1
|
Frese AJ, Greenlee MHW, Bian J, Greenlee JJ. Transmission of classical scrapie using lymph node inoculum. Res Vet Sci 2024; 176:105348. [PMID: 38970868 DOI: 10.1016/j.rvsc.2024.105348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/17/2024] [Accepted: 06/30/2024] [Indexed: 07/08/2024]
Abstract
Scrapie is a fatal, transmissible neurodegenerative disease that affects sheep and goats. Replication of PrPSc in the lymphoid tissue allows for the scrapie agent to be shed into the environment. Brain and retropharyngeal lymph node (RPLN) from a sheep inoculated with the classical scrapie agent was used to compare infectivity of these tissues. Nine Cheviot sheep were used in this study, randomly assigned into two groups based on inocula. Group one (n = 4) received 1 mL of 10% brain homogenate and consisted of all VRQ/VRQ PRNP genotypes. Group two (n = 5) had three sheep receive 1 mL of a 10% RPLN homogenate (13-7), and two sheep receive 0.5 mL of a 10% RPLN homogenate (13-7) because of availability. Sheep in group two were also VRQ/VRQ genotyped. Brain and lymph tissues were tested by histopathology, immunohistochemistry, western blot, enzyme immunoassay, and conformational stability for PrPSc accumulation. Both groups displayed clinical signs of ataxia, moribund, head tremors, circling, and lethargy prior to euthanizing at an average of 16.2 mpi (months post inoculation) (group one) or 19.56 mpi (group two). Additionally, brainstem tissue from both groups displayed the same apparent molecular mass by western blot examination. Spongiform lesion profiling and PrPSc accumulation in brain and lymph tissues were similar in both groups. Conformational stability results displayed no significant difference in obex or RPLN tissue. Overall, these data suggest lymph nodes containing the classical scrapie agent are infectious to sheep, aiding in the understanding of sheep scrapie transmission.
Collapse
Affiliation(s)
- Alexis J Frese
- Department of Biomedical Sciences, Iowa State University, College of Veterinary Medicine, Ames, IA, USA; Virus and Prion Research Unit, National Animal Disease Center, USDA, ARS, Ames, IA, USA; Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, USA.
| | - M Heather West Greenlee
- Department of Biomedical Sciences, Iowa State University, College of Veterinary Medicine, Ames, IA, USA.
| | - Jifeng Bian
- Virus and Prion Research Unit, National Animal Disease Center, USDA, ARS, Ames, IA, USA.
| | - Justin J Greenlee
- Virus and Prion Research Unit, National Animal Disease Center, USDA, ARS, Ames, IA, USA.
| |
Collapse
|
2
|
Abstract
In sheep, scrapie is a fatal neurologic disease that is caused by a misfolded protein called a prion (designated PrPSc). The normal cellular prion protein (PrPC) is encoded by an endogenous gene, PRNP, that is present in high concentrations within the CNS. Although a broad range of functions has been described for PrPC, its entire range of functions has yet to be fully elucidated. Accumulation of PrPSc results in neurodegeneration. The PRNP gene has several naturally occurring polymorphisms, and there is a strong correlation between scrapie susceptibility and PRNP genotype. The cornerstone of scrapie eradication programs is the selection of scrapie-resistant genotypes to eliminate classical scrapie. Transmission of classical scrapie in sheep occurs during the prenatal and periparturient periods when lambs are highly susceptible. Initially, the scrapie agent is disseminated throughout the lymphoid system and into the CNS. Shedding of the scrapie agent occurs before the onset of clinical signs. In contrast to classical scrapie, atypical scrapie is believed to be a spontaneous disease that occurs in isolated instances in older animals within a flock. The agent that causes atypical scrapie is not considered to be naturally transmissible. Transmission of the scrapie agent to species other than sheep, including deer, has been experimentally demonstrated as has the transmission of nonscrapie prion agents to sheep. The purpose of this review is to outline the current methods for diagnosing scrapie in sheep and the techniques used for studying the pathogenesis and host range of the scrapie agent. Also discussed is the US scrapie eradication program including recent updates.
Collapse
|
3
|
Rubenstein R. Proteomic analysis of prion diseases: creating clarity or causing confusion? Electrophoresis 2012; 33:3631-43. [PMID: 23161058 DOI: 10.1002/elps.201200310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 06/25/2012] [Accepted: 07/04/2012] [Indexed: 11/10/2022]
Abstract
Prion diseases, or transmissible spongiform encephalopathies, are progressive, fatal neurodegenerative diseases. There are both human and animal forms of the disease and all are associated with the conversion of a normal host-coded cellular prion protein (PrP(C) ) into an abnormal protease-resistant isoform (PrP(Sc) ). Although methodologies are sensitive and specific for postmortem disease diagnosis, the use of PrP(Sc) as a preclinical or general biomarker for surveillance is difficult, due to the fact that it is present in extremely small amounts in accessible tissues or body fluids such as blood, urine, saliva, and cerebrospinal fluid. Recently, amplification techniques have been developed, which have enabled increased sensitivity for PrP(Sc) detection. However, it has recently been reported that proteinase K sensitive, pathological isoforms of PrP may have a significant role in the pathogenesis of some prion diseases. Accordingly, the development of new diagnostic tests that do not rely on PrP(Sc) and proteinase K digestion is desirable. The search for biomarkers (other than PrP(Sc) ) as tools for diagnosis of prion diseases has a long history. Ideally biomarkers able to detect all transmissible spongiform encephalopathies, even at preclinical stages of infection are desirable but not yet possible due to the heterogeneity of the disease and lengthy disease progression. Recent advances in neuroproteomics have led to an overwhelming amount of information, which may offer insight on protein-protein interactions. While the amount of data obtained is impressive, the ability to relate it to the disease and validating its usefulness in diagnostic biomarker development remains a formidable challenge.
Collapse
Affiliation(s)
- Richard Rubenstein
- Department of Neurology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA.
| |
Collapse
|
4
|
Prion disease detection, PMCA kinetics, and IgG in urine from sheep naturally/experimentally infected with scrapie and deer with preclinical/clinical chronic wasting disease. J Virol 2011; 85:9031-8. [PMID: 21715495 DOI: 10.1128/jvi.05111-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prion diseases, also known as transmissible spongiform encephalopathies, are fatal neurodegenerative disorders. Low levels of infectious agent and limited, infrequent success of disease transmissibility and PrP(Sc) detection have been reported with urine from experimentally infected clinical cervids and rodents. We report the detection of prion disease-associated seeding activity (PASA) in urine from naturally and orally infected sheep with clinical scrapie agent and orally infected preclinical and infected white-tailed deer with clinical chronic wasting disease (CWD). This is the first report on PASA detection of PrP(Sc) from the urine of naturally or preclinical prion-diseased ovine or cervids. Detection was achieved by using the surround optical fiber immunoassay (SOFIA) to measure the products of limited serial protein misfolding cyclic amplification (sPMCA). Conversion of PrP(C) to PrP(Sc) was not influenced by the presence of poly(A) during sPMCA or by the homogeneity of the PrP genotypes between the PrP(C) source and urine donor animals. Analysis of the sPMCA-SOFIA data resembled a linear, rather than an exponential, course. Compared to uninfected animals, there was a 2- to 4-log increase of proteinase K-sensitive, light chain immunoglobulin G (IgG) fragments in scrapie-infected sheep but not in infected CWD-infected deer. The higher-than-normal range of IgG levels found in the naturally and experimentally infected clinical scrapie-infected sheep were independent of their genotypes. Although analysis of urine samples throughout the course of infection would be necessary to determine the usefulness of altered IgG levels as a disease biomarker, detection of PrP(Sc) from PASA in urine points to its potential value for antemortem diagnosis of prion diseases.
Collapse
|
5
|
Notari S, Moleres FJ, Hunter SB, Belay ED, Schonberger LB, Cali I, Parchi P, Shieh WJ, Brown P, Zaki S, Zou WQ, Gambetti P. Multiorgan detection and characterization of protease-resistant prion protein in a case of variant CJD examined in the United States. PLoS One 2010; 5:e8765. [PMID: 20098730 PMCID: PMC2808239 DOI: 10.1371/journal.pone.0008765] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 12/18/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Variant Creutzfeldt-Jakob disease (vCJD) is a prion disease thought to be acquired by the consumption of prion-contaminated beef products. To date, over 200 cases have been identified around the world, but mainly in the United Kingdom. Three cases have been identified in the United States; however, these subjects were likely exposed to prion infection elsewhere. Here we report on the first of these subjects. METHODOLOGY/PRINCIPAL FINDINGS Neuropathological and genetic examinations were carried out using standard procedures. We assessed the presence and characteristics of protease-resistant prion protein (PrP(res)) in brain and 23 other organs and tissues using immunoblots performed directly on total homogenate or following sodium phosphotungstate precipitation to increase PrP(res) detectability. The brain showed a lack of typical spongiform degeneration and had large plaques, likely stemming from the extensive neuronal loss caused by the long duration (32 months) of the disease. The PrP(res) found in the brain had the typical characteristics of the PrP(res) present in vCJD. In addition to the brain and other organs known to be prion positive in vCJD, such as the lymphoreticular system, pituitary and adrenal glands, and gastrointestinal tract, PrP(res) was also detected for the first time in the dura mater, liver, pancreas, kidney, ovary, uterus, and skin. CONCLUSIONS/SIGNIFICANCE Our results indicate that the number of organs affected in vCJD is greater than previously realized and further underscore the risk of iatrogenic transmission in vCJD.
Collapse
Affiliation(s)
- Silvio Notari
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Francisco J. Moleres
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Stephen B. Hunter
- Department of Pathology and Laboratory Medicine, Emory University Hospital, Atlanta, Georgia, United States of America
| | - Ermias D. Belay
- National Center for Zoonotic, Vector-Borne, and Enteric Diseases, Center for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Lawrence B. Schonberger
- National Center for Zoonotic, Vector-Borne, and Enteric Diseases, Center for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ignazio Cali
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Piero Parchi
- Dipartimento di Scienze Neurologiche, Universita' di Bologna, Italy
| | - Wun-Ju Shieh
- National Center for Zoonotic, Vector-Borne, and Enteric Diseases, Center for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | | | - Sherif Zaki
- National Center for Zoonotic, Vector-Borne, and Enteric Diseases, Center for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Wen-Quan Zou
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Pierluigi Gambetti
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
6
|
Dabaghian R, Zerr I, Heinemann U, Zanusso G. Detection of proteinase K resistant proteins in the urine of patients with Creutzfeldt-Jakob and other neurodegenerative diseases. Prion 2009; 2:170-8. [PMID: 19263593 DOI: 10.4161/pri.2.4.8068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recent concern about the possible secondary spread of vCJD through blood transfusion and blood products has highlighted the need for a sensitive test for the identification of PrP(TSE/res) in clinical specimens collected in a non-invasive way. In addition, a more accurate estimate of the prevalence of pre-clinical vCJD in the population may be possible if there were a test that could be applied to easily available material such as urine. As a step towards this goal,the detection of putative PrP(TSE/res) in the urine of CJD patients has been improved, based on Proteinase K digestion of samples and western blotting. The modified western blot uses concentrated urine as a starting material. After proteolytic treatment followed by electrophoresis and western blotting, membranes are incubated with an anti-PrP antibody conjugated directly with horseradish peroxidase. This study was conducted on urine samples of CJD and other neurodegenerative disease affected individuals. Proteinase K resistant high molecular weight proteins were detected, which are suggested to be a complex of urinary PrP and immunoglobulin proteins. Whether urine can be used as a diagnostic tool for the detection of PrP could not be answered in this study.
Collapse
Affiliation(s)
- Reza Dabaghian
- Health Protection Agency, Virus Reference Department, London, United Kingdom.
| | | | | | | |
Collapse
|
7
|
Haley NJ, Seelig DM, Zabel MD, Telling GC, Hoover EA. Detection of CWD prions in urine and saliva of deer by transgenic mouse bioassay. PLoS One 2009; 4:e4848. [PMID: 19293928 PMCID: PMC2654070 DOI: 10.1371/journal.pone.0004848] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2008] [Accepted: 02/03/2009] [Indexed: 11/20/2022] Open
Abstract
Chronic wasting disease (CWD) is a prion disease affecting captive and free-ranging cervids (e.g. deer, elk, and moose). The mechanisms of CWD transmission are poorly understood, though bodily fluids are thought to play an important role. Here we report the presence of infectious prions in the urine and saliva of deer with chronic wasting disease (CWD). Prion infectivity was detected by bioassay of concentrated, dialyzed urine and saliva in transgenic mice expressing the cervid PrP gene (Tg[CerPrP] mice). In addition, PrPCWD was detected in pooled and concentrated urine by protein misfolding cyclic amplification (PMCA). The concentration of abnormal prion protein in bodily fluids was very low, as indicated by: undetectable PrPCWD levels by traditional assays (western blot, ELISA) and prolonged incubation periods and incomplete TSE attack rates in inoculated Tg(CerPrP) mice (373±3days in 2 of 9 urine-inoculated mice and 342±109 days in 8 of 9 saliva-inoculated mice). These findings help extend our understanding of CWD prion shedding and transmission and portend the detection of infectious prions in body fluids in other prion infections.
Collapse
Affiliation(s)
- Nicholas J. Haley
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Davis M. Seelig
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Mark D. Zabel
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Glenn C. Telling
- Department of Molecular Biology and Genetics, University of Kentucky, Lexington, Kentucky, United States of America
| | - Edward A. Hoover
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|