, dramatically decreased GalN/LPS-induced liver damage, hepatic apoptosis, serum alanine aminotransferase levels, and mortality rate compared to wild-type mice. Whereas GalN/LPS treatment-induced hepatic activation of NF-κB and JNK in wild-type and SphK2-/- mice, these signaling pathways were reduced in SphK1-/- mice. Moreover, repression of ALF in SphK1-/- mice correlated with decreased expression of the pro-inflammatory cytokine TNFα. Adoptive transfer experiments indicated that SphK1 in bone marrow-derived infiltrating immune cells but not in host liver-resident cells, contribute to the development of ALF. Interestingly, LPS-induced TNFα production was drastically suppressed in SphK1-deleted macrophages, whereas IL-10 expression was markedly enhanced, suggesting a switch to the anti-inflammatory phenotype. Finally, treatment with a specific SphK1 inhibitor ameliorated inflammation and protected mice from ALF. Our findings suggest that SphK1 regulates TNFα secretion from macrophages and inhibition or deletion of SphK1 mitigated ALF. Thus, a potent inhibitor of SphK1 could potentially be a therapeutic agent for fulminant hepatitis.
Collapse
Affiliation(s)
- Dorit Avni
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Kuzhuvelil B. Harikumar
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Arun J. Sanyal
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| |
Collapse
|
2
|
Li S, Hu K, Li L, Shen Y, Huang J, Tang L, Zhang L, Shao R, Lu H, Yang Y. Stattic alleviates acute hepatic damage induced by LPS/d-galactosamine in mice. Innate Immun 2021; 27:201-209. [PMID: 33576722 PMCID: PMC7882804 DOI: 10.1177/1753425920988330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/17/2020] [Accepted: 12/28/2020] [Indexed: 01/21/2023] Open
Abstract
Increasing evidence indicates that signal transducer and activator of transcription 3 (STAT3), a vital transcription factor, plays crucial roles in the regulation of inflammation. STAT3 has become a novel therapeutic target for intervention in inflammation-related disorders. However, it remains unclear whether STAT3 plays a part in acute hepatic damage. To investigate the effects of STAT3 here, LPS/d-GalN-induced hepatic damage was induced in mice, the STAT3 inhibitor Stattic was administered, and the degree of liver injury, inflammation, and hepatocyte apoptosis were investigated. The results showed that Stattic mitigated the hepatic morphologic abnormalities and decreased the level of aminotransferase in LPS/D-GalN-insulted mice. The results also indicated that Stattic decreased the levels of TNF-α and IL-6, prevented the activation of the caspase cascade, suppressed cleavage of PARP, and decreased the quantity of TUNEL-positive cells. These results suggest that Stattic provided protective benefits in LPS/d-GalN-induced hepatic damage, and the protective effects might be associated with its anti-inflammatory and anti-apoptotic effects. Therefore, STAT3 might become a novel target for intervening in inflammation-based and apoptosis-based hepatic disorders.
Collapse
Affiliation(s)
- Sijia Li
- Department of Pathophysiology, Chongqing Medical University, China
| | - Kai Hu
- Department of Pathophysiology, Chongqing Medical University, China
| | - Longjiang Li
- Department of Pathophysiology, Chongqing Medical University, China
| | - Yi Shen
- Department of Pathophysiology, Chongqing Medical University, China
| | - Jiayi Huang
- Department of Pathophysiology, Chongqing Medical University, China
| | - Li Tang
- Department of Pathophysiology, Chongqing Medical University, China
| | - Li Zhang
- Department of Pathophysiology, Chongqing Medical University, China
| | - Ruyue Shao
- Clinical Medical School, Chongqing Medical and Pharmaceutical College, China
- Chongqing Engineering Research Center of Pharmaceutical Sciences, China
| | - Han Lu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Yongqiang Yang
- Department of Pathophysiology, Chongqing Medical University, China
| |
Collapse
|
3
|
Hao J, Qi T, Zhu X, Chen J. Comparative Proteomic Analyses of the Liver in D-Galactosamine-Sensitized Mice Treated with Different Toll-Like Receptor Agonists. Proteomics 2020; 20:e1900393. [PMID: 32131144 DOI: 10.1002/pmic.201900393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/13/2020] [Indexed: 01/03/2023]
Abstract
Acute liver failure (ALF) is a severe consequence of abrupt hepatocyte injury and has lethal outcomes. Three toll-like receptor agonists, including polyinosinic-polycytidylic acid (poly(I:C)), lipopolysaccharide (LPS), and cytosine-phosphate-guanine (CpG) DNA, cause acute and severe hepatitis, respectively, in D-galactosamine (D-GalN)-sensitized mice. However, the molecular differences among three ALF models (LPS/D-GalN, poly(I:C)/D-GalN, and CpG DNA/D-GalN), are unclear. Here, tandem mass tag based quantitative proteomic analyses of three ALF mouse models are performed. 52 common differentially expressed proteins (DEPs) are identified, in three ALF groups, compared to the control. Gene ontology analyses show that among the common DEPs, ten proteins are involved in immune system process, and 39 proteins in metabolic process. Among 80,195, and 23 specifically-expressed proteins in poly(I:C)/D-GalN, LPS/D-GalN, and CpG DNA/D-GalN groups, LPS/D-GalN-specific proteins are mostly distributed in the endoplasmic reticulum and more enriched in metabolic pathways, whereas poly (I:C)/D-GalN-specific proteins are mainly in the membrane and CpG DNA/D-GalN-specific proteins are related to the ribosome structural composition. In conclusion, the common and specific DEPs in three ALF mouse models at molecular level are identified; and determined a close-to-complete reference map of mouse liver proteins which will be useful for clinical diagnosis and treatment of liver failure in humans.
Collapse
Affiliation(s)
- Jun Hao
- Hepatology Unit, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Tingting Qi
- Hepatology Unit, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Xiaoying Zhu
- Hepatology Unit, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Jinjun Chen
- Hepatology Unit, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| |
Collapse
|
4
|
Yang Y, Shao R, Tang L, Li L, Zhu M, Huang J, Shen Y, Zhang L. Succinate dehydrogenase inhibitor dimethyl malonate alleviates LPS/d-galactosamine-induced acute hepatic damage in mice. Innate Immun 2019; 25:522-529. [PMID: 31474165 PMCID: PMC6900668 DOI: 10.1177/1753425919873042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In addition to its energy-supplying function, increasing evidence suggests that
mitochondria also play crucial roles in the regulation of inflammation.
Succinate dehydrogenase is also known as mitochondrial complex II, and
inhibition of succinate dehydrogenase by dimethyl malonate has been reported to
suppress the production of pro-inflammatory cytokines. In the present study, the
potential anti-inflammatory benefits of dimethyl malonate were investigated in a
mouse model with LPS/d-galactosamine-induced acute hepatic damage. Male
BALB/c mice were injected i.p. with LPS and d-galactosamine to cause
liver injury. The degree of liver injury, inflammatory response and oxidative
stress and the survival of the experimental animals were determined. The results
indicated dimethyl malonate decreased the level of aminotransferases in plasma,
alleviated histological abnormalities in liver, inhibited the induction of TNF-α
and IL-6 in plasma, suppressed hepatocyte apoptosis and improved the survival of
LPS/d-galactosamine-exposed mice. Therefore, inhibition of
succinate dehydrogenase by dimethyl malonate significantly alleviated
LPS/d-galactosamine-induced hepatic damage, which suggests that
succinate dehydrogenase might become a novel target for the intervention of
inflammation-based hepatic disorders.
Collapse
Affiliation(s)
- Yongqiang Yang
- Department of Pathophysiology, Chongqing Medical University, PR China
| | - Ruyue Shao
- Clinical Medical School, Chongqing Medical and Pharmaceutical College, PR China.,Chongqing Engineering Research Center of Pharmaceutical Sciences, PR China
| | - Li Tang
- Department of Pathophysiology, Chongqing Medical University, PR China
| | - Longjiang Li
- Department of Pathophysiology, Chongqing Medical University, PR China
| | - Min Zhu
- Department of Pathology, Karamay Central Hospital, PR China
| | - Jiayi Huang
- Department of Pathophysiology, Chongqing Medical University, PR China
| | - Yi Shen
- Department of Pathophysiology, Chongqing Medical University, PR China
| | - Li Zhang
- Department of Pathophysiology, Chongqing Medical University, PR China
| |
Collapse
|
5
|
Yang Y, Shao R, Jiang R, Zhu M, Tang L, Li L, Zhang L. β‐Hydroxybutyrate exacerbates lipopolysaccharide/
d
‐galactosamine‐induced inflammatory response and hepatocyte apoptosis in mice. J Biochem Mol Toxicol 2019; 33:e22372. [DOI: 10.1002/jbt.22372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 05/09/2019] [Accepted: 06/17/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Yongqiang Yang
- Department of PathophysiologyChongqing Medical University 1 Yixueyuan Road Chongqing 400016 China
| | - Ruyue Shao
- Department of Obstetrics and Gynaecology and PediatricsChongqing Medical and Pharmaceutical College 82 Daxuecheng Road Chongqing 401331 China
- Chongqing Engineering Research Center of Pharmaceutical Sciences 82 Daxuecheng Road Chongqing 401331 China
| | - Rong Jiang
- Laboratory of Stem Cell and Tissue EngineeringChongqing Medical University 1 Yixueyuan Road Chongqing 400016 China
| | - Min Zhu
- Department of PathologyKaramay Central Hospital 67 Zhungaer Road Karamay Xinjiang 834000 China
| | - Li Tang
- Department of PathophysiologyChongqing Medical University 1 Yixueyuan Road Chongqing 400016 China
| | - Longjiang Li
- Department of PathophysiologyChongqing Medical University 1 Yixueyuan Road Chongqing 400016 China
| | - Li Zhang
- Department of PathophysiologyChongqing Medical University 1 Yixueyuan Road Chongqing 400016 China
| |
Collapse
|
6
|
Hilbert T, Markowski P, Frede S, Boehm O, Knuefermann P, Baumgarten G, Hoeft A, Klaschik S. Synthetic CpG oligonucleotides induce a genetic profile ameliorating murine myocardial I/R injury. J Cell Mol Med 2018; 22:3397-3407. [PMID: 29671939 PMCID: PMC6010716 DOI: 10.1111/jcmm.13616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/26/2018] [Indexed: 12/13/2022] Open
Abstract
We previously demonstrated that pre‐conditioning with CpG oligonucleotide (ODN) 1668 induces quick up‐regulation of gene expression 3 hours post‐murine myocardial ischaemia/reperfusion (I/R) injury, terminating inflammatory processes that sustain I/R injury. Now, performing comprehensive microarray and biocomputational analyses, we sought to further enlighten the “black box” beyond these first 3 hours. C57BL/6 mice were pretreated with either CpG 1668 or with control ODN 1612, respectively. Sixteen hours later, myocardial ischaemia was induced for 1 hour in a closed‐chest model, followed by reperfusion for 24 hours. RNA was extracted from hearts, and labelled cDNA was hybridized to gene microarrays. Data analysis was performed with BRB ArrayTools and Ingenuity Pathway Analysis. Functional groups mediating restoration of cellular integrity were among the top up‐regulated categories. Genes known to influence cardiomyocyte survival were strongly induced 24 hours post‐I/R. In contrast, proinflammatory pathways were down‐regulated. Interleukin‐10, an upstream regulator, suppressed specifically selected proinflammatory target genes at 24 hours compared to 3 hours post‐I/R. The IL1 complex is supposed to be one regulator of a network increasing cardiovascular angiogenesis. The up‐regulation of numerous protective pathways and the suppression of proinflammatory activity are supposed to be the genetic correlate of the cardioprotective effects of CpG 1668 pre‐conditioning.
Collapse
Affiliation(s)
- Tobias Hilbert
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Paul Markowski
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Stilla Frede
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Olaf Boehm
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Pascal Knuefermann
- Department of Anesthesiology and Intensive Care Medicine, Gemeinschaftskrankenhaus Bonn St. Elisabeth - St. Petrus - St. Johannes gGmbH, Bonn, Germany
| | - Georg Baumgarten
- Department of Anesthesiology and Intensive Care Medicine, Johanniter Hospital Bonn, Bonn, Germany
| | - Andreas Hoeft
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Sven Klaschik
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
7
|
KEMELO MK, KUTINOVÁ CANOVÁ N, HORINEK A, FARGHALI H. Sirtuin-Activating Compounds (STACs) Alleviate D-Galactosamine/Lipopolysaccharide-Induced Hepatotoxicity in Rats: Involvement of Sirtuin 1 and Heme Oxygenase 1. Physiol Res 2017; 66:497-505. [DOI: 10.33549/physiolres.933488] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Sirtuin activating compounds (STACs) attenuate various type of liver insults through mechanisms which are not fully understood. In the present study, we investigated the ameliorative potential of quercetin (natural polyphenol) and SRT1720 (synthetic SIRT1 activator) against D-galactosamine/lipopolysaccharide-induced hepatotoxicity (an experimental model of acute liver failure). Moreover, we compared and contrasted the roles of stress responsive enzymes, sirtuin 1 (SIRT1) and heme oxygenase 1 (HO-1) in hepatoprotection/ hepatotoxicity. Liver injury was induced in male Wistar rats by intraperitoneal injection of D-galactosamine (400 mg/kg) and lipopolysaccharide (10 µg/kg). Some animals were pretreated with quercetin (50 mg/kg i.p.) or SRT1720 (5 mg/kg i.p.). Twenty-four hours later, the effects of these treatments were evaluated by biochemical studies and Western blot. D-GalN/LPS treatment upregulated HO-1 expression, downregulated SIRT1 expression, decreased AST:ALT ratio and markedly increased bilirubin, catalase and conjugated diene levels. Pretreatment of D-GalN/LPS rats with either quercetin or SRT1720 returned SIRT1 expression, HO-1 expression and all the aforementioned markers towards normal. Collectively, these findings suggest that elevated HO-1 and low SIRT1 expressions are involved in the pathogenesis of D-GalN/LPS-induced hepatotoxicity. Drugs that downregulate HO-1 and/or upregulate SIRT1 seem to have antihepatotoxic effects and need further exploration.
Collapse
Affiliation(s)
- M. K. KEMELO
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | | | | | | |
Collapse
|
8
|
Zhou D, Ai Q, Lin L, Gong X, Ge P, Che Q, Wan J, Wen A, Zhang L. 5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside-attenuates LPS/D-Gal-induced acute hepatitis in mice. Innate Immun 2015; 21:698-705. [PMID: 25979627 DOI: 10.1177/1753425915586231] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/16/2015] [Indexed: 01/18/2023] Open
Abstract
The AMP-activated protein kinase (AMPK)-mediated energy-sensing signals play important roles in reprogramming the expression of inflammatory genes. In the present study, the potential effects of the AMPK activator 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) were investigated in a mouse model with LPS/D-Gal-induced acute hepatitis. Our experimental data indicated that treatment with AICAR suppressed the elevation of plasma aminotransferases and alleviated the histopathological abnormalities in mice exposed to LPS/D-Gal. Treatment with AICAR also inhibited the LPS/D-Gal-induced up-regulation of TNF-α, NO and myeloperoxidase. In addition, the LPS/D-Gal-induced expression of pro-apoptotic factor Bax, cleavage of caspase-3, elevation of hepatic caspase-3, caspase-8, caspase-9 activities and induction of terminal deoxynucleotidyl transferase-mediated nucleotide nick-end labeling-positive cells were all suppressed by AICAR. These results suggested that the AMPK activator AICAR could attenuate LPS/D-Gal-induced acute hepatitis, which implies that AMPK might become a novel target for the treatment of inflammation-based liver disorders.
Collapse
Affiliation(s)
- Dan Zhou
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Qing Ai
- Department of Physiology, Chongqing Medical University, Chongqing, China
| | - Ling Lin
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Xianqiong Gong
- Hepatology Center, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, Fujian Province, China
| | - Pu Ge
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Qian Che
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Jingyuan Wan
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Aiqing Wen
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Li Zhang
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China Laboratory of Stem cell and Tissue Engineering, Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
KEMELO MK, WOJNAROVÁ L, KUTINOVÁ CANOVÁ N, FARGHALI H. D-Galactosamine/Lipopolysaccharide-Induced Hepatotoxicity Downregulates Sirtuin 1 in Rat Liver: Role of Sirtuin 1 Modulation in Hepatoprotection. Physiol Res 2014; 63:615-23. [DOI: 10.33549/physiolres.932761] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
D-Galactosamine/Lipopolysaccharide (D-GalN/LPS) is a well known model of hepatotoxicity that closely resembles acute liver failure (ALF) seen clinically. The role of sirtuin 1 in this model has not yet been documented. However, there have been a number of studies about the cytoprotective effects of resveratrol, a SIRT1 activator, in the liver. This study was aimed at elucidating the roles of SIRT1 protein expression or catalytic activity in D-GalN/LPS model of hepatotoxicity. ALF was induced in male Wistar rats by intraperitoneal injection of D-GalN and LPS. Some groups of animals were pretreated with resveratrol and/or EX-527 (SIRT1 inhibitor). The effects of these treatments were evaluated by biochemical and Western blot studies. D-GalN/LPS treatment was able to induce hepatotoxicity and significantly increase all markers of liver damage and lipid peroxidation. A dramatic decrease of SIRT1 levels in response to D-GalN/LPS treatment was also documented. Resveratrol pretreatment attenuated D-GalN/LPS-induced hepatotoxicity. EX-527 blocked the cytoprotective effects of resveratrol. However, both resveratrol and EX-527 pretreatments did not exhibit any significant effect on SIRT1 protein expression. Collectively, these results suggest that downregulation of SIRT1 expression is involved in the cytotoxic effects of D-GalN/LPS model and SIRT1 activity contributes to the cytoprotective effects of resveratrol in the liver.
Collapse
Affiliation(s)
- M. K. KEMELO
- Institute of Pharmacology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | | | | |
Collapse
|
10
|
Jing Y, Ai Q, Lin L, Dai J, Jia M, Zhou D, Che Q, Wan J, Jiang R, Zhang L. Protective effects of garcinol in mice with lipopolysaccharide/D-galactosamine-induced apoptotic liver injury. Int Immunopharmacol 2014; 19:373-80. [PMID: 24560905 DOI: 10.1016/j.intimp.2014.02.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 01/25/2014] [Accepted: 02/09/2014] [Indexed: 12/19/2022]
Abstract
Garcinol is a polyisoprenylated benzophenone derivative of Garcinia indica. Recent researches have revealed the antioxidant, anticancer and anti-inflammatory properties of garcinol. In the present study, the pharmacological effects of garcinol in lipopolysaccharide (LPS)-induced hepatic injury in D-galactosamine (D-Gal)-sensitized mice were investigated. We found that treatment with garcinol significantly decreased serum ALT and AST levels in LPS/D-Gal-exposed mice. These were accomplished with improved histological alterations in liver sections and reduced malondialdehyde (MDA) content in liver homogenates. Garcinol significantly reduced the acetylation level of NF-κB, but it had no obvious effects on the elevation of TNF-α or IL-6 in plasma or liver tissue. Garcinol significantly attenuated LPS/D-Gal-induced hepatic apoptosis as evidenced by reduced number of TUNEL-positive cells in liver sections. Our experiments also showed that garcinol markedly suppressed the cleavage of caspase-3 and significantly decreased the activities of caspase-3, -8, and -9 in liver tissues. In addition, garcinol obviously reduced the induction of Bax but did not alter the level of Bcl-2. These results indicated that garcinol might provide protective benefits in LPS/D-Gal-induced liver injury through suppressing apoptosis.
Collapse
Affiliation(s)
- Yuping Jing
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Qing Ai
- Department of Physiology, Chongqing Medical University, Chongqing, China
| | - Ling Lin
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Jie Dai
- Hospital of Chongqing University of Arts and Sciences, Chongqing, China
| | - Mengying Jia
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Dan Zhou
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Qian Che
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Jingyuan Wan
- Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Rong Jiang
- Laboratory of Stem cell and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Li Zhang
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
11
|
Whole-body deletion of LPS-induced TNF-α factor (LITAF) markedly improves experimental endotoxic shock and inflammatory arthritis. Proc Natl Acad Sci U S A 2011; 108:21247-52. [PMID: 22160695 DOI: 10.1073/pnas.1111492108] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
LPS-induced TNF-α factor (LITAF) mediates cytokine expression in response to endotoxin challenge. Previously, we reported that macrophage-specific LITAF-deficient (macLITAF-/-) mice exposed to LPS have a delayed onset in the serum levels of proinflammatory cytokines and prolonged persistence of anti-inflammatory cytokines, but only partial protection from endotoxic shock. We postulated that greater protection might be achieved if LITAF were deleted from all LITAF-producing cells, including macrophages. Using a Cre-loxP system, we engineered a tamoxifen-induced recombination mouse [tamLITAF(i)-/-] that resulted in whole-body LITAF deficiency. Our findings demonstrate that (i) tamLITAF(i)-/- mice are more resistant to systemic Escherichia coli LPS-induced lethality than our previous macLITAF-/- mice, providing evidence that LITAF-producing cells other than LysMCre-positive cells play an important role in mediating endotoxic shock; (ii) tamLITAF(i)-/- mice show a similar pattern of cytokine expression with decreased proinflammatory and prolonged anti-inflammatory mediators compared with WT mice; and (iii) tamLITAF(i)-/- mice, compared with WT mice, display a significant reduction in bone resorption and inflammation associated with a local chronic inflammatory disease--namely, collagen antibody-induced arthritis. Our findings offer a unique model to study the role of LITAF in systemic and chronic local inflammatory processes, and pave the way for anti-LITAF therapeutic approaches for the treatment of TNF-mediated inflammatory diseases.
Collapse
|
12
|
LEKIĆ N, ČERNÝ D, HOŘÍNEK A, PROVAZNÍK Z, MARTÍNEK J, FARGHALI H. Differential Oxidative Stress Responses to D-Galactosamine-Lipopolysaccharide Hepatotoxicity Based on Real Time PCR Analysis of Selected Oxidant/Antioxidant and Apoptotic Gene Expressions in Rat. Physiol Res 2011; 60:549-58. [DOI: 10.33549/physiolres.932041] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Oxidative stress and apoptosis are proposed mechanisms of cellular injury in studies of xenobiotic hepatotoxicity. This study is focused on addressing the mutual relationship and early signals of these mechanisms in the D-galactosamine and lipopolysaccharide (D-GalN/LPS) hepatotoxicity model, with the help of standard liver function and biochemistry tests, histology, and measurement of gene expression by RT-PCR. Intraperitoneal injection of 400 mg/kg D-GalN and 50 μg/kg LPS was able to induce hepatotoxicity in rats, as evidenced by significant increases in liver enzymes (ALT, AST) and raised bilirubin levels in plasma. Heme oxygenase-1 and nitric oxide synthase-2 gene expressions were significantly increased, along with levels of their products, bilirubin and nitrite. The gene expression of glutathione peroxidase 1 remained unchanged, whereas a decrease in superoxide dismutase 1 gene expression was noted. Furthermore, the significant increase in the gene expression of apoptotic genes Bid, Bax and caspase-3 indicate early activation of apoptotic pathways, which was confirmed by histological evaluation. In contrast, the measured caspase-3 activity remained unchanged. Overall, the results have revealed differential oxidative stress and apoptotic responses, which deserves further investigations in this hepatotoxicity model.
Collapse
Affiliation(s)
- N. LEKIĆ
- Institute of Pharmacology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
13
|
Koide N, Morikawa A, Odkhuu E, Haque A, Badamtseren B, Naiki Y, Komatsu T, Yoshida T, Yokochi T. Low susceptibility of NC/Nga mice to the lipopolysaccharide-mediated lethality with D-galactosamine sensitization and the involvement of fewer natural killer T cells. Innate Immun 2010; 18:35-43. [PMID: 21113080 DOI: 10.1177/1753425910390400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The LPS-mediated lethality of NC/Nga mice, having fewer NKT cells, was examined by using d-galactosamine (d-GalN)-sensitization. The NC/Nga mice were not killed by a simultaneous administration of d-GalN and LPS whereas all C57BL/6 (B6) control mice were killed. The injection of d-GalN and LPS failed to elevate the levels of serum alanine aminotransferase and caspase 3 in the liver tissues of NC/Nga mice. Further, the nitric oxide (NO) level of the d-GalN- and LPS-injected NC/Nga mice was much lower than those of the B6 mice. The expression of an inducible NO synthase (iNOS) was significantly reduced in the livers of NC/Nga mice. However, there was no significant difference in LPS-induced TNF-α production between B6 mice and NC/Nga mice. The NC/Nga mice had an impaired expression of IFN-γ protein and mRNA in response to d-GalN and LPS. The pretreatment with α-galactosylceramide (α-GalCer), which activates Vα14(+) NKT cells and induces the production of IFN-γ, rendered NC/Nga mice more susceptible to the LPS-mediated lethality. The livers of NC/Nga mice had fewer NKT cells compared to B6 mice. Taken together, it is suggested that the resistance of NC/Nga mice to the LPS-mediated lethality with d-GalN sensitization depended on the impaired IFN-γ production caused by fewer NKT cells and reduced NO production that followed.
Collapse
Affiliation(s)
- Naoki Koide
- Research Center for Infectious Disease, Aichi Medical University, Aichi, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Concerted action of wild-type and mutant TNF receptors enhances inflammation in TNF receptor 1-associated periodic fever syndrome. Proc Natl Acad Sci U S A 2010; 107:9801-6. [PMID: 20457915 DOI: 10.1073/pnas.0914118107] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
TNF, acting through p55 tumor necrosis factor receptor 1 (TNFR1), contributes to the pathogenesis of many inflammatory diseases. TNFR-associated periodic syndrome (TRAPS, OMIM 142680) is an autosomal dominant autoinflammatory disorder characterized by prolonged attacks of fevers, peritonitis, and soft tissue inflammation. TRAPS is caused by missense mutations in the extracellular domain of TNFR1 that affect receptor folding and trafficking. These mutations lead to loss of normal function rather than gain of function, and thus the pathogenesis of TRAPS is an enigma. Here we show that mutant TNFR1 accumulates intracellularly in peripheral blood mononuclear cells of TRAPS patients and in multiple cell types from two independent lines of knockin mice harboring TRAPS-associated TNFR1 mutations. Mutant TNFR1 did not function as a surface receptor for TNF but rather enhanced activation of MAPKs and secretion of proinflammatory cytokines upon stimulation with LPS. Enhanced inflammation depended on autocrine TNF secretion and WT TNFR1 in mouse and human myeloid cells but not in fibroblasts. Heterozygous TNFR1-mutant mice were hypersensitive to LPS-induced septic shock, whereas homozygous TNFR1-mutant mice resembled TNFR1-deficient mice and were resistant to septic shock. Thus WT and mutant TNFR1 act in concert from distinct cellular locations to potentiate inflammation in TRAPS. These findings establish a mechanism of pathogenesis in autosomal dominant diseases where full expression of the disease phenotype depends on functional cooperation between WT and mutant proteins and also may explain partial responses of TRAPS patients to TNF blockade.
Collapse
|
15
|
Hyper innate responses in neonates lead to increased morbidity and mortality after infection. Proc Natl Acad Sci U S A 2008; 105:7528-33. [PMID: 18490660 DOI: 10.1073/pnas.0800152105] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Neonates suffer high morbidity and mortality in infection, presumably because of the lack of a fully developed adaptive and innate immune system. Evidence of poor innate responses in neonates has been shown by using a model that sensitizes the host to Toll-like receptor (TLR)-mediated inflammation with d-galactosamine (d-GalN). However, we show that neonatal mice demonstrate much stronger inflammatory responses than adult mice in response to LPS stimulation, and such hypersensitivity extends to other TLR agonists including actual viral infection. Our study reveals that the ensuing inflammatory reaction after d-GalN sensitization reflects preferential toxicity of d-GalN to adult liver cells, rather than accurately reflecting the TLR response to LPS. We show further that an uncontrolled proinflammatory innate response due to inadequate T cells makes neonates more vulnerable to TLR agonists or viral infection. Remarkably, through transfer of T cells into neonates or depletion of T cells in adult mice, we show that T cells are sufficient and necessary to control the early inflammatory response to LPS. Therefore, neonates might suffer from the unleashed innate responses caused by an insufficient number of T cells, which leads to increased morbidity and mortality.
Collapse
|
16
|
Tang X, Metzger D, Leeman S, Amar S. LPS-induced TNF-alpha factor (LITAF)-deficient mice express reduced LPS-induced cytokine: Evidence for LITAF-dependent LPS signaling pathways. Proc Natl Acad Sci U S A 2006; 103:13777-82. [PMID: 16954198 PMCID: PMC1560089 DOI: 10.1073/pnas.0605988103] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Previously we identified a transcription factor, LPS-Induced TNF-alpha Factor (LITAF), mediating inflammatory cytokine expression in LPS-induced processes. To characterize the role of LITAF in vivo, we generated a macrophage-specific LITAF-deficient mouse (macLITAF(-/-)). Our data demonstrate that in macrophages (i) several cytokines (such as TNF-alpha, IL-6, sTNF-RII, and CXCL16) are induced at lower levels in macLITAF(-/-) compared with LITAF(+/+) control macrophages; (ii) macLITAF(-/-) mice are more resistant to LPS-induced lethality. To further identify LITAF signaling pathways, we tested mouse TLR-2(-/-), -4(-/-), and -9(-/-) and WT peritoneal macrophages exposed to LPS. Using these cells, we now show that LITAF expression can be induced after challenge either with LPS from Porphyromonas gingivalis via agonism at TLR-2, or with LPS from Escherichia coli via agonism at TLR-4, both requiring functional MyD88. We also show that, in response to LPS, the MyD88-dependent LITAF pathway differs from the NF-kappaB pathway. Furthermore, using a kinase array, p38alpha was found to mediate LITAF phosphorylation and the inhibition of p38alpha with a p38-specific inhibitor (SB203580) blocked LITAF nuclear translocation and reduced LPS-induced TNF-alpha protein levels. Finally, macLITAF(-/-) macrophages rescued by LITAF cDNA transfection restored levels of TNF-alpha similar to those observed in WT cells. We conclude that LITAF is an important mediator of the LPS-induced inflammatory response that can be distinguished from NF-kappaB pathway and that p38alpha is the specific kinase involved in the pathway linking LPS/MyD88/LITAF to TNF.
Collapse
Affiliation(s)
- Xiaoren Tang
- Departments of *Periodontology and Oral Biology and
| | - Daniel Metzger
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Universite Louis Pasteur, and Institut Clinique de la Souris, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Susan Leeman
- Pharmacology, Boston University Medical Center, Boston University, Boston, MA 02118; and
| | - Salomon Amar
- Departments of *Periodontology and Oral Biology and
| |
Collapse
|