1
|
de Santana MR, Argolo DS, Lima IS, dos Santos CC, Victor MM, Ramos GDS, do Nascimento RP, Ulrich H, Costa SL. Naringenin Exhibits Antiglioma Activity Related to Aryl Hydrocarbon Receptor Activity and IL-6, CCL2, and TNF-α Expression. Brain Sci 2025; 15:325. [PMID: 40149846 PMCID: PMC11940588 DOI: 10.3390/brainsci15030325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a highly aggressive brain tumor characterized by rapid cell proliferation, invasive behavior, and chemoresistance. The aryl hydrocarbon receptor (AhR) is implicated in chemoresistance and immune evasion, making it a promising therapeutic target. Natural compounds such as flavonoids have gained attention for their anti-inflammatory, antioxidant, and anticancer properties. Among them, naringenin, a citrus-derived flavonoid, exerts antiproliferative, pro-apoptotic, and immunomodulatory effects. OBJECTIVES This study investigated the antiglioma effects of the flavonoid naringenin on the viability, growth, and migration of glioma cells and its potential role as an AhR modulator. METHODS Human (U87) and rat (C6) glioma cell lines were exposed to naringenin (10-300 µM) alone or in combination with the AhR agonist indole-3-carbinol (50 µM) for 24 to 48 h. Cell viability, scratch wound, and cell migration assays were performed. The expression of inflammatory markers was also analyzed by RT-qPCR. RESULTS Naringenin exerted dose- and time-dependent inhibition of cell viability and migration. The treatment decreased the gene expression of interleukin-6 (IL-6) and chemokine (CCL2), alongside increased tumor necrosis factor-alpha (TNF-α) expression, an effect reversed by the AhR agonist. CONCLUSIONS These findings highlight naringenin's potential as an antiglioma agent and its role in AhR signaling.
Collapse
Affiliation(s)
- Monique Reis de Santana
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Salvador 40231-300, Brazil; (M.R.d.S.); (D.S.A.); (I.S.L.); (C.C.d.S.); (R.P.d.N.)
| | - Deivison Silva Argolo
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Salvador 40231-300, Brazil; (M.R.d.S.); (D.S.A.); (I.S.L.); (C.C.d.S.); (R.P.d.N.)
| | - Irlã Santos Lima
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Salvador 40231-300, Brazil; (M.R.d.S.); (D.S.A.); (I.S.L.); (C.C.d.S.); (R.P.d.N.)
| | - Cleonice Creusa dos Santos
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Salvador 40231-300, Brazil; (M.R.d.S.); (D.S.A.); (I.S.L.); (C.C.d.S.); (R.P.d.N.)
| | - Maurício Moraes Victor
- Department of Organic Chemistry, Institute of Chemistry, Federal University of Bahia, Salvador 40231-300, Brazil; (M.M.V.); (G.d.S.R.)
| | - Gabriel dos Santos Ramos
- Department of Organic Chemistry, Institute of Chemistry, Federal University of Bahia, Salvador 40231-300, Brazil; (M.M.V.); (G.d.S.R.)
| | - Ravena Pereira do Nascimento
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Salvador 40231-300, Brazil; (M.R.d.S.); (D.S.A.); (I.S.L.); (C.C.d.S.); (R.P.d.N.)
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-220, Brazil;
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Salvador 40231-300, Brazil; (M.R.d.S.); (D.S.A.); (I.S.L.); (C.C.d.S.); (R.P.d.N.)
- National Institute of Translational Neuroscience (INNT), Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
2
|
Wu L, Niu Y, Ren B, Wang S, Song Y, Wang X, Zhao K, Yue Z, Li Y, Gao J. Naringenin Promotes Gastrointestinal Motility in Mice by Impacting the SCF/c-Kit Pathway and Gut Microbiota. Foods 2024; 13:2520. [PMID: 39200447 PMCID: PMC11353455 DOI: 10.3390/foods13162520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Naringenin (NRG) is widely found in citrus fruits and has anti-inflammatory, hypoglycemic, and immunomodulatory effects. Previous studies have shown that NRG promotes gastrointestinal motility in mice constipation models, but there are few systematic evaluations of its effects on normal animals. This study first clarified the promotive effects of NRG on gastric emptying and small intestine propulsion (p < 0.01). NRG can also regulate the release of gastrointestinal hormones, including enhancing gastrin (GAS) and motilin (MTL) (p < 0.01), while reducing vasoactive intestinal peptide (VIP) secretion (p < 0.01). Using NRG to stimulate the isolated stomach, duodenum, and colon showed similar promotive effects to those observed in vivo (p < 0.01). A Western blot analysis indicated that this effect may be mediated by increasing the expression of stem cell factor (SCF) and its receptor (c-Kit) in these three segments, thus regulating their downstream pathways. It is worth noting that NRG can also increase the proportion of beneficial bacteria (Planococcaceae, Bacteroides acidifaciens, Clostridia_UCG-014) in the intestine and reduce the quantity of harmful bacteria (Staphylococcus). These findings provide a new basis for the application of NRG.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jianhua Gao
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China; (L.W.); (Y.N.); (B.R.); (S.W.); (Y.S.); (X.W.); (K.Z.); (Z.Y.); (Y.L.)
| |
Collapse
|
3
|
Peng H, Sun F, Jiang Y, Guo Z, Liu X, Zuo A, Lu D. Semaphorin 7a aggravates TGF-β1-induced airway EMT through the FAK/ERK1/2 signaling pathway in asthma. Front Immunol 2023; 14:1167605. [PMID: 38022556 PMCID: PMC10646317 DOI: 10.3389/fimmu.2023.1167605] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Background TGF-β1 can induce epithelial-mesenchymal transition (EMT) in primary airway epithelial cells (AECs). Semaphorin7A (Sema7a) plays a crucial role in regulating immune responses and initiating and maintaining transforming growth factor β1 TGF-β1-induced fibrosis. Objective To determine the expression of Sema7a, in serum isolated from asthmatics and non-asthmatics, the role of Sema7a in TGF-β1 induced proliferation, migration and airway EMT in human bronchial epithelial cells (HBECs) in vitro. Methods The concentrations of Sema7a in serum of asthmatic patients was detected by enzyme-linked immunosorbent assay (ELISA). The expressions of Sema7a and integrin-β1 were examined using conventional western blotting and real-time quantitative PCR (RT-PCR). Interaction between the Sema7a and Integrin-β1 was detected using the Integrin-β1 blocking antibody (GLPG0187). The changes in EMT indicators were performed by western blotting and immunofluorescence, as well as the expression levels of phosphorylated Focal-adhesion kinase (FAK) and Extracellular-signal-regulated kinase1/2 (ERK1/2) were analyzed by western blot and their mRNA expression was determined by RT-PCR. Results We described the first differentially expressed protein of sema7a, in patients with diagnosed bronchial asthma were significantly higher than those of healthy persons (P<0.05). Western blotting and RT-PCR showed that Sema7a and Integrin-β1 expression were significantly increased in lung tissue from the ovalbumin (OVA)-induced asthma model. GLPG0187 inhibited TGF-β1-mediated HBECs EMT, proliferation and migration, which was associated with Focal-adhesion kinase (FAK) and Extracellular-signal-regulated kinase1/2 (ERK1/2) phosphorylation. Conclusion Sema7a may play an important role in asthma airway remodeling by inducing EMT. Therefore, new therapeutic approaches for the treatment of chronic asthma, could be aided by the development of agents that target the Sema7a.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Degan Lu
- Department of Respiratory, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
| |
Collapse
|
4
|
Viwatpinyo K, Mukda S, Warinhomhoun S. Effects of mitragynine on viability, proliferation, and migration of C6 rat glioma, SH-SY5Y human neuroblastoma, and HT22 immortalized mouse hippocampal neuron cell lines. Biomed Pharmacother 2023; 166:115364. [PMID: 37639746 DOI: 10.1016/j.biopha.2023.115364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
Mitragynine (MG) is an indole alkaloid found in the extract of Mitragyna speciosa Korth native to Southeast Asia. Although MG is known for its pain-relieving and psychoactive effects, reports have suggested that it has therapeutic potential against neoplasms and psychiatric disorders. However, no evidence currently exists to support the effect of MG on brain tumors. This study aimed to investigate the antitumor effects of MG in C6 rat glioma and SH-SY5Y human neuroblastoma tumor cell lines compared with those in the non-tumor HT22 mouse hippocampal neuronal cell line. MTT assay for cell viability, clonogenic and wound healing assays for cell migration, Hoechst 33342/propidium iodide staining for nuclear morphology, and cell cycle distribution using flow cytometry were performed. MG at 125.47 μM (50 μg/ml) significantly reduced the viability of all cell lines, and the clonogenicity of C6 glioma cells began decreasing at 75.28 μM (30 μg/ml) of MG. Cell migration was inhibited in C6 and HT22 cells treated with 75.28 μM (30 μg/ml) of MG. Apoptotic nuclear condensation and fragmentation were observed in all cell lines treated with 125.47 μM (50 μg/ml) MG, whereas late-phase apoptotic cells were predominant in the group treated with 250.94 μM (100 μg/ml) of MG. The cell cycle assay results suggest that MG arrested the S phase in the C6 cell line and the G2/M phase in the HT22 cell lines. This study showed that MG induces cell death and cell cycle arrest, disrupting cell migration and reducing the clonogenicity of brain tumor cells.
Collapse
Affiliation(s)
- Kittikun Viwatpinyo
- School of Medicine, Walailak University, Tha Sala, Nakorn Si Thammarat 80160, Thailand; Center of Excellence in Marijuana, Hemp, and Kratom, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Sujira Mukda
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakorn Pathom 73170, Thailand
| | - Sakan Warinhomhoun
- School of Medicine, Walailak University, Tha Sala, Nakorn Si Thammarat 80160, Thailand; Center of Excellence in Marijuana, Hemp, and Kratom, Walailak University, Nakhon Si Thammarat 80160, Thailand.
| |
Collapse
|
5
|
Tamborlin L, Pereira KD, Guimarães DSPSF, Silveira LR, Luchessi AD. The first evidence of biological activity for free Hypusine, an enigmatic amino acid discovered in the '70s. Amino Acids 2023:10.1007/s00726-023-03283-4. [PMID: 37258638 DOI: 10.1007/s00726-023-03283-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
Hypusine amino acid [Nε-(4-amino-2-hydroxybutyl)-lysine] was first isolated in 1971 from bovine brain extracts. Hypusine originates from a post-translational modification at the eukaryotic translation initiation factor 5A (eIF5A), a protein produced by archaebacteria and eukaryotes. The eIF5A protein is the only one described containing the hypusine residue, which is essential for its activity. Hypusine as a free amino acid is a consequence of proteolytic degradation of eIF5A. Herein, we showed, for the first time, evidence of biological activity for the free hypusine. C6 rat glioma cells were treated with hypusine, and different cellular parameters were evaluated. Hypusine treatment significantly reduced C6 cell proliferation and potently suppressed their clonogenic capacity without leading to apoptosis. Hypusine also decreased the Eif5A transcript content and the global protein synthesis profile that may occur due to negative feedback in response to high hypusine concentration, controlling the content of newly synthesized eIF5A, which can affect the translation process. Besides, hypusine treatment also altered cellular metabolism by changing the pathways for energy production, reducing cellular respiration coupled with oxidative phosphorylation, and increasing the anaerobic metabolism. These observed results and the relationship between eIF5A and tumor processes led us to test the combination of hypusine with the chemotherapeutic drug temozolomide. Combining temozolomide with hypusine reduced the MTT conversion to the same levels as those observed using double temozolomide dosage alone, demonstrating a synergetic action between the compounds. Thus, since 1971, this is the first study showing evidence of biological activity for hypusine not associated with being an essential component of the eiF5A protein. Finding out the molecular targets of hypusine are the following efforts to completely characterize its biological activity.
Collapse
Affiliation(s)
- Leticia Tamborlin
- Laboratory of Biotechnology, School of Applied Sciences, State University of Campinas (UNICAMP), Rua Pedro Zaccaria, 1300, Jardim Santa Luiza, Limeira, São Paulo, 13484-350, Brazil
- Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
| | - Karina Danielle Pereira
- Laboratory of Biotechnology, School of Applied Sciences, State University of Campinas (UNICAMP), Rua Pedro Zaccaria, 1300, Jardim Santa Luiza, Limeira, São Paulo, 13484-350, Brazil
| | | | - Leonardo Reis Silveira
- Obesity and Comorbidities Research Center, Department of Structural and Functional Biology, State University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Augusto Ducati Luchessi
- Laboratory of Biotechnology, School of Applied Sciences, State University of Campinas (UNICAMP), Rua Pedro Zaccaria, 1300, Jardim Santa Luiza, Limeira, São Paulo, 13484-350, Brazil.
- Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil.
| |
Collapse
|
6
|
Integration of synthetic and natural derivatives revives the therapeutic potential of temozolomide against glioma- an in vitro and in vivo perspective. Life Sci 2022; 301:120609. [DOI: 10.1016/j.lfs.2022.120609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/02/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022]
|