1
|
Chen W, Ruan M, Zou M, Liu F, Liu H. Clinical Significance of Non-Coding RNA Regulation of Programmed Cell Death in Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:4187. [PMID: 37627215 PMCID: PMC10452865 DOI: 10.3390/cancers15164187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a widely prevalent and malignantly progressive tumor. Most patients are typically diagnosed with HCC at an advanced stage, posing significant challenges in the execution of curative surgical interventions. Non-coding RNAs (ncRNAs) represent a distinct category of RNA molecules not directly involved in protein synthesis. However, they possess the remarkable ability to regulate gene expression, thereby exerting significant regulatory control over cellular processes. Notably, ncRNAs have been implicated in the modulation of programmed cell death (PCD), a crucial mechanism that various therapeutic agents target in the fight against HCC. This review summarizes the clinical significance of ncRNA regulation of PCD in HCC, including patient diagnosis, prognosis, drug resistance, and side effects. The aim of this study is to provide new insights and directions for the diagnosis and drug treatment strategies of HCC.
Collapse
Affiliation(s)
| | | | | | - Fuchen Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai 200438, China; (W.C.); (M.R.)
| | - Hui Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai 200438, China; (W.C.); (M.R.)
| |
Collapse
|
2
|
Ramirez PW, Pantoja C, Beliakova-Bethell N. An Evaluation on the Role of Non-Coding RNA in HIV Transcription and Latency: A Review. HIV AIDS (Auckl) 2023; 15:115-134. [PMID: 36942082 PMCID: PMC10024501 DOI: 10.2147/hiv.s383347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
The existence of latent cellular reservoirs is recognized as the major barrier to an HIV cure. Reactivating and eliminating "shock and kill" or permanently silencing "block and lock" the latent HIV reservoir, as well as gene editing, remain promising approaches, but so far have proven to be only partially successful. Moreover, using latency reversing agents or "block and lock" drugs pose additional considerations, including the ability to cause cellular toxicity, a potential lack of specificity for HIV, or low potency when each agent is used alone. RNA molecules, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are becoming increasingly recognized as important regulators of gene expression. RNA-based approaches for combatting HIV latency represent a promising strategy since both miRNAs and lncRNAs are more cell-type and tissue specific than protein coding genes. Thus, a higher specificity of targeting the latent HIV reservoir with less overall cellular toxicity can likely be achieved. In this review, we summarize current knowledge about HIV gene expression regulation by miRNAs and lncRNAs encoded in the human genome, as well as regulatory molecules encoded in the HIV genome. We discuss both the transcriptional and post-transcriptional regulation of HIV gene expression to align with the current definition of latency, and describe RNA molecules that either promote HIV latency or have anti-latency properties. Finally, we provide perspectives on using each class of RNAs as potential targets for combatting HIV latency, and describe the complexity of the interactions between different RNA molecules, their protein targets, and HIV.
Collapse
Affiliation(s)
- Peter W Ramirez
- Department of Biological Sciences, California State University, Long Beach, CA, USA
| | - Christina Pantoja
- Department of Biological Sciences, California State University, Long Beach, CA, USA
| | - Nadejda Beliakova-Bethell
- VA San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, CA, USA
- Department of Medicine, University of California, San Diego, CA, USA
| |
Collapse
|
3
|
PVT1 inhibition stimulates anti-tumor immunity, prevents metastasis, and depletes cancer stem cells in squamous cell carcinoma. Cell Death Dis 2023; 14:187. [PMID: 36894542 PMCID: PMC9998619 DOI: 10.1038/s41419-023-05710-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/11/2023]
Abstract
Cancer stem cells (CSCs) cause tumor metastasis and immune evasion by as-yet-unknown molecular mechanisms. In the present study, we identify a long noncoding RNA (lncRNA), termed PVT1, which is highly expressed in CSCs and correlated closely with lymph node metastasis of head and neck squamous cell carcinoma (HNSCC). PVT1 inhibition eliminates CSCs, prevents metastasis, and stimulates anti-tumor immunity, while inhibiting HNSCC growth. Moreover, PVT1 inhibition promotes the infiltration of CD8+ T cells into the tumor microenvironment, thereby enhancing immunotherapy by PD1 blockade. Mechanistically, PVT1 inhibition stimulates the DNA damage response, which induces CD8+ T cell-recruiting chemokines, while preventing CSCs and metastasis via regulating the miR-375/YAP1 axis. In conclusion, targeting PVT1 might potentiate the elimination of CSCs via immune checkpoint blockade, prevent metastasis, and inhibit HNSCC growth.
Collapse
|
4
|
Hashemi M, Mirzaei S, Zandieh MA, Rezaei S, Amirabbas Kakavand, Dehghanpour A, Esmaeili N, Ghahremanzade A, Saebfar H, Heidari H, Salimimoghadam S, Taheriazam A, Entezari M, Ahn KS. Long non-coding RNAs (lncRNAs) in hepatocellular carcinoma progression: Biological functions and new therapeutic targets. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:207-228. [PMID: 36584761 DOI: 10.1016/j.pbiomolbio.2022.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/29/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Liver is an important organ in body that performs vital functions such as detoxification. Liver is susceptible to development of cancers, and hepatocellular carcinoma (HCC) is among them. 75-85% of liver cancer cases are related to HCC. Therefore, much attention has been directed towards understanding factors mediating HCC progression. LncRNAs are epigenetic factors with more than 200 nucleotides in length located in both nucleus and cytoplasm and they are promising candidates in cancer therapy. Directing studies towards understanding function of lncRNAs in HCC is of importance. LncRNAs regulate cell cycle progression and growth of HCC cells, and they can also induce/inhibit apoptosis in tumor cells. LncRNAs affect invasion and metastasis in HCC mainly by epithelial-mesenchymal transition (EMT) mechanism. Revealing the association between lncRNAs and downstream signaling pathways in HCC is discussed in the current manuscript. Infectious diseases can affect lncRNA expression in mediating HCC development and then, altered expression level of lncRNA is associated with drug resistance and radio-resistance. Biomarker application of lncRNAs and their role in prognosis and diagnosis of HCC are also discussed to pave the way for treatment of HCC patients.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sahar Rezaei
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negin Esmaeili
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Azin Ghahremanzade
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Saebfar
- European University Association, League of European Research Universities, University of Milan, Italy
| | - Hajar Heidari
- Department of Biomedical Sciences, School of Public Health University at Albany State University of New York, Albany, NY, 12208, USA
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Li R, Wang X, Zhu C, Wang K. lncRNA PVT1: a novel oncogene in multiple cancers. Cell Mol Biol Lett 2022; 27:84. [PMID: 36195846 PMCID: PMC9533616 DOI: 10.1186/s11658-022-00385-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/07/2022] [Indexed: 12/01/2022] Open
Abstract
Long noncoding RNAs are involved in epigenetic gene modification, including binding to the chromatin rearrangement complex in pre-transcriptional regulation and to gene promoters in gene expression regulation, as well as acting as microRNA sponges to control messenger RNA levels in post-transcriptional regulation. An increasing number of studies have found that long noncoding RNA plasmacytoma variant translocation 1 (PVT1) plays an important role in cancer development. In this review of a large number of studies on PVT1, we found that PVT1 is closely related to tumor onset, proliferation, invasion, epithelial–mesenchymal transformation, and apoptosis, as well as poor prognosis and radiotherapy and chemotherapy resistance in some cancers. This review comprehensively describes PVT1 expression in various cancers and presents novel approaches to the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Ruiming Li
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Chunming Zhu
- Department of Family Medicine, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
6
|
Wu ZH, Li C, Zhang YJ, Lin R. Bioinformatics Study Revealed Significance of Exosome Transcriptome in Hepatocellular Carcinoma Diagnosis. Front Cell Dev Biol 2022; 10:813701. [PMID: 35573701 PMCID: PMC9091439 DOI: 10.3389/fcell.2022.813701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/23/2022] [Indexed: 01/15/2023] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is one of the fifty most common cancers globally, having a high mortality rate being the second most common cause of cancer-related deaths. However, little attention has been paid to the involvement of exosomes and ceRNA in HCC. Method: The study aimed to explore exosome data from exoRBase database and a free online database to estimate possible binding miRNA from mRNA, lncRNA, and circRNA and discover useful exosome biomarkers for HCC therapy. Results: The results indicated that a total of 159 mRNAs, 60 lncRNAs, and 13 circRNAs were differentially expressed, with HIST2H3C exhibiting the highest log2FC change, CTD-2031P19 exhibiting the most relevant lncRNA, and CTD-2031P19 exhibiting the most relevant lncRNA. MARCH8, SH3PXD2A, has-circ-0014088, hsa-miR-186-5p, and hsa-miR-613 were identified as hub biomarkers used by Cytoscape. According to the KEGG pathway analysis results, the differentially expressed proteins were primarily enriched in the MAPK signaling network, central carbon metabolism in cancer, the glucagon signaling pathway, glutamatergic synapse, and spliceosome. Furthermore, immunohistochemical images from the Human Protein Atlas (HPA) online tool were used to directly evaluate the protein expression of SMARCA5, CDC42, and UBC between normal and cancer tissues, and the results showed that these three gene expressions were significantly higher in tumor tissues. Conclusion: This study discovered atypical signature exosomes for HCC prognostic prediction based on an online database. The signals could mimic exosome microenvironmental disorders providing potential biomarkers for exosome treatment.
Collapse
Affiliation(s)
- Zeng-Hong Wu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Li
- Department of Otolaryngology Head and Neck Surgery, The Central Hospital of Wuhan, Tongji Medical College Huazhong, University of Science and Technology, Wuhan, China
| | - You-Jing Zhang
- State Key Laboratory of Cardiovascular Disease, Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rong Lin
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Rong Lin,
| |
Collapse
|
7
|
Traversa D, Simonetti G, Tolomeo D, Visci G, Macchia G, Ghetti M, Martinelli G, Kristensen LS, Storlazzi CT. Unravelling similarities and differences in the role of circular and linear PVT1 in cancer and human disease. Br J Cancer 2022; 126:835-850. [PMID: 34754096 PMCID: PMC8927338 DOI: 10.1038/s41416-021-01584-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/27/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
The plasmacytoma variant translocation 1 (PVT1) is a long non-coding RNA gene involved in human disease, mainly in cancer onset/progression. Although widely analysed, its biological roles need to be further clarified. Notably, functional studies on PVT1 are complicated by the occurrence of multiple transcript variants, linear and circular, which generate technical issues in the experimental procedures used to evaluate its impact on human disease. Among the many PVT1 transcripts, the linear PVT1 (lncPVT1) and the circular hsa_circ_0001821 (circPVT1) are frequently reported to perform similar pathologic and pro-tumorigenic functions when overexpressed. The stimulation of cell proliferation, invasion and drug resistance, cell metabolism regulation, and apoptosis inhibition is controlled through multiple targets, including MYC, p21, STAT3, vimentin, cadherins, the PI3K/AKT, HK2, BCL2, and CASP3. However, some of this evidence may originate from an incorrect evaluation of these transcripts as two separate molecules, as they share the lncPVT1 exon-2 sequence. We here summarise lncPVT1/circPVT1 functions by mainly focusing on shared pathways, pointing out the potential bias that may exist when the biological role of each transcript is analysed. These considerations may improve the knowledge about lncPVT1/circPVT1 and their specific targets, which deserve further studies due to their diagnostic, prognostic, and therapeutic potential.
Collapse
Affiliation(s)
- Debora Traversa
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | - Giorgia Simonetti
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | - Doron Tolomeo
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | - Grazia Visci
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | - Gemma Macchia
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | - Martina Ghetti
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | - Giovanni Martinelli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | | | | |
Collapse
|
8
|
Shafabakhsh R, Arianfar F, Vosough M, Mirzaei HR, Mahjoubin-Tehran M, Khanbabaei H, Kowsari H, Shojaie L, Azar MEF, Hamblin MR, Mirzaei H. Autophagy and gastrointestinal cancers: the behind the scenes role of long non-coding RNAs in initiation, progression, and treatment resistance. Cancer Gene Ther 2021; 28:1229-1255. [PMID: 33432087 DOI: 10.1038/s41417-020-00272-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/06/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
Gastrointestinal (GI) cancers comprise a heterogeneous group of complex disorders that affect different organs, including esophagus, stomach, gallbladder, liver, biliary tract, pancreas, small intestine, colon, rectum, and anus. Recently, an explosion in nucleic acid-based technologies has led to the discovery of long non-coding RNAs (lncRNAs) that have been found to possess unique regulatory functions. This class of RNAs is >200 nucleotides in length, and is characterized by their lack of protein coding. LncRNAs exert regulatory effects in GI cancer development by affecting different functions such as the proliferation and metastasis of cancer cells, apoptosis, glycolysis and angiogenesis. Over the past few decades, considerable evidence has revealed the important role of autophagy in both GI cancer progression and suppression. In addition, recent studies have confirmed a significant correlation between lncRNAs and the regulation of autophagy. In this review, we summarize how lncRNAs play a behind the scenes role in the pathogenesis of GI cancers through regulation of autophagy.
Collapse
Affiliation(s)
- Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Farzaneh Arianfar
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Massoud Vosough
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hashem Khanbabaei
- Medical Physics Department, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamed Kowsari
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Layla Shojaie
- Research Center for Liver Diseases, Keck School of Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
9
|
Resveratrol inhibits the migration, invasion and epithelial-mesenchymal transition in liver cancer cells through up- miR-186-5p expression. Zhejiang Da Xue Xue Bao Yi Xue Ban 2021; 50:582-590. [PMID: 34986537 DOI: 10.3724/zdxbyxb-2021-0197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
To investigate the molecular mechanism of resveratrol inhibiting the metastasis of liver cancer . HepG2 and Huh7 cells were treated with different concentrations of resveratrol, and the cell viability was determined by CCK-8 assay to determine the optimal concentration of resveratrol for subsequent experiments. The expressions of miR-186-5p in liver cancer tissues and liver cancer cells were determined by quantitative real-time RT-PCR. The migration and invasion of HepG2 and Huh7 cells were detected by wound healing assay and Transwell assay, and the expression levels of epithelial-mesenchymal transition (EMT) related proteins were determined by Western blotting. Resveratrol with concentration of had no effect on the viability of HepG2 and Huh7 cells, so the concentration of resveratrol in subsequent experiments was 6.25 μmol/L. Resveratrol inhibited the wound healing and invasion of liver cancer cells; increased the expression of E-cadherin, and decreased the expression of vimentin and Twist1. The expression of miR-186-5p was significantly down-regulated in liver cancer tissues and cells compared with the adjacent tissues and normal liver cells (both <0.05). Furthermore, resveratrol induced the expression of miR-186-5p in liver cancer cells (both <0.01). Overexpression of miR-186-5p suppressed the migration, invasion and EMT of liver cancer cells. Knockdown of miR-186-5p blocked the inhibition effects of resveratrol on the migration, invasion and EMT of liver cancer cells. Resveratrol could inhibit the metastasis of liver cancer , which might be associated with up-regulating miR-186-5p.
Collapse
|
10
|
ceRNAs in Cancer: Mechanism and Functions in a Comprehensive Regulatory Network. JOURNAL OF ONCOLOGY 2021; 2021:4279039. [PMID: 34659409 PMCID: PMC8516523 DOI: 10.1155/2021/4279039] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022]
Abstract
Noncoding RNAs have been shown with powerful ability in post-transcriptional regulation, enabling intertwined RNA crosstalk and global molecular interaction in a large amount of dysfunctional conditions including cancer. Competing endogenous RNAs (ceRNAs) are those competitively binding with shared microRNAs (miRNAs), freeing their counterparts from miRNA-induced degradation, thus actively influencing and connecting with each other. Constantly updated analytical approaches boost outstanding advancement achieved in this burgeoning hotspot in multilayered intracellular communication, providing new insights into pathogenesis and clinical treatment. Here, we summarize the mechanisms and correlated factors under this RNA interplay and deregulated transcription profile in neoplasm and tumor progression, underscoring the great significance of ceRNAs for diagnostic values, monitoring biomarkers, and prognosis evaluation in cancer.
Collapse
|
11
|
Liu Y, Chen Q, Zhu Y, Wang T, Ye L, Han L, Yao Z, Yang Z. Non-coding RNAs in necroptosis, pyroptosis and ferroptosis in cancer metastasis. Cell Death Discov 2021; 7:210. [PMID: 34381023 PMCID: PMC8358062 DOI: 10.1038/s41420-021-00596-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/07/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
Distant metastasis is the main cause of death for cancer patients. Recently, the newly discovered programmed cell death includes necroptosis, pyroptosis, and ferroptosis, which possesses an important role in the process of tumor metastasis. At the same time, it is widely reported that non-coding RNA precisely regulates programmed death and tumor metastasis. In the present review, we summarize the function and role of necroptosis, pyrolysis, and ferroptosis involving in cancer metastasis, as well as the regulatory factors, including non-coding RNAs, of necroptosis, pyroptosis, and ferroptosis in the process of tumor metastasis.
Collapse
Affiliation(s)
- Yan Liu
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Qiuyun Chen
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Yanan Zhu
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Tiying Wang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Lijuan Ye
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Lei Han
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Zhihong Yao
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Zuozhang Yang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China.
| |
Collapse
|
12
|
Chen W, Li Y, Zhong J, Wen G. circ-PRKCI targets miR-1294 and miR-186-5p by downregulating FOXK1 expression to suppress glycolysis in hepatocellular carcinoma. Mol Med Rep 2021; 23:464. [PMID: 33880589 PMCID: PMC8097765 DOI: 10.3892/mmr.2021.12103] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/29/2021] [Indexed: 12/17/2022] Open
Abstract
Numerous human circular RNAs (circRNAs/circ) have been functionally characterized. However, the potential role of circ-protein kinase C iota (PRKCI) in hepatocellular carcinoma (HCC) remains unknown. The effects of each transfection and expression levels of circ-PRKCI, microRNA (miR)-1294, miR-186-5p and forkhead box K1 (FOXK1) in HCC cells were analyzed using reverse transcription-quantitative PCR analysis. The interactions between circ-PRKCI and miR-1294 or miR-186-5p, and miR-1294 or miR-186-5p and FOXK1 were validated using dual luciferase reporter assays. The viability, invasion and migration of HCC cells were determined using Cell Counting Kit-8, Transwell and wound healing assays, respectively. The expression levels of FOXK1, hexokinase-2 (HK2), glucose transporter 1 (GLUT1) and lactate dehydrogenase A (LDHA) in HCC cells were analyzed using western blotting. The levels of glucose and lactic acid in the cultured supernatant were detected using commercially available kits. The results of the present study revealed that miR-1294 and miR-186-5p expression levels were downregulated in the HCC cell line, HCCLM3, and were subsequently downregulated by circ-PRKCI overexpression and upregulated by the knockdown of circ-PRKCI. circ-PRKCI overexpression promoted the viability, invasion and migration of HCCLM3 cells, which was also reversed by the overexpression of miR-1294 and miR-186-5p. In addition, the overexpression of circ-PRKCI upregulated FOXK1 expression levels, while the overexpression of miR-1294 and miR-186-5p downregulated FOXK1 expression levels. Conversely, the knockdown of circ-PRKCI expression downregulated FOXK1 expression levels, while the knockdown of miR-1294 and miR-186-5p upregulated FOXK1 expression levels. Furthermore, circ-PRKCI was identified to target miR-1294 and miR-186-5p, and miR-1294 and miR-186-5p were subsequently found to target FOXK1. The overexpression of circ-PRKCI also increased glucose and lactic acid levels, while the knockdown of FOXK1 decreased glucose and lactic acid levels. The knockdown of circ-PRKCI decreased glucose and lactic acid levels, which were reversed by FOXK1 overexpression. In conclusion, the findings of the present study suggested that circ-PRKCI may promote the viability, invasion and migration of HCC cells by sponging miR-1294 and miR-186-5p to upregulate FOXK1 expression levels.
Collapse
Affiliation(s)
- Wenqi Chen
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yuehua Li
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jing Zhong
- Institute of Clinical Medicine, First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Gebo Wen
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
13
|
Ghafouri-Fard S, Gholipour M, Hussen BM, Taheri M. The Impact of Long Non-Coding RNAs in the Pathogenesis of Hepatocellular Carcinoma. Front Oncol 2021; 11:649107. [PMID: 33968749 PMCID: PMC8097102 DOI: 10.3389/fonc.2021.649107] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is among the utmost deadly human malignancies. This type of cancer has been associated with several environmental, viral, and lifestyle risk factors. Among the epigenetic factors which contribute in the pathogenesis of HCC is dysregulation of long non-coding RNAs (lncRNAs). These transcripts modulate expression of several tumor suppressor genes and oncogenes and alter the activity of cancer-related signaling axes. Several lncRNAs such as NEAT1, MALAT1, ANRIL, and SNHG1 have been up-regulated in HCC samples. On the other hand, a number of so-called tumor suppressor lncRNAs namely CASS2 and MEG3 are down-regulated in HCC. The interaction between lncRNAs and miRNAs regulate expression of a number of mRNA coding genes which are involved in the pathogenesis of HCC. H19/miR-15b/CDC42, H19/miR-326/TWIST1, NEAT1/miR-485/STAT3, MALAT1/miR-124-3p/Slug, MALAT1/miR-195/EGFR, MALAT1/miR-22/SNAI1, and ANRIL/miR-144/PBX3 axes are among functional axes in the pathobiology of HCC. Some genetic polymorphisms within non-coding regions of the genome have been associated with risk of HCC in certain populations. In the current paper, we describe the recent finding about the impact of lncRNAs in HCC.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholipour
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Pharmacognosy Department, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Kumar S, Gonzalez EA, Rameshwar P, Etchegaray JP. Non-Coding RNAs as Mediators of Epigenetic Changes in Malignancies. Cancers (Basel) 2020; 12:E3657. [PMID: 33291485 PMCID: PMC7762117 DOI: 10.3390/cancers12123657] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are untranslated RNA molecules that regulate gene expressions. NcRNAs include small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), circular RNAs (cRNAs) and piwi-interacting RNAs (piRNAs). This review focuses on two types of ncRNAs: microRNAs (miRNAs) or short interfering RNAs (siRNAs) and long non-coding RNAs (lncRNAs). We highlight the mechanisms by which miRNAs and lncRNAs impact the epigenome in the context of cancer. Both miRNAs and lncRNAs have the ability to interact with numerous epigenetic modifiers and transcription factors to influence gene expression. The aberrant expression of these ncRNAs is associated with the development and progression of tumors. The primary reason for their deregulated expression can be attributed to epigenetic alterations. Epigenetic alterations can cause the misregulation of ncRNAs. The experimental evidence indicated that most abnormally expressed ncRNAs impact cellular proliferation and apoptotic pathways, and such changes are cancer-dependent. In vitro and in vivo experiments show that, depending on the cancer type, either the upregulation or downregulation of ncRNAs can prevent the proliferation and progression of cancer. Therefore, a better understanding on how ncRNAs impact tumorigenesis could serve to develop new therapeutic treatments. Here, we review the involvement of ncRNAs in cancer epigenetics and highlight their use in clinical therapy.
Collapse
Affiliation(s)
- Subhasree Kumar
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA; (S.K.); (E.A.G.)
| | - Edward A. Gonzalez
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA; (S.K.); (E.A.G.)
| | - Pranela Rameshwar
- Department of Medicine, Hematology/Oncology, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ 07103, USA
| | - Jean-Pierre Etchegaray
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA; (S.K.); (E.A.G.)
| |
Collapse
|
15
|
Zhan FL, Chen CF, Yao MZ. LncRNA TUG1 facilitates proliferation, invasion and stemness of ovarian cancer cell via miR-186-5p/ZEB1 axis. Cell Biochem Funct 2020; 38:1069-1078. [PMID: 32390141 DOI: 10.1002/cbf.3544] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/24/2020] [Accepted: 04/10/2020] [Indexed: 12/22/2022]
Abstract
LncRNA TUG1 has been rarely studied in ovarian cancer (OC), our objective was to explore the role of TUG1 in the regulation of malignant phenotypes of OC. Vectors of sh-TUG1, miR-186-5p and pcDNA-ZEB1 were, respectively, constructed and used to infect OC cells. MTT and transwell assays were applied for representing cell proliferation and invasion, respectively. Sphere formation experiment was used to detect the stemness of OC cells. Western blotting and qRT-PCR were employed for detecting the expression of multiple biomarkers on protein and RNA levels, respectively. The luciferase assay was performed to reveal the interactions between miR-186-5p and TUG1 or ZEB1. The silencing of TUG1 and upregulation of miR-186-5p both suppressed the cell proliferation, invasion and cancer stem cell (CSC) properties. Additionally, luciferase assay verified that miR-186-5p directly binds TUG1 and ZEB1. Moreover, overexpression of ZEB1 rescued the impact on the proliferation, invasion and stemness of TUG1 silencing in OC. TUG1 sponges miR-186-5p to release ZEB1 and promotes the proliferation, invasion and stemness of OC cells, suggesting that TUG1 could be a potential therapeutic target for OC therapy. SIGNIFICANCE OF THE STUDY: LncRNA TUG1 could promote proliferation, invasion and stemness of ovarian cancer cells. Our study first discovered that TUG1 play a tumourigenic role in ovarian cancer by regulating stemness of cancer cells. Mechanism research exhibited the regulation role of TUG1 in ovarian cancer cells was miR-186-5p/ZEB1 axis depended. These results provided a new perspective to understand the pathogenesis and development of ovarian cancer; it will offer new evidence for better diagnosis and treatment therapy of ovarian cancer.
Collapse
Affiliation(s)
- Fu-Liang Zhan
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chun-Fang Chen
- School of Mathematics and Information Science, Jiangxi Normal University, Nanchang, China
| | - Mei-Zhen Yao
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
16
|
Ogunwobi OO, Segura MF. Editorial: PVT1 in Cancer. Front Oncol 2020; 10:588786. [PMID: 33194746 PMCID: PMC7606904 DOI: 10.3389/fonc.2020.588786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/08/2020] [Indexed: 12/03/2022] Open
Affiliation(s)
- Olorunseun O Ogunwobi
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY, United States
| | - Miguel F Segura
- Laboratory of Translational Research in Child and Adolescent Cancer, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, VHIR, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
17
|
Bi Y, Mao Y, Su Z, Du J, Ye L, Xu F. HOXB-AS1 accelerates the tumorigenesis of glioblastoma via modulation of HOBX2 and HOBX3 at transcriptional and posttranscriptional levels. J Cell Physiol 2020; 236:93-106. [PMID: 33459377 DOI: 10.1002/jcp.29499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/09/2020] [Indexed: 12/30/2022]
Abstract
Glioblastoma (GBM) is the most universal and invasive brain tumor among adults. Increasing studies have reported that long noncoding RNAs play vital roles in regulating downstream molecules at the transcriptional or posttranscriptional level in tumor progression. The purpose of the current research was to inquire the modulation mechanism by which homeobox B cluster antisense RNA 1 (HOXB-AS1) functioned in GBM. Our study first discovered the lifted expression of HOXB-AS1 and its nearby genes HOXB2 and HOXB3 in GBM and the positive relationship between HOXB-AS1 and HOXB2 or HOXB3. Loss-of-function assays and in vivo study detected that silencing of HOXB-AS1, HOXB2, or HOXB3 restrained the proliferation and induced the apoptosis in GBM. In addition, mechanism experiments demonstrated that HOXB-AS1 recruited interleukin enhancer-binding factor 3 (ILF3) to regulate HOXB2 and HOXB3 expression at the transcriptional level, and HOXB-AS1 sponged miR-186-5p to modulate HOXB2 and HOXB3 expression at posttranscriptional level. Finally, the regulatory mechanism of HOXB-AS1 in GBM was certified through rescue experiments. Our results indicated that HOXB-AS1 boost the HOXB2 or HOXB3 expression at the transcriptional and posttranscriptional levels. We detected the HOXB-AS1-ILF3-HOXB2/HOXB3 axis and HOXB-AS1-miR-186-5p-HOXB2/HOXB3 axis driving the GBM progression, which might generate more effective diagnostic biomarkers and therapeutic targets for patients with GBM.
Collapse
Affiliation(s)
- Yongyan Bi
- Department of Neurosurgery, Minhang Hospital, Fudan University, Minhang, Shanghai, China
| | - Yuhang Mao
- Department of Neurosurgery, Minhang Hospital, Fudan University, Minhang, Shanghai, China
| | - Zuopeng Su
- Department of Neurosurgery, Minhang Hospital, Fudan University, Minhang, Shanghai, China
| | - Jiarui Du
- Department of Neurosurgery, Minhang Hospital, Fudan University, Minhang, Shanghai, China
| | - Liping Ye
- Department of Nursing, Minhang Hospital, Fudan University, Minhang, Shanghai, China
| | - Fulin Xu
- Department of Neurosurgery, Minhang Hospital, Fudan University, Minhang, Shanghai, China
| |
Collapse
|
18
|
Pal G, Di L, Orunmuyi A, Olapade-Olaopa EO, Qiu W, Ogunwobi OO. Population Differentiation at the PVT1 Gene Locus: Implications for Prostate Cancer. G3 (BETHESDA, MD.) 2020; 10:2257-2264. [PMID: 32358016 PMCID: PMC7341130 DOI: 10.1534/g3.120.401291] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/29/2020] [Indexed: 12/14/2022]
Abstract
Genetic variation in susceptibility to complex diseases, such as cancer, is well-established. Enrichment of disease associated alleles in specific populations could have implications for disease incidence and prevalence. Prostate cancer (PCa) is a disease with well-established higher incidence, prevalence, and worse outcomes among men of African ancestry in comparison to other populations. PCa is a multi-factorial, complex disease, but the exact mechanisms for its development and progression are unclear. The gene desert located on chromosome 8q24 is associated with aggressiveness of PCa. Interestingly, the non-protein coding gene locus Plasmacytoma Variant Translocation (PVT1) is present at chromosome 8q24 and is overexpressed in PCa. PVT1 gives rise to multiple transcripts with potentially different molecular and cellular functions. In an analysis of the PVT1 locus using data from the 1000 Genomes Project, we found the chromosomal region spanning PVT1 exons 4A and 4B to be highly differentiated between African and non-African populations. We further investigated levels of gene expression of PVT1 exons 4A and 4B and observed significant overexpression of these exons in PCa tissues relative to benign prostatic hyperplasia and to normal prostate tissues obtained from men of African ancestry. These results indicate that PVT1 exons 4A and 4B may have clinical implications in PCa a conclusion supported by the observation that transient and stable overexpression of PVT1 exons 4A and 4B significantly induce greater prostate epithelial cell migration and proliferation. We anticipate that further exploration of the role of PVT1 exons 4A and 4B may lead to the development of diagnostic, therapeutic, and other clinical applications in PCa.
Collapse
Affiliation(s)
- Gargi Pal
- Department of Biological Sciences, Hunter College of The City University of New York, NY
| | - Lia Di
- Department of Biological Sciences, Hunter College of The City University of New York, NY
| | | | | | - Weigang Qiu
- Department of Biological Sciences, Hunter College of The City University of New York, NY
| | - Olorunseun O Ogunwobi
- Department of Biological Sciences, Hunter College of The City University of New York, NY,
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY
| |
Collapse
|
19
|
Ali HS, Boshra MS, El Meteini MS, Shafei AES, Matboli M. lncRNA- RP11-156p1.3, novel diagnostic and therapeutic targeting via CRISPR/Cas9 editing in hepatocellular carcinoma. Genomics 2020; 112:3306-3314. [PMID: 32544548 DOI: 10.1016/j.ygeno.2020.06.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/02/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023]
Abstract
We aim to characterize the expression of RNA panel in HCC. We assessed the expression of HCC-associated mRNA, miRNA and lncRNA network by real time PCR in sera and tissue samples. In a proof-of-principle approach, CRISPR cas9 mediated knock out for lncRNA- RP11-156p1.3 was performed in HEPG2 cell line to validate the role of the chosen RNA in HCC pathogenesis. The differential expression of RFTN1 mRNA, lncRNA- RP11-156p1.3 and miRNA-4764-5p was statistically different among the studied groups. After CRISPR cas9 mediated knockout of lncRNA- RP11-156p1.3 in HEPG2 cells, there was significant decrease in cell count and viability with reversal of the expression of the chosen RNAs. The chosen RNAs play a significant role in HCC pathogenesis and may be potential diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Hebatalla Said Ali
- The department of medicinal biochemistry and molecular biology, The school of Medicine, University of Ain Shams, Egypt
| | - Mariam Sameh Boshra
- The department of medicinal biochemistry and molecular biology, The school of Medicine, University of Ain Shams, Egypt
| | - Mahmoud Shawky El Meteini
- Department of General Surgery, the school of Medicine, University of Ain Shams, Abbassia, Cairo, Egypt
| | | | - Marwa Matboli
- The department of medicinal biochemistry and molecular biology, The school of Medicine, University of Ain Shams, Egypt.
| |
Collapse
|
20
|
Xiang Y, Tian Q, Guan L, Niu SS. The Dual Role of miR-186 in Cancers: Oncomir Battling With Tumor Suppressor miRNA. Front Oncol 2020; 10:233. [PMID: 32195180 PMCID: PMC7066114 DOI: 10.3389/fonc.2020.00233] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/11/2020] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs which regulate gene expression at post-transcriptional level. Alterations of miR-186 expression were demonstrated in numerous cancers, shown to play a vital role in oncogenesis, invasion, metastasis, apoptosis, and drug resistance. MiR-186 was documented as a tumor suppressor miRNA in the majority of studies, while conflicting reports verified miR-186 as an oncomir. The contradictory role in cancers may impede the application of miR-186, as well as other dual-functional miRNAs, as a diagnostic and therapeutic target. This review emphasizes the alterations and functions of miR-186 in cancers and discusses the mechanisms behind the contradictory findings. Among these, target abundance and dose-dependent effects of miR-186 are highlighted. The paper aims to review the challenges involved in developing diagnostic and therapeutic strategies for cancer treatment based on dual-functional miRNAs.
Collapse
Affiliation(s)
- Ying Xiang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Hubei, China.,Department of Cell Biology and Genetics, School of Basic Medicine, Health Science Center, Yangtze University, Hubei, China
| | - Qing Tian
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Hubei, China
| | - Li Guan
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Hubei, China
| | - Shuai-Shuai Niu
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Hubei, China.,The First School of Clinical Medicine, Health Science Center, Yangtze University, Hubei, China
| |
Collapse
|
21
|
Onagoruwa OT, Pal G, Ochu C, Ogunwobi OO. Oncogenic Role of PVT1 and Therapeutic Implications. Front Oncol 2020; 10:17. [PMID: 32117705 PMCID: PMC7010636 DOI: 10.3389/fonc.2020.00017] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 01/07/2020] [Indexed: 12/14/2022] Open
Abstract
PVT1, a long non-coding RNA has been implicated in a variety of human cancers. Recent advancements have led to increasing discovery of the critical roles of PVT1 in cancer initiation and progression. Novel insight is emerging about PVT1's mechanism of action in different cancers. Identifying and understanding the variety of activities of PVT1 involved in cancers is a necessity for the development of PVT1 as a diagnostic biomarker or therapeutic target in cancers where PVT1 is dysregulated. PVT1's varied activities include overexpression, modulation of miRNA expression, protein interactions, targeting of regulatory genes, formation of fusion genes, functioning as a competing endogenous RNA (ceRNA), and interactions with MYC, among many others. Furthermore, bioinformatic analysis of PVT1 interactions in cancers has aided understanding of the numerous pathways involved in PVT1 contribution to carcinogenesis in a cancer type-specific manner. However, these recent findings show that there is much more to be learned to be able to fully exploit PVT1 for cancer prognostication and therapy. In this review, we summarize some of the latest findings on PVT1's oncogenic activities, signaling networks and how targeting these networks can be a strategy for cancer therapy.
Collapse
|
22
|
Zhang Z, Li H, Li J, Lv X, Yang Z, Gao M, Bi Y, Wang S, Cui Z, Zhou B, Yin Z. Polymorphisms in the PVT1 Gene and Susceptibility to the Lung Cancer in a Chinese Northeast Population: a Case-control Study. J Cancer 2020; 11:468-478. [PMID: 31897242 PMCID: PMC6930418 DOI: 10.7150/jca.34320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 09/30/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Long non-coding RNA (lncRNA) PVT1 has been identified to be related to risk of a variety of cancers, such as gastric cancer, pancreatic cancer and follicular lymphoma. This study assesses the association between genetic polymorphisms of PVT1 and the susceptibility to lung cancer as well as gene-environmental interaction. Method: A hospital-based case-control study, including 515 lung cancer patients and 582 healthy controls, was carried out in Shenyang, China. Unconditional logistic regression analyses calculated the odds ratios (ORs) and their 95% confidence intervals (CIs) to assess the associations between polymorphisms of rs2608053, rs1561927, rs13254990 and susceptibility to lung cancer. The gene-environment interaction was evaluated by additive model and multiplicative model. Results: There were no statistically significant associations between rs2608053 and rs1561927 polymorphisms in PVT1 and risk of lung cancer in the overall population. The relationship between polymorphism rs13254990 in PVT1 gene and lung adenocarcinoma was significant. Composed with individuals carrying CC genotypes, TT genotype carriers were more likely to develop lung adenocarcinoma (adjusted OR=2.095; 95%CI=1.084-4.047, P=0.028). In the recessive model, it also showed a statistically significant difference (TT vs CT+CC: adjusted OR=2.251, 95%CI=1.174-4.318, P=0.015). In nonsmokers, individuals carrying genotype CT had a lower risk of lung cancer than those with CC genotype (adjusted OR=0.673, 95%CI=0.472-0.959, P=0.028). Comparing with the homozygous CC, the patients with the heterozygous CT had a lower risk of NCSLC in the non-smoking group (adjusted OR =0.685, 95%CI=0.477-0.984, P=0.040). Additionally, gene-environment interaction results were not statistically significant in either additive model or multiplicative model. Conclusion: The polymorphism rs13254990 in PVT1 gene is associated with the risk of lung adenocarcinoma in a Chinese northeast population.
Collapse
Affiliation(s)
- Ziwei Zhang
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, PR China.,Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang 110122, PR China
| | - Hang Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, PR China.,Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang 110122, PR China
| | - Juan Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, PR China.,Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang 110122, PR China
| | - Xiaoting Lv
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, PR China.,Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang 110122, PR China
| | - Zitai Yang
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, PR China.,Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang 110122, PR China
| | - Min Gao
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, PR China.,Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang 110122, PR China
| | - Yanhong Bi
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, PR China.,Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang 110122, PR China
| | - Shengli Wang
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, PR China.,Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang 110122, PR China
| | - Zhigang Cui
- School of Nursing, China Medical University, Shenyang 110122, China
| | - Baosen Zhou
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, PR China.,Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang 110122, PR China
| | - Zhihua Yin
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, PR China.,Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang 110122, PR China
| |
Collapse
|
23
|
Boloix A, Masanas M, Jiménez C, Antonelli R, Soriano A, Roma J, Sánchez de Toledo J, Gallego S, Segura MF. Long Non-coding RNA PVT1 as a Prognostic and Therapeutic Target in Pediatric Cancer. Front Oncol 2019; 9:1173. [PMID: 31781490 PMCID: PMC6853055 DOI: 10.3389/fonc.2019.01173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 10/18/2019] [Indexed: 12/27/2022] Open
Abstract
In recent decades, biomedical research has focused on understanding the functionality of the human translated genome, which represents a minor part of all genetic information transcribed from the human genome. However, researchers have become aware of the importance of non-coding RNA species that constitute the vast majority of the transcriptome. In addition to their crucial role in tissue development and homeostasis, mounting evidence shows non-coding RNA to be deregulated and functionally contributing to the development and progression of different types of human disease including cancer both in adults and children. Small non-coding RNAs (i.e., microRNA) are in the vanguard of clinical research which revealed that RNA could be used as disease biomarkers or new therapeutic targets. Furthermore, many more expectations have been raised for long non-coding RNAs, by far the largest fraction of non-coding transcripts, and still fewer findings have been translated into clinical applications. In this review, we center on PVT1, a large and complex long non-coding RNA that usually confers oncogenic properties on different tumor types. We focus on the compilation of early advances in the field of pediatric tumors which often lags behind clinical improvements in adult tumors, and provide a rationale to continue studying PVT1 as a possible functional contributor to pediatric malignancies and as a potential prognostic marker or therapeutic target.
Collapse
Affiliation(s)
- Ariadna Boloix
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Esfera UAB, Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Marc Masanas
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Carlos Jiménez
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Roberta Antonelli
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Aroa Soriano
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Josep Roma
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Josep Sánchez de Toledo
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Soledad Gallego
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Miguel F Segura
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
24
|
Xu Y, Li Y, Jin J, Han G, Sun C, Pizzi MP, Huo L, Scott A, Wang Y, Ma L, Lee JH, Bhutani MS, Weston B, Vellano C, Yang L, Lin C, Kim Y, MacLeod AR, Wang L, Wang Z, Song S, Ajani JA. LncRNA PVT1 up-regulation is a poor prognosticator and serves as a therapeutic target in esophageal adenocarcinoma. Mol Cancer 2019; 18:141. [PMID: 31601234 PMCID: PMC6785865 DOI: 10.1186/s12943-019-1064-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 08/28/2019] [Indexed: 12/24/2022] Open
Abstract
Background PVT1 has emerged as an oncogene in many tumor types. However, its role in Barrett’s esophagus (BE) and esophageal adenocarcinoma (EAC) is unknown. The aim of this study was to assess the role of PVT1 in BE/EAC progression and uncover its therapeutic value against EAC. Methods PVT1 expression was assessed by qPCR in normal, BE, and EAC tissues and statistical analysis was performed to determine the association of PVT1 expression and EAC (stage, metastases, and survival). PVT1 antisense oligonucleotides (ASOs) were tested for their antitumor activity in vitro and in vivo. Results PVT1 expression was up-regulated in EACs compared with paired BEs, and normal esophageal tissues. High expression of PVT1 was associated with poor differentiation, lymph node metastases, and shorter survival. Effective knockdown of PVT1 in EAC cells using PVT1 ASOs resulted in decreased cell proliferation, invasion, colony formation, tumor sphere formation, and reduced proportion of ALDH1A1+ cells. Mechanistically, we discovered mutual regulation of PVT1 and YAP1 in EAC cells. Inhibition of PVT1 by PVT1 ASOs suppressed YAP1 expression through increased phosphor-LATS1and phosphor-YAP1 while knockout of YAP1 in EAC cells significantly suppressed PVT1 levels indicating a positive regulation of PVT1 by YAP1. Most importantly, we found that targeting both PVT1 and YAP1 using their specific ASOs led to better antitumor activity in vitro and in vivo. Conclusions Our results provide strong evidence that PVT1 confers an aggressive phenotype to EAC and is a poor prognosticator. Combined targeting of PVT1 and YAP1 provided the highest therapeutic index and represents a novel therapeutic strategy. Electronic supplementary material The online version of this article (10.1186/s12943-019-1064-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Xu
- Departments of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.,Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Yuan Li
- Departments of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.,Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Jiankang Jin
- Departments of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Guangchun Han
- Departments of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Chengcao Sun
- Departments of Molecular & Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Melissa Pool Pizzi
- Departments of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Longfei Huo
- Departments of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Ailing Scott
- Departments of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Ying Wang
- Departments of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Lang Ma
- Departments of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Jeffrey H Lee
- Departments of Gastroenterology&Hepatology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Manoop S Bhutani
- Departments of Gastroenterology&Hepatology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Brian Weston
- Departments of Gastroenterology&Hepatology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Christopher Vellano
- Center for Co-Clinical Trial, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Liuqing Yang
- Departments of Molecular & Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Chunru Lin
- Departments of Molecular & Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Youngsoo Kim
- Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA, 92010, USA
| | - A Robert MacLeod
- Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA, 92010, USA
| | - Linghua Wang
- Departments of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, 110001, People's Republic of China.
| | - Shumei Song
- Departments of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| | - Jaffer A Ajani
- Departments of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| |
Collapse
|
25
|
Wang Z, Sha HH, Li HJ. Functions and mechanisms of miR-186 in human cancer. Biomed Pharmacother 2019; 119:109428. [PMID: 31525641 DOI: 10.1016/j.biopha.2019.109428] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 12/30/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression at the post-transcriptional level. Mounting evidence suggests the involvement of miRNAs in carcinogenesis and the development of human cancer. Among the miRNAs, miR-186 has been extensively studied in various cancers. The expression of miR-186 in tissues varies depending on the type of cancer and miR-186 in tissues and body fluids may serve as a marker for the diagnosis and prognosis of cancers. Various biological processes in human cancer are affected by miR-186. Additionally, miR-186 itself is regulated by several factors. Thus, this evidence highlights the potential value of miR-186 in the diagnosis, prognosis and treatment of human cancer.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Orthopedics, Taizhou Clinical Medical School of Nanjing Medical University (Taizhou People's Hospital), Taizhou, Jiangsu, China
| | - Huan-Huan Sha
- Department of Chemotherapy, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China
| | - Hai-Jun Li
- Department of Orthopedics, Taizhou Clinical Medical School of Nanjing Medical University (Taizhou People's Hospital), Taizhou, Jiangsu, China.
| |
Collapse
|
26
|
Shan Y, Li P. Long Intergenic Non-Protein Coding RNA 665 Regulates Viability, Apoptosis, and Autophagy via the MiR-186-5p/MAP4K3 Axis in Hepatocellular Carcinoma. Yonsei Med J 2019; 60:842-853. [PMID: 31433582 PMCID: PMC6704017 DOI: 10.3349/ymj.2019.60.9.842] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/23/2019] [Accepted: 03/29/2019] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Long intergenic non-protein coding RNA 665 (LINC00665) plays a vital role in the development of cancer. Its function in hepatocellular carcinoma (HCC), however, remains largely unknown. MATERIALS AND METHODS The expressions of LINC00665, miR-186-5p, and MAP4K3 were determined by qRT-PCR. Cell viability and apoptosis were evaluated by MTT and flow cytometry, respectively. Autophagic puncta formation was observed by fluorescence microscopy. Bioinformatics analysis, luciferase reporter assay, RNA immunoprecipitation, and RNA pulldown were performed to identify associations among LINC00665, miR-186-5p, and MAP4K3. Western blot was utilized to examine the expressions of MAP4K3, Beclin-1, and LC3. Tumor growth was evaluated in a xenograft model. RESULTS Elevations in LINC00665 were observed in HCC tissues and cells. The overall survival of HCC patients with high levels of LINC00665 was shorter than those with low levels. In vitro, LINC00665 depletion inhibited viability and induced apoptosis and autophagy. miR-186-5p interacted with LINC00665 and was downregulated in HCC tissues and cells. Upregulation of miR-186-5p inhibited viability and induced apoptosis and autophagy, which were attenuated by upregulation of LINC00665. MAP4K3 was found to possess binding sites with miR-186-5p and was upregulated in HCC tissues and cells. MAP4K3 depletion inhibited viability and induced apoptosis and autophagy, which were attenuated by miR-186-5p inhibitor. In vivo, miR-186-5p expression was negatively correlated with LINC00665 or MAP4K3 in HCC tissues, while LINC00665 was positively correlated with MAP4K3. LINC00665 knockdown suppressed tumor growth. CONCLUSION LINC00665 was involved in cell viability, apoptosis, and autophagy in HCC via miR-186-5p/MAP4K3 axis, which may provide a new approach for HCC treatment.
Collapse
Affiliation(s)
- Yong Shan
- Department of General Surgery, Jinchang Central Hospital, Jinchang, Gansu, China.
| | - Ping Li
- Department of Ultrasound, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| |
Collapse
|
27
|
Liu J, Li R, Liao X, Hu B, Yu J. Comprehensive investigation of the clinical significance and molecular mechanisms of plasmacytoma variant translocation 1 in sarcoma using genome-wide RNA sequencing data. J Cancer 2019; 10:4961-4977. [PMID: 31598169 PMCID: PMC6775530 DOI: 10.7150/jca.31675] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 06/30/2019] [Indexed: 12/13/2022] Open
Abstract
Objective: The present study aims to identify the potential clinical application and molecular mechanism of plasmacytoma variant translocation 1 (PVT1) in patients with sarcomas by mining an RNA sequencing dataset from The Cancer Genome Atlas (TCGA) through multiple genome-wide analysis approaches. Methods: A genome-wide RNA sequencing dataset was downloaded from TCGA, survival analysis was used to evaluate the prognostic value of PVT1 in sarcoma. The potential mechanism was investigated by multiple tools: Database for Annotation, Visualization, and Integrated Discovery v6.8, gene set enrichment analysis (GSEA), and Connectivity Map (CMap). Results: Comprehensive survival analysis indicated that overexpression of PVT1 was significantly associated with poor prognosis in patients with sarcoma, and nomogram demonstrated that PVT1 contributed more than other traditional clinical parameters in sarcoma survival prediction. Weighted gene co-expression network analysis identified ten hub differentially expressed genes (DEGs) between sarcoma tissues with low and overexpression of PVT1, and substantiated that these DEGs have a complex co-expression network relationship. CMap analysis has identified that antipyrine, ondansetron, and econazole may be candidate targeted drugs for sarcoma patients with PVT1 overexpression. GSEA revealed that overexpression of PVT1 may be involved in the posttranscriptional regulation of gene expression, tumor invasiveness and metastasis, osteoblast differentiation and development, apoptosis, nuclear factor kappa B, Wnt, and apoptotic related signaling pathways. Conclusions: Our findings indicate that PVT1 may serve as a prognostic indicator in patients with sarcoma. Its underlying mechanism is revealed by GSEA, and CMap offers three candidate drugs for the individualized targeted therapy of sarcoma patients with overexpression of PVT1.
Collapse
Affiliation(s)
- Jianwei Liu
- Department of Spine Surgery, The Third Affiliated Hospital of Guangxi Medical University, Nanning, 530031, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Rong Li
- Department of Reproductive Center, The Third Affiliated Hospital of Guangxi Medical University, Nanning, 530031, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Bangli Hu
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jia Yu
- Department of Spine Surgery, The Third Affiliated Hospital of Guangxi Medical University, Nanning, 530031, Guangxi Zhuang Autonomous Region, People's Republic of China
| |
Collapse
|
28
|
Ogunwobi OO, Kumar A. Chemoresistance Mediated by ceRNA Networks Associated With the PVT1 Locus. Front Oncol 2019; 9:834. [PMID: 31508377 PMCID: PMC6718704 DOI: 10.3389/fonc.2019.00834] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/13/2019] [Indexed: 12/24/2022] Open
Abstract
Competitive endogenous RNA (ceRNA) networks have emerged as critical regulators of carcinogenesis. Their activity is mediated by various non-coding RNAs (ncRNAs), including long non-coding RNAs and microRNAs, which competitively bind to targets, thereby modulating gene expression and activity of proteins. Of particular interest, ncRNAs encoded by the 8q24 chromosomal region are associated with the development and progression of several human cancers, most prominently lncPVT1. Chemoresistance presents a significant obstacle in the treatment of cancer and is associated with dysregulation of normal cell processes, including abnormal proliferation, differentiation, and epithelial-mesenchymal transition. CeRNA networks have been shown to regulate these processes via both direct sponging/repression and epigenetic mechanisms. Here we present a review of recent literature examining the contribution of ncRNAs encoded by the PVT1 locus and their associated ceRNA networks to the development of resistance to common chemotherapeutic agents used to treat human cancers.
Collapse
Affiliation(s)
- Olorunseun O. Ogunwobi
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY, United States
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Adithya Kumar
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY, United States
| |
Collapse
|
29
|
Wang W, Zhou R, Wu Y, Liu Y, Su W, Xiong W, Zeng Z. PVT1 Promotes Cancer Progression via MicroRNAs. Front Oncol 2019; 9:609. [PMID: 31380270 PMCID: PMC6644598 DOI: 10.3389/fonc.2019.00609] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022] Open
Abstract
Non-coding RNA (ncRNA) plays a regulatory role in a variety of cellular activities. And long non-coding RNA (lncRNA) is one of the important kinds of ncRNA. Previous studies have shown that various lncRNAs are involved in the progression of cancer. LncRNA plasmacytoma variant translocation 1 (PVT1) is a newly discovered oncogenic factor that has been confirmed to be overexpressed in many cancer cells. Moreover, the role of PVT1 in cancer development is closely linked to microRNAs (miRNAs). PVT1 can act as a "sponge" for miRNAs to inhibit their activities, thereby affecting proliferation, invasion, and angiogenesis of cancer. In addition, PVT1 itself can be spliced and processed into several miRNAs such as miR-1204 and miR-1207, which can also regulate the development of cancer. This review summarizes various pathways through which PVT1 regulates the progression of cancer via miRNAs. We also propose additional regulatory mechanisms of PVT1 and their potential clinical applications.
Collapse
Affiliation(s)
- Wenxi Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Ruoyu Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Yuwei Wu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Yicong Liu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Wenjia Su
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
30
|
Ghafouri-Fard S, Omrani MD, Taheri M. Long noncoding RNA PVT1: A highly dysregulated gene in malignancy. J Cell Physiol 2019; 235:818-835. [PMID: 31297833 DOI: 10.1002/jcp.29060] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/11/2019] [Indexed: 12/17/2022]
Abstract
Recent studies have verified the contribution of several long noncoding RNAs (lncRNAs) in the carcinogenesis. Among the highly acknowledged lncRNAs is the human homolog of the plasmacytoma variant translocation gene, which is called PVT1. PVT1 resides near Myc oncogene and regulates the oncogenic process through modulation of several signaling pathways, such as TGF-β, Wnt/ β-catenin, PI3K/AKT, and mTOR pathways. This lncRNA has a circular form as well. Expression analyses and functional studies have appraised the oncogenic roles of PVT1 and circPVT1. Experiments in several cancer cell lines have shown that PVT1 silencing suppresses cancer cell proliferation, whereas its overexpression has the opposite effect. Its silencing has led to the accumulation of cells in the G0/G1 phase and diminished the number of cells in the S phase. Moreover, genome-wide association studies have signified the role of single nucleotide polymorphisms of this lncRNA in conferring risk of lymphoma in different populations. In the current study, we have summarized recent data about the role of PVT1 and circPVT1 in the carcinogenesis process.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mir Davood Omrani
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Zou B, Wang D, Xu K, Liu JL, Yuan DY, Meng Z, Zhang B. Prognostic value of long non-coding RNA plasmacytoma variant translocation1 in human solid tumors: A meta-analysis. Medicine (Baltimore) 2019; 98:e16087. [PMID: 31277104 PMCID: PMC6635238 DOI: 10.1097/md.0000000000016087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Plasmacytoma variant translocation 1 (PVT1) is highly expressed in a variety of cancer tissues and is related to the clinicopathological features and prognosis. However, the prognostic value of PVT1 is still controversial. Therefore, this systematic evaluation and meta-analysis were performed to evaluate the relationship between PVT1 expression and clinicopathological features.PubMed, EMBASE, Web of science, and Cochrane library databases were searched for literature collection according to inclusion criteria and exclusion criteria. The pooled hazard ratios (HRs) or odds ratios (ORs) were used to evaluate the association between PVT1 expression and overall survival, tumor size, tumor-node-metastasis (TNM) stage, lymph node metastasis, and distant metastasis.A total of 39 articles including 3974 patients were included in the study. The results showed that the expression of PVT1 was closely related to the overall survival rate of cancers (HR = 1.64, 95% confidence interval [CI]: 1.50-1.78, P < .000001). Subgroup analysis showed that the high expression of PVT1 was closely related to the low overall survival rate of patients with clear cell renal cell carcinoma, breast cancer, cervical cancer, colon cancer, epithelial ovarian cancer, gastric cancer, lung cancer, and osteosarcoma. In addition, the high expression of PVT1 was positively correlated with tumor size (OR = 1.50, 95% CI: 1.14-1.96, P = .004), TNM stage (OR = 3.39, 95% CI: 2.73-4.20, P < .00001), lymph node metastasis (OR = 2.60, 95% CI: 1.76-3.84, P < .00001), and distant metastasis (OR = 2.94, 95% CI: 1.90-4.56, P < .00001).PVT1 could serve as a marker for the size, TNM stage, metastasis, and prognosis of different type of cancers.
Collapse
Affiliation(s)
- Bo Zou
- Department of Oral and Maxillofacial Surgery, Liaocheng People's Hospital, Medical College of Liaocheng University
- Key Laboratory of Oral Maxillofacial-Head and Neck Medical Biology of Shandong Province
| | - Dong Wang
- Department of Oral and Maxillofacial Surgery, Liaocheng People's Hospital, Medical College of Liaocheng University
- Key Laboratory of Oral Maxillofacial-Head and Neck Medical Biology of Shandong Province
| | - Kai Xu
- Key Laboratory of Oral Maxillofacial-Head and Neck Medical Biology of Shandong Province
- Precision Biomedical Key Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong, P.R. China
| | - Jian-lin Liu
- Department of Oral and Maxillofacial Surgery, Liaocheng People's Hospital, Medical College of Liaocheng University
- Key Laboratory of Oral Maxillofacial-Head and Neck Medical Biology of Shandong Province
| | - Dao-ying Yuan
- Key Laboratory of Oral Maxillofacial-Head and Neck Medical Biology of Shandong Province
- Precision Biomedical Key Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong, P.R. China
| | - Zhen Meng
- Key Laboratory of Oral Maxillofacial-Head and Neck Medical Biology of Shandong Province
- Precision Biomedical Key Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong, P.R. China
| | - Bin Zhang
- Department of Oral and Maxillofacial Surgery, Liaocheng People's Hospital, Medical College of Liaocheng University
- Key Laboratory of Oral Maxillofacial-Head and Neck Medical Biology of Shandong Province
- Precision Biomedical Key Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong, P.R. China
| |
Collapse
|
32
|
Derderian C, Orunmuyi AT, Olapade-Olaopa EO, Ogunwobi OO. PVT1 Signaling Is a Mediator of Cancer Progression. Front Oncol 2019; 9:502. [PMID: 31249809 PMCID: PMC6582247 DOI: 10.3389/fonc.2019.00502] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/28/2019] [Indexed: 12/14/2022] Open
Abstract
There is increasing evidence that PVT1 has oncogenic properties and regulates proliferation and growth of many cancers. Themolecular mechanisms of action of PVT1 are mediated, in part, by microRNAs (miRNAs). However, some well-established transcription factors involved in cancer cell proliferation share a common thread of microRNA associations with PVT1. Furthermore, these microRNAs are also involved in mechanisms that lead to the development of drug resistance in cancer cells. While several microRNAs have been implicated directly in PVT1-mediated tumorigenesis, significant steps need to be taken to elucidate these important relationships. We synthesize the current knowledge of the miRNAs and associated genes by which PVT1 contributes to tumorigenesis. Overall, the trend suggests a negative correlation of microRNA expression with PVT1. It is clear that future studies involving PVT1 should be carried out in conjunction with microRNA analysis and should include large scale lncRNA-miRNA-mRNA network analysis. Likewise, the relationship between established transcription factors such as p53 and MYC, and processes like epithelial-mesenchymal transition may offer valuable insight into the yet unknown mechanisms of PVTI-mediated cancer progression via microRNA-dependent signaling networks.
Collapse
Affiliation(s)
- Camille Derderian
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY, United States
| | - Akintunde T Orunmuyi
- Department of Radiation Oncology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Olorunseun O Ogunwobi
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY, United States.,Hunter College Center for Cancer Health Disparities Research, Hunter College of The City University of New York, New York, NY, United States
| |
Collapse
|
33
|
Wang H, Ou J, Jian Z, Ou Y. miR-186 modulates hepatocellular carcinoma cell proliferation and mobility via targeting MCRS1-mediated Wnt/β-catenin signaling. J Cell Physiol 2019; 234:23135-23145. [PMID: 31140612 DOI: 10.1002/jcp.28878] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 12/20/2022]
Abstract
Previous studies have revealed that miR-186 is involved in the pathogenesis of many malignancies. However, the role of miR-186 in hepatocellular carcinoma (HCC) carcinogenesis and its detailed mechanism are poorly understood. This study was to investigate the function of miR-186 in modulating HCC cell proliferation, cell cycle, migration, and invasion. We found that miR-186 was decreased in HCC tissues and cell lines. Loss-of-function experiments showed that reduction of miR-186 dramatically enhanced tumor cell proliferation and metastasis. Besides, miR-186 also participated in the modulation of the cell cycle. In addition, luciferase reporter assays and Western blot analysis showed that MCRS1 was a novel target of miR-186 in HCC cells. Notably, upregulation of miR-186 suppressed the nuclear β-catenin accumulation and blocked the activation of Wnt/β-catenin signaling in HCC cells. Forced MCRS1 expression abrogated the inhibitory effect of miR-186 on cell growth, metastasis and Wnt/β-catenin signaling in HCC cells. Our findings may provide new insight into the pathogenesis of HCC and miR-186/ MCRS1 might function as new therapeutic targets for HCC.
Collapse
Affiliation(s)
- Huiling Wang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jinrui Ou
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhixiang Jian
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yingliang Ou
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
34
|
LncRNAs with miRNAs in regulation of gastric, liver, and colorectal cancers: updates in recent years. Appl Microbiol Biotechnol 2019; 103:4649-4677. [PMID: 31062053 DOI: 10.1007/s00253-019-09837-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 04/07/2019] [Accepted: 04/08/2019] [Indexed: 12/15/2022]
Abstract
Long noncoding RNA (lncRNA) is a kind of RNAi molecule composed of hundreds to thousands of nucleotides. There are several major types of functional lncRNAs which participate in some important cellular pathways. LncRNA-RNA interaction controls mRNA translation and degradation or serves as a microRNA (miRNA) sponge for silencing. LncRNA-protein interaction regulates protein activity in transcriptional activation and silencing. LncRNA guide, decoy, and scaffold regulate transcription regulators of enhancer or repressor region of the coding genes for alteration of expression. LncRNA plays a role in cellular responses including the following activities: regulation of chromatin structural modification and gene expression for epigenetic and cell function control, promotion of hematopoiesis and maturation of immunity, cell programming in stem cell and somatic cell development, modulation of pathogen infection, switching glycolysis and lipid metabolism, and initiation of autoimmune diseases. LncRNA, together with miRNA, are considered the critical elements in cancer development. It has been demonstrated that tumorigenesis could be driven by homeostatic imbalance of lncRNA/miRNA/cancer regulatory factors resulting in biochemical and physiological alterations inside the cells. Cancer-driven lncRNAs with other cellular RNAs, epigenetic modulators, or protein effectors may change gene expression level and affect the viability, immortality, and motility of the cells that facilitate cancer cell cycle rearrangement, angiogenesis, proliferation, and metastasis. Molecular medicine will be the future trend for development. LncRNA/miRNA could be one of the potential candidates in this category. Continuous studies in lncRNA functional discrepancy between cancer cells and normal cells and regional and rational genetic differences of lncRNA profiles are critical for clinical research which is beneficial for clinical practice.
Collapse
|
35
|
Long non-coding RNA PVT1 promotes autophagy as ceRNA to target ATG3 by sponging microRNA-365 in hepatocellular carcinoma. Gene 2019; 697:94-102. [DOI: 10.1016/j.gene.2019.02.036] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/08/2019] [Accepted: 02/01/2019] [Indexed: 12/13/2022]
|
36
|
Ren Y, Huang W, Weng G, Cui P, Liang H, Li Y. LncRNA PVT1 promotes proliferation, invasion and epithelial-mesenchymal transition of renal cell carcinoma cells through downregulation of miR-16-5p. Onco Targets Ther 2019; 12:2563-2575. [PMID: 31040699 PMCID: PMC6454988 DOI: 10.2147/ott.s190239] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background LncRNAs have recently emerged as vital regulators in the pathogenesis and development of various cancers. LncRNA PVT1 is reported to function as an oncogene in some tumors. However, the role of PVT1 in RCC remains unknown. Purpose To explore the potential effects of lncPVT1 on the development of renal cell carcinoma. Methods The expression of PVT1 in renal cancer cell lines and tissues was measured by qRT-PCR. The endogenous PVT1 was silenced by RNAi. Cell viabilities were measured by the MTT assay. The migration and invasion of cells were investigated by the transwell assay. The apoptosis of cells was measured by the Nucleosome ELISA and caspase-3 activity assays. The levels of proteins were measured by the western blot. Results We found that PVT1 was upregulated in RCC tissues compared with the adjacent normal tissues. PVT1 expression was closely correlated with TNM stage, Fuhrman grade, lymph node metastasis and tumor size. Kaplan–Meier analysis revealed that high expression of PVT1 was significantly associated with poor overall survival. In accordance, overexpression of PVT1 was observed in RCC cells comto HK-2 cell. Silencing of PVT1 significantly repressed cell viability, induced apoptosis and inhibited cell migration and invasion in vitro. Furthermore, bioinformatic analysis and luciferase reporter assay confirmed that miR-16-5p was a target of PVT1. Silencing of miR-16-5p mostly reversed the regulatory effects on RCC cells induced by downregulation of PVT1. Conclusion In summary, our study indicates that targeting PVT1 might represent a rational therapeutic strategy for RCC.
Collapse
Affiliation(s)
- Yu Ren
- Department of Urology, Ningbo Urology and Nephrology Hospital, Ningbo 315000, Zhejiang Province, People's Republic of China
| | - Weiping Huang
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, People's Republic of China,
| | - Guobin Weng
- Department of Urology, Ningbo Urology and Nephrology Hospital, Ningbo 315000, Zhejiang Province, People's Republic of China
| | - Pinger Cui
- Department of Urology, Ningbo Urology and Nephrology Hospital, Ningbo 315000, Zhejiang Province, People's Republic of China
| | - Haote Liang
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, People's Republic of China,
| | - Yeping Li
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, People's Republic of China,
| |
Collapse
|
37
|
Zhang Z, Zou G, Chen X, Lu W, Liu J, Zhai S, Qiao G. Knockdown of lncRNA PVT1 Inhibits Vascular Smooth Muscle Cell Apoptosis and Extracellular Matrix Disruption in a Murine Abdominal Aortic Aneurysm Model. Mol Cells 2019; 42:218-227. [PMID: 30726659 PMCID: PMC6449717 DOI: 10.14348/molcells.2018.0162] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 10/08/2018] [Accepted: 10/15/2018] [Indexed: 01/08/2023] Open
Abstract
This study was designed to determine the effects of the long non-coding RNA (lncRNA) plasmacytoma variant translocation 1 (PVT1) on vascular smooth muscle cell (VSMC) apoptosis and extracellular matrix (ECM) disruption in a murine abdominal aortic aneurysm (AAA) model. After injection of PVT1-silencing lentiviruses, AAA was induced in Apolipoprotein E-deficient (ApoE-/-) male mice by angiotensin II (Ang II) infusion for four weeks. After Ang II infusion, mouse serum levels of pro-inflammatory cytokines were analysed, and aortic tissues were isolated for histological, RNA, and protein analysis. Our results also showed that PVT1 expression was significantly upregulated in abdominal aortic tissues from AAA patients compared with that in controls. Additionally, Ang II treatment significantly increased PVT1 expression, both in cultured mouse VSMCs and in AAA murine abdominal aortic tissues. Of note, the effects of Ang II in facilitating cell apoptosis, increasing matrix metalloproteinase (MMP)-2 and MMP-9, reducing tissue inhibitor of MMP (TIMP)-1, and promoting switching from the contractile to synthetic phenotype in cultured VSMCs were enhanced by overexpression of PVT1 but attenuated by knockdown of PVT1. Furthermore, knockdown of PVT1 reversed Ang II-induced AAA-associated alterations in mice, as evidenced by attenuation of aortic diameter dilation, marked adventitial thickening, loss of elastin in the aorta, enhanced aortic cell apoptosis, elevated MMP-2 and MMP-9, reduced TIMP-1, and increased pro-inflammatory cytokines. In conclusion, our findings demonstrate that knockdown of lncRNA PVT1 suppresses VSMC apoptosis, ECM disruption, and serum pro-inflammatory cytokines in a murine Ang II-induced AAA model.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Angiotensin II/pharmacology
- Animals
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/pathology
- Apolipoproteins E/deficiency
- Apoptosis/drug effects
- Disease Models, Animal
- Extracellular Matrix/metabolism
- Gene Knockdown Techniques
- Humans
- Inflammation/pathology
- Mice
- Middle Aged
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Small Interfering/metabolism
Collapse
Affiliation(s)
- Zhidong Zhang
- Department of Vascular and Endovascular Surgery, Henan Provincial People’s Hospital, Henan,
China
- Department of Aortic Surgery, Fuwai Central China Cardiovascular Hospital, Henan,
China
| | - Gangqiang Zou
- Department of Vascular and Endovascular Surgery, Henan Provincial People’s Hospital, Henan,
China
- Department of Aortic Surgery, Fuwai Central China Cardiovascular Hospital, Henan,
China
| | - Xiaosan Chen
- Department of Vascular and Endovascular Surgery, Henan Provincial People’s Hospital, Henan,
China
- Department of Aortic Surgery, Fuwai Central China Cardiovascular Hospital, Henan,
China
| | - Wei Lu
- Department of Vascular and Endovascular Surgery, Henan Provincial People’s Hospital, Henan,
China
- Department of Aortic Surgery, Fuwai Central China Cardiovascular Hospital, Henan,
China
| | - Jianyang Liu
- Department of Vascular and Endovascular Surgery, Henan Provincial People’s Hospital, Henan,
China
- Department of Aortic Surgery, Fuwai Central China Cardiovascular Hospital, Henan,
China
| | - Shuiting Zhai
- Department of Vascular and Endovascular Surgery, Henan Provincial People’s Hospital, Henan,
China
- Department of Vascular and Endovascular Surgery, Fuwai Central China Cardiovascular Hospital, Henan,
China
| | - Gang Qiao
- Department of Vascular and Endovascular Surgery, Henan Provincial People’s Hospital, Henan,
China
- Department of Aortic Surgery, Fuwai Central China Cardiovascular Hospital, Henan,
China
| |
Collapse
|
38
|
Ren X, Cao D, Yang L, Li X, Zhang W, Xiao Y, Xi Y, Li F, Li D, Pan Z. High Expression of long non-coding RNA PVT1 predicts metastasis in Han and Uygur Patients with Gastric Cancer in Xinjiang, China. Sci Rep 2019; 9:548. [PMID: 30679629 PMCID: PMC6345741 DOI: 10.1038/s41598-018-36985-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 11/19/2018] [Indexed: 02/08/2023] Open
Abstract
To analyze the level and diagnostic value of plasmacytoma variant translocation 1 (PVT1) in gastric cancer (GC) of Han and Uygur in Xinjiang, China, we collected 42 GC and 47 normal gastric tissues and performed tissue microarray. In situ hybridization was used to detect PVT1, while immunohistochemistry was used to analyze c-myc. The relationship between PVT1, c-myc and clinical pathological features was investigated. We then analyzed the expression of PVT1 in six GC cell lines. RNA interference was used to silence PVT1 in BGC823 and AGS cells. c-myc was detected by western blotting after silencing PVT1, while proliferation, invasion and migration ability were also analyzed. We found that PVT1 and c-myc were highly expressed in both Han and Uygur GC tissues. In Han GC, PVT1 was correlated with lymph node metastasis and primary tumor site. In Uygur GC, both PVT1 and c-myc were correlated with lymph node metastasis and clinical staging. PVT1 was positively correlated with c-myc. BGC823 and AGS cells exhibited high levels of PVT1. When PVT1 expression was silenced, the expression of c-myc decreased, while migration and invasion ability were also decreased in cells. PVT1 could therefore be a potential biomarker to predict the metastatic tendency of GC in both Han and Uygur patients.
Collapse
Affiliation(s)
- Xianxian Ren
- School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Dongdong Cao
- School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Li Yang
- School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Xia Li
- School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Wei Zhang
- First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China
| | - Yongbiao Xiao
- First People's Hospital of Kashi, Kashi, Xinjiang, China
| | - Yu Xi
- First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China
| | - Feng Li
- School of Medicine, Shihezi University, Shihezi, Xinjiang, China.,Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Dongmei Li
- School of Medicine, Shihezi University, Shihezi, Xinjiang, China.
| | - Zemin Pan
- School of Medicine, Shihezi University, Shihezi, Xinjiang, China.
| |
Collapse
|
39
|
Xiao M, Feng Y, Liu C, Zhang Z. Prognostic values of long noncoding RNA PVT1 in various carcinomas: An updated systematic review and meta-analysis. Cell Prolif 2018; 51:e12519. [PMID: 30252166 PMCID: PMC6528925 DOI: 10.1111/cpr.12519] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/14/2022] Open
Abstract
Cancers have been a worldwide health problem with a high mortality rate, but ideal biomarkers are not available to effectively screen and diagnose patients. Currently, an increasing number of long noncoding RNAs have been reported to be abnormally expressed in human carcinomas and play a vital role in tumourigenesis. Plasmacytoma variant translocation 1 (PVT1) is upregulated in various carcinomas, and its overexpression is associated with poor survival in cancer patients. We conduct an updated meta-analysis to determine its potential in prognosis for tumours. In total, 14 studies comprising 2435 patients were enrolled according to Reporting Recommendations for Tumour Marker Prognostic Studies guidelines. High PVT1 expression indicated poor overall survival (hazard ratio [HR] = 1.98, 95% confidence interval [CI]: 1.62-2.42, P < 0.00001) and disease-free survival (HR = 1.63, 95% CI: 1.45-1.84, P < 0.00001). Additionally, increased PVT1 expression was positively associated with lymphatic node metastasis (odd ratio [OR] = 2.87, 95% CI: 1.66-4.96, P = 0.0002), distant metastasis (OR = 2.47, 95% CI: 1.74-3.50, P < 0.00001), advanced tumour-node-metastasis stages (OR = 2.59, 95% CI: 1.38-4.88, P = 0.003). New findings highlight that PVT1 acts as competing RNA to microRNAs to protect mRNAs from miRNAs repression. Therefore, we also discuss PVT1-related microRNAs and their interaction in tumourigenesis. In conclusion, PVT1 may be a potential biomarker of poor prognosis for patients with different cancer types.
Collapse
Affiliation(s)
- Meizhu Xiao
- Department of Obstetrics and GynecologyBeijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Ying Feng
- Department of Obstetrics and GynecologyBeijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Chongdong Liu
- Department of Obstetrics and GynecologyBeijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Zhenyu Zhang
- Department of Obstetrics and GynecologyBeijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
40
|
Ma C, Nie XG, Wang YL, Wu DP, Liang QD. Meta-analysis of the prognostic value of long non-coding RNA PVT1 for cancer patients. Medicine (Baltimore) 2018; 97:e13548. [PMID: 30544468 PMCID: PMC6310588 DOI: 10.1097/md.0000000000013548] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Plasmacytoma variant translocation 1 (PVT1) is reported to be dysregulated in various cancers. Therefore, this meta-analysis was performed to clarify its utility as a prognosis marker in malignant tumors. METHODS Electronic databases, including PubMed, OVID, Cochrane Library, and Web of Science databases, were retrieved from inception to December 16, 2017. Typically, hazard ratios (HRs) and corresponding 95% confidence intervals (CIs) were calculated, so as to explore the relationship between PVT1 expression and patient survival. In addition, odds ratios (OR) were calculated to assess the association of PVT1 expression with pathological parameters. RESULTS A total of 23 studies involving 2350 patients were included in this meta-analysis. The pooled HR suggested that high PVT1 expression levels were correlated with poor overall survival (OS, HR = 1.99, 95% CI: 1.73-2.28), disease-free survival (DFS, HR = 1.76, 95% CI: 1.45-2.14), and recurrence-free survival (RFS, HR = 1.74, 95% CI: 1.26-2.39) in cancer patients without obvious heterogeneity. Moreover, high PVT1 expression levels were also correlated with larger tumor size (OR = 1.47, 95% CI: 1.02-2.11), poor differentiation grade (OR = 1.79, 95% CI: 1.39-2.30), advanced tumor stage (pooled OR = 3.28, 95% CI: 2.46-4.38), lymph node metastasis (OR = 2.67, 95% CI: 1.66-4.29) and distant metastasis (OR = 4.00, 95% CI: 1.39-11.50) in cancer patients. CONCLUSIONS Findings of this meta-analysis suggest that a high PVT1 expression level may serve as a novel biomarker of poor prognosis in cancers.
Collapse
Affiliation(s)
| | | | - Yan-Li Wang
- Department of Operating room, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453000, Henan province, People's Republic of China
| | | | | |
Collapse
|
41
|
Liu Z, Yao Y, Huang S, Li L, Jiang B, Guo H, Lei W, Xiong J, Deng J. LINC00662 promotes gastric cancer cell growth by modulating the Hippo-YAP1 pathway. Biochem Biophys Res Commun 2018; 505:843-849. [PMID: 30297104 DOI: 10.1016/j.bbrc.2018.09.191] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 09/30/2018] [Indexed: 01/09/2023]
Abstract
Long non-coding RNAs (lncRNAs) function as vital regulators of the progression of various diseases, particularly cancers. In the present study, utilizing the Cancer Genome Atlas (TCGA) data set and a series of cell experiments and clinical tissue samples assays, we found that LINC00662 expression was significantly up-regulated in gastric cancer (GC) tissues and cell lines. High expression of LINC00662 predicted poor prognosis compared to in patients showing low expression. Knockdown of LINC00662 expression decreased GC cell proliferation and increased the chemo-sensitivity of GC cells. Further, we demonstrated that knockdown of LINC00662 suppressed the Hippo-YAP1 signaling pathway in GC cells. Mechanistically, LINC00662 regulated YAP1-mediated GC cell proliferation by sponging miR-497-5p. Overall, our results revealed a critical role for the LINC00662-miR-497-5p-YAP1 axis in GC cell growth, providing a new target for GC.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Yangyang Yao
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Shanshan Huang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Li Li
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Bailing Jiang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Hui Guo
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Wan Lei
- Department of Oncology, The Third Hospital of Nanchang City, Nanchang, Jiangxi Province, 330006, China.
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
| |
Collapse
|
42
|
Wang H, Ke J, Guo Q, Barnabo Nampoukime KP, Yang P, Ma K. Long non-coding RNA CRNDE promotes the proliferation, migration and invasion of hepatocellular carcinoma cells through miR-217/MAPK1 axis. J Cell Mol Med 2018; 22:5862-5876. [PMID: 30246921 PMCID: PMC6237590 DOI: 10.1111/jcmm.13856] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 07/24/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is an invasive malignant tumour and the second major cause of cancer‐related deaths over the world. CRNDE and miR‐217 are non‐coding RNAs which play critical roles in cell growth, proliferation, migration. Mitogen‐activated protein kinase 1 (MAPK1) also participates in cancer cell process. Hence, this study aimed at investigating the effect of CRNDE on migration and invasion of HCC and figuring out the role of miR‐217 and MAPK1 in this process. The overexpression of CRNDE was demonstrated by a microarray‐based lncRNA profiling study. CRNDE expression in HCC was verified by qRT‐PCR. MTT assay and BrdU staining were applied to detect cell proliferation level. Transwell assay was utilized to examine cell migration and invasiveness abilities. Wound healing assay was performed for further exploration of cell migration capacity. MiR‐217 was predicted by bioinformatics. The dual luciferase reporter assay was performed to corroborate the targeting relationship between CRNDE, miR‐217 and MAPK1. MAPK1, the downstream target of miR‐217, was predicted using bioinformatics and was further confirmed by qRT‐PCR and Western blot. The interaction between CRNDE, miR‐217 and MAPK1 was studied by qRT‐PCR, Western blot, MTT, BrdU, transwell assay and wound healing assay. CRNDE was up‐regulated in HCC tissues and HCC cell lines. The high expression of CRNDE facilitated cell proliferation, migration and invasion, while the inhibited one affected on the contrary. MiR‐217, negatively correlated with CRNDE expression, was the target of CRNDE and was more lowly expressed in HCC. With the high expression of miR‐217, HCC cell proliferation, migration and invasion were suppressed. MAPK1, the possible target of miR‐217, was negatively correlated with miR‐217 but positively correlated with CRNDE and had the same effect in HCC formation process as CRNDE. Long non‐coding RNA CRNDE promotes the proliferation, migration and invasion of HCC cells through miR‐217/MAPK1 axis.
Collapse
Affiliation(s)
- Haihao Wang
- Division of Cardiothoracic and vascular surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ji Ke
- Department of Forensic Science and Criminal Intelligence, Hubei University of Police, Wuhan, Hubei, China
| | - Qiannan Guo
- Division of Cardiothoracic and vascular surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kan-Paatib Barnabo Nampoukime
- Division of Cardiothoracic and vascular surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Peiwen Yang
- Reproductive Medicine Center, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ke Ma
- Division of Infectious Disease, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
43
|
Liu C, Jin J, Liang D, Gao Z, Zhang Y, Guo T, He Y. Long Noncoding RNA PVT1 as a Novel Predictor of Metastasis, Clinicopathological Characteristics and Prognosis in Human Cancers: a Meta-Analysis. Pathol Oncol Res 2018; 25:837-847. [PMID: 30083911 PMCID: PMC6614374 DOI: 10.1007/s12253-018-0451-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 07/10/2018] [Indexed: 12/31/2022]
Abstract
The present meta-analysis aimed to systematically evaluates the metastasis, clinical stage, and prognostic value regarding the expression levels of PVT1 in various cancers. Relevant literatures were searched in PubMed、Cochrane Library、Wed of science、Embase databases、Chinese National Knowledge Infrastructure and Wanfang from inception up to 22 August 2017. After data were extracted, a meta-analysis was performed using Review Manager 5.3 and Stata 12.0 software. The meta-analysis showed that high expression of PVT1 could predict more lymph node metastasis (LNM) (Odds ratio, OR = 2.83, 95% confidence interval, CI: 1.76–4.54, P < 0.0001), distant metastasis (DM) (OR = 3.60, 95% CI: 1.08–12.03, P = 0.04), advanced clinical stage (OR = 4.37, 95% CI: 3.45–5.54, P < 0.00001) and poor overall survival (Hazard ratio, HR = 2.08, 95% CI: 1.82–2.37, P < 0.00001)in cancer. Subgroup analysis in different systems also showed the same results, including respiratory system、digestive system、urinary system and other systems, especially in respiratory system (LNM, OR = 4.57, 95% CI: 2.41–8.68, P < 0.00001; clinical stage, OR = 5.59, 95% CI: 3.59–8.71, P < 0.00001; OS, HR = 2.43, 95% CI: 1.98–2.99, P < 0.00001). These results suggest that PVT1 could serve as a novel biomarker for metastasis, clinical stage and poor prognosis in various tumors.
Collapse
Affiliation(s)
- Congmin Liu
- Cancer Institute, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, 050000, Hebei, China
| | - Jing Jin
- Cancer Institute, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, 050000, Hebei, China
| | - Di Liang
- Cancer Institute, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, 050000, Hebei, China
| | - Zhaoyu Gao
- Cancer Institute, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, 050000, Hebei, China
| | - Yachen Zhang
- Cancer Institute, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, 050000, Hebei, China
| | - Tiantian Guo
- Cancer Institute, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, 050000, Hebei, China
| | - Yutong He
- Cancer Institute, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
44
|
Guo J, Hao C, Wang C, Li L. Long noncoding RNA PVT1 modulates hepatocellular carcinoma cell proliferation and apoptosis by recruiting EZH2. Cancer Cell Int 2018; 18:98. [PMID: 30008615 PMCID: PMC6042336 DOI: 10.1186/s12935-018-0582-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/12/2018] [Indexed: 01/16/2023] Open
Abstract
Background We aimed to figure out the molecular network of PVT1 and EZH2 on hepatocellular carcinoma (HCC) cells growth. We also explored the interaction between PVT1, EZH2, MDM2 and P53. Methods Microarray analysis was performed to screen for abnormally expressed genes in HCC tissues and PVT1 was identified as one gene significantly upregulated in HCC. CCK-8 assay, colony formation assay, and flow cytometry detected cell vitality, proliferation and apoptosis, respectively. RIP and RNA pull-down assays were employed to examine the connection between PVT1 and EZH2. The effect of PVT1 on the stability of EZH2 protein and the impact of EZH2 on MDM2 were detected by ELISA. Co-immunoprecipitation assay was used to evaluate the relationship between MDM2 and EZH2. Western blot detected the expression of EZH2, MDM2 and P53. Results Up-regulated PVT1 was detected in HCC. Knockdown of PVT1 inhibited HCC cell propagation and promoted apoptotic cells. PVT1 could improve EZH2 protein stability by binding to EZH2 protein but have no significant impact on EZH2 mRNA expression. EZH2 protein stabilized MDM2 protein expression by binding to MDM2 protein. PVT1 enhanced the protein expression of EZH2 and MDM2 as well as inhibited P53 protein expression. Conclusions PVT1 promoted HCC cell propagation and inhibited apoptotic cells by recruiting EZH2, stabilizing MDM2 protein expression and restraining P53 expression. Electronic supplementary material The online version of this article (10.1186/s12935-018-0582-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jianping Guo
- Department of Oncology, Maternal and Child Health Care Hospital of Zibo, Zibo, 255029 Shandong China
| | - Chong Hao
- Department of Oncology, Maternal and Child Health Care Hospital of Zibo, Zibo, 255029 Shandong China
| | - Congcong Wang
- Department of Oncology, Maternal and Child Health Care Hospital of Zibo, Zibo, 255029 Shandong China
| | - Luo Li
- Scientific Research Office, Zibo Central Hospital, No. 54 West Gongqingtuan Road, Zhangdian District, Zibo, 255000 Shandong China
| |
Collapse
|
45
|
Wang LN, Zhu XQ, Song XS, Xu Y. Long noncoding RNA lung cancer associated transcript 1 promotes proliferation and invasion of clear cell renal cell carcinoma cells by negatively regulating miR-495-3p. J Cell Biochem 2018; 119:7599-7609. [PMID: 29932248 DOI: 10.1002/jcb.27099] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 04/26/2018] [Indexed: 02/06/2023]
Abstract
Recently, long noncoding RNAs have emerged as new gene regulators and prognostic markers in several cancers, including renal cell carcinoma (RCC). Here, we focused on the long noncoding RNA lung cancer associated transcript 1 (LUCAT1) based on clear cell RCC (ccRCC) the cancer genome atlas (TCGA) data. However, whether aberrant expression of LUCAT1 in ccRCC is correlated with malignancy, metastasis or prognosis has not been elucidated. In the current study, we found that the expression of LUCAT1 was upregulated in ccRCC tissues and cancer cell lines. Upregulated LUCAT1 was positively correlated with larger tumor size, advanced tumor-node-metastasis (TNM) stage, higher smoking frequency, nodal metastasis and shorter overall survival in patients with ccRCC. Inhibition of LUCAT1 by small interfering RNA reduced cell proliferation and invasion of ccRCC cells in vitro. In vivo assay showed that the tumor volume and weight were lower in the group of LUCAT1 inhibition than that in the control group. We then found that LUCAT1 directly bound and inhibited the expression of micoRNA-495-3p (miR-495-3p), which subsequently regulated the expression of special adenine-thymine (AT)-rich DNA-binding protein 1 (SATB1). Collectively, LUCAT1 was critical for proliferation and invasion of ccRCC cells by regulating miR-495-3p and SATB1. Our findings indicated that LUCAT1 and miR-495-3p may offer potential novel therapeutic targets of treatment of ccRCC.
Collapse
Affiliation(s)
- Li-Na Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.,Department of Urology, The First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian, Liaoning, China
| | - Xin-Qing Zhu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian, Liaoning, China
| | - Xi-Shuang Song
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian, Liaoning, China
| | - Yong Xu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
46
|
Ulitsky I. Interactions between short and long noncoding RNAs. FEBS Lett 2018; 592:2874-2883. [PMID: 29749606 DOI: 10.1002/1873-3468.13085] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 04/26/2018] [Accepted: 05/02/2018] [Indexed: 12/20/2022]
Abstract
It is now evident that noncoding RNAs play key roles in regulatory networks determining cell fate and behavior, in a myriad of different conditions, and across all species. Among these noncoding RNAs are short RNAs, such as MicroRNAs, snoRNAs, and Piwi-interacting RNAs, and the functions of those are relatively well understood. Other noncoding RNAs are longer, and their modes of action and functions are also increasingly explored and deciphered. Short RNAs and long noncoding RNAs (lncRNAs) interact with each other with reciprocal consequences for their fates and functions. LncRNAs serve as precursors for many types of small RNAs and, therefore, the pathways for small RNA biogenesis can impinge upon the fate of lncRNAs. In addition, lncRNA expression can be repressed by small RNAs, and lncRNAs can affect small RNA activity and abundance through competition for binding or by triggering small RNA degradation. Here, I review the known types of interactions between small and long RNAs, discuss their outcomes, and bring representative examples from studies in mammals.
Collapse
Affiliation(s)
- Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
47
|
Ding H, Liu J, Liu B, Zeng Y, Chen P, Su Y. Long noncoding RNA PVT1 inhibits interferon-α mediated therapy for hepatocellular carcinoma cells by interacting with signal transducer and activator of transcription 1. Biochem Biophys Res Commun 2018; 500:973-980. [PMID: 29715456 DOI: 10.1016/j.bbrc.2018.04.219] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 04/27/2018] [Indexed: 02/07/2023]
Abstract
Long noncoding RNA (LncRNA) PVT1 has recently been reported to be involved in the development of hepatocellular carcinoma (HCC) and hsigh expression of oncogenic PVT1 is associated with poor prognosis of HCC. Interferon-α (IFN-α) has been used in clinic for HCC therapy. However, whether PVT1 is involved in the IFN-α therapy for HCC is completely unknown. Our study found that high PVT1 expression in HCC cells is associated with high unmethylation in PVT1 promoter region. IFN-α treatment further increases PVT1 expression in HCC cells by enhancing H3K4me3 modification on the promoter. Furthermore, PVT1 knockdown enhances IFN-α-induced HCC cell apoptosis by promoting phosphorylation of signal transducer and activator of transcription 1 (STAT1) and upregulating IFN-stimulated genes expression. Moreover, PVT1 specifically interacts with STAT1 in HCC cells. Taken together, these results for the first time indicate that IFN-α treatment promotes oncogenic PVT1 expression in HCC cells, which interacts with STAT1 to inhibit IFN-α signaling, ultimately blocking IFN-α-induced cells apoptosis, suggesting that lncRNA PVT1 may be a potential target to improve IFN-α-mediated HCC immunotherapies.
Collapse
Affiliation(s)
- Hongda Ding
- Department of the Fifth General Surgery, ShengJing Hospital of China Medical University, No. 36 Sanhao Road, Shenyang, 110004, China
| | - Junpeng Liu
- Department of the Fifth General Surgery, ShengJing Hospital of China Medical University, No. 36 Sanhao Road, Shenyang, 110004, China
| | - Baiming Liu
- Department of the Fifth General Surgery, ShengJing Hospital of China Medical University, No. 36 Sanhao Road, Shenyang, 110004, China
| | - Yongchao Zeng
- Department of the Fifth General Surgery, ShengJing Hospital of China Medical University, No. 36 Sanhao Road, Shenyang, 110004, China
| | - Pengrui Chen
- Department of the Fifth General Surgery, ShengJing Hospital of China Medical University, No. 36 Sanhao Road, Shenyang, 110004, China
| | - Yang Su
- Department of the Fifth General Surgery, ShengJing Hospital of China Medical University, No. 36 Sanhao Road, Shenyang, 110004, China.
| |
Collapse
|
48
|
Noncoding RNA:RNA Regulatory Networks in Cancer. Int J Mol Sci 2018; 19:ijms19051310. [PMID: 29702599 PMCID: PMC5983611 DOI: 10.3390/ijms19051310] [Citation(s) in RCA: 818] [Impact Index Per Article: 116.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/20/2018] [Accepted: 04/25/2018] [Indexed: 02/08/2023] Open
Abstract
Noncoding RNAs (ncRNAs) constitute the majority of the human transcribed genome. This largest class of RNA transcripts plays diverse roles in a multitude of cellular processes, and has been implicated in many pathological conditions, especially cancer. The different subclasses of ncRNAs include microRNAs, a class of short ncRNAs; and a variety of long ncRNAs (lncRNAs), such as lincRNAs, antisense RNAs, pseudogenes, and circular RNAs. Many studies have demonstrated the involvement of these ncRNAs in competitive regulatory interactions, known as competing endogenous RNA (ceRNA) networks, whereby lncRNAs can act as microRNA decoys to modulate gene expression. These interactions are often interconnected, thus aberrant expression of any network component could derail the complex regulatory circuitry, culminating in cancer development and progression. Recent integrative analyses have provided evidence that new computational platforms and experimental approaches can be harnessed together to distinguish key ceRNA interactions in specific cancers, which could facilitate the identification of robust biomarkers and therapeutic targets, and hence, more effective cancer therapies and better patient outcome and survival.
Collapse
|
49
|
Singh AS, Heery R, Gray SG. In Silico and In Vitro Analyses of LncRNAs as Potential Regulators in the Transition from the Epithelioid to Sarcomatoid Histotype of Malignant Pleural Mesothelioma (MPM). Int J Mol Sci 2018; 19:ijms19051297. [PMID: 29701689 PMCID: PMC5983793 DOI: 10.3390/ijms19051297] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 02/06/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare malignancy, with extremely poor survival rates. At present, treatment options are limited, with no second line chemotherapy for those who fail first line therapy. Extensive efforts are ongoing in a bid to characterise the underlying molecular mechanisms of mesothelioma. Recent research has determined that between 70–90% of our genome is transcribed. As only 2% of our genome is protein coding, the roles of the remaining proportion of non-coding RNA in biological processes has many applications, including roles in carcinogenesis and epithelial–mesenchymal transition (EMT), a process thought to play important roles in MPM pathogenesis. Non-coding RNAs can be separated loosely into two subtypes, short non-coding RNAs (<200 nucleotides) or long (>200 nucleotides). A significant body of evidence has emerged for the roles of short non-coding RNAs in MPM. Less is known about the roles of long non-coding RNAs (lncRNAs) in this disease setting. LncRNAs have been shown to play diverse roles in EMT, and it has been suggested that EMT may play a role in the aggressiveness of MPM histological subsets. In this report, using both in vitro analyses on mesothelioma patient material and in silico analyses of existing RNA datasets, we posit that various lncRNAs may play important roles in EMT within MPM, and we review the current literature regarding these lncRNAs with respect to both EMT and MPM.
Collapse
Affiliation(s)
- Anand S Singh
- Thoracic Oncology Research Group, Trinity Translational Medical Institute, St. James's Hospital, Dublin D08 W9RT, Ireland.
- MSc in Translational Oncology Program, Trinity College Dublin, Dublin 2, Ireland.
| | - Richard Heery
- Thoracic Oncology Research Group, Trinity Translational Medical Institute, St. James's Hospital, Dublin D08 W9RT, Ireland.
- MSc in Translational Oncology Program, Trinity College Dublin, Dublin 2, Ireland.
| | - Steven G Gray
- Thoracic Oncology Research Group, Trinity Translational Medical Institute, St. James's Hospital, Dublin D08 W9RT, Ireland.
- HOPE Directorate, St. James's Hospital, Dublin 8, Ireland.
- Department of Clinical Medicine, Trinity College Dublin, Dublin 8, Ireland.
- Labmed Directorate, St. James's Hospital, Dublin 8, Ireland.
| |
Collapse
|
50
|
Houshmand M, Yazdi N, Kazemi A, Atashi A, Hamidieh AA, Anjam Najemdini A, Mohammadi Pour M, Nikougoftar Zarif M. Long non-coding RNA PVT1 as a novel candidate for targeted therapy in hematologic malignancies. Int J Biochem Cell Biol 2018; 98:54-64. [PMID: 29510227 DOI: 10.1016/j.biocel.2018.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 02/22/2018] [Accepted: 03/02/2018] [Indexed: 01/10/2023]
Abstract
Cancerous cells show resistance to various forms of therapy, so applying up to the minute targeted therapy is crucial. For this purpose, long non-coding RNA PVT1 as shown by recent studies is an important oncogene that interacts with vital cellular signaling pathways and different proteins such as c-Myc, NOP2 and LATS2. Due to the enormous role of long non-coding RNAs in development of leukemias, we aimed to show the role of PVT1 knock-down on fate of different hematologic cell lines. owing to this matter, various experiments such as Real-time PCR, cell cycle analysis and apoptosis assay were performed. Meanwhile, proliferation rate by CFSE, protein expression of c-Myc and hTERT by western blot and flow cytometry analysis were investigated. Our results demonstrated that PVT1 knock-down results in c-Myc degradation, proliferation down-regulation, induction of apoptosis and G0/G1 arrest. Simultaneously, for the first time, we posited the relation between this oncogene with hTERT that reduced after PVT1 knock-down. Considering these results, long non-coding RNA PVT1 may be a potential option for targeted therapy in hematologic malignancies.
Collapse
Affiliation(s)
- Mohammad Houshmand
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran; Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Narjes Yazdi
- Department of Molecular Genetics, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Kazemi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Atashi
- Stem Cell and Tissue Engineering Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Amir Ali Hamidieh
- Hematology, Oncology and Stem Cell Transplantation Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Anjam Najemdini
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahshid Mohammadi Pour
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mahin Nikougoftar Zarif
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.
| |
Collapse
|