1
|
Unterweger C, Debeerst S, Klingler E, Auer A, Redlberger-Fritz M, Stadler J, Pesch S, Lillie-Jaschniski K, Ladinig A. [Challenges in Influenza diagnostics in a swine herd - a case report]. Tierarztl Prax Ausg G Grosstiere Nutztiere 2021; 49:425-431. [PMID: 34861735 DOI: 10.1055/a-1580-6938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In a gilt producing farm in Lower Austria, respiratory diseases occurred over the previous years in self-reared gilts after being introduced into the sow herd. In addition, fertility disorders in terms of late abortions and re-breeders were observed in the fall of 2019. Nasal swabs of 3 gilts with respiratory signs and fever were tested positive for influenza A virus (IAV) subtype H1avN1 by PCR. However, examination of serum samples from these animals at 2 different time points did not detect antibodies using the standard hemagglutination inhibition (HI) test of the laboratory. Examination of additional age groups likewise failed to detect H1avN1 antibody titers. In consequence to the extension of the diagnostic panel of the HI test by 7 additional H1avN1 test antigens, a clear seroconversion of the PCR positive sows against 2 different H1avN1 isolates could be measured. In addition, high antibody titers against these 2 H1avN1 strains were also detectable in the majority of the remaining age groups tested. Following the administration of the trivalent influenza vaccine, which has been approved throughout Europe, a significant improvement of the clinical presentation in the herd was achieved. The present case report illustrates that direct and indirect pathogen detection should be used in combination for targeted influenza diagnostics. In addition, it was shown that the continuous adaptation of test antigens to the isolates circulating in the field would be extremely crucial for the significance of the HI test.
Collapse
Affiliation(s)
- Christine Unterweger
- Universitätsklinik für Schweine, Department für Nutztiere und öffentliches Gesundheitswesen in der Veterinärmedizin, Veterinärmedizinische Universität Wien
| | | | | | - Angelika Auer
- Institut für Virologie, Department für Pathobiologie, Veterinärmedizinische Universität Wien
| | | | - Julia Stadler
- Klinik für Schweine, Ludwig-Maximilians-Universität München
| | | | | | - Andrea Ladinig
- Universitätsklinik für Schweine, Department für Nutztiere und öffentliches Gesundheitswesen in der Veterinärmedizin, Veterinärmedizinische Universität Wien
| |
Collapse
|
2
|
Ravina, Manjeet, Mohan H, Narang J, Pundir S, Pundir CS. A changing trend in diagnostic methods of Influenza A (H3N2) virus in human: a review. 3 Biotech 2021; 11:87. [PMID: 33495723 PMCID: PMC7816835 DOI: 10.1007/s13205-021-02642-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/03/2021] [Indexed: 12/11/2022] Open
Abstract
The influenza virus is classified into four types A, B, C, and D, but type A and B are responsible for major illnesses in people with influenza A being the only virus responsible for flu pandemics due to the presence of two surface proteins called hemagglutinin (H) and neuraminidase (N) on the virus. The two subtypes of influenza A virus, H1N1 and H3N2, have been known to cause many flu pandemics. Both subtypes change genetically and antigenically to produce variants (clades and subclades, also know as groups and subgroups). H3N2 tends to change rapidly, both genetically and antigenically whereas that of H1N1 generally tends to have smaller changes. Influenza A (H3N2) viruses have evolved to form many separate, genetically different clades that continue to co-circulate. Influenza A(H3N2) viruses have caused significant deaths as per WHO report. The review describes methods for detection of influenza A(H3N2) viruses by conventional serological methods as well as the advanced methods of molecular biology and biosensors. All these methods are based on different parameters and have different targets but the goal is to improve specificity and increase sensitivity. Amongst the molecular methods, real-time polymerase chain reaction (RT-PCR) is considered a gold standard test due to its many advantages whereas a number of other molecular methods are time-consuming, complex to perform or lack specificity. The review also considers bio-sensing methods for simple, rapid, highly sensitive, and specific detection of H3N2. The classification and principle of various H3N2 biosensors are also discussed.
Collapse
Affiliation(s)
- Ravina
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Manjeet
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Hari Mohan
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Jagriti Narang
- Department of Biotechnology, Jamia Hamdard, New Delhi, India
| | - Shikha Pundir
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
3
|
|
4
|
|
5
|
Gerber PF, Dawson L, Strugnell B, Burgess R, Brown H, Opriessnig T. Using oral fluids samples for indirect influenza A virus surveillance in farmed UK pigs. Vet Med Sci 2016; 3:3-12. [PMID: 29067204 PMCID: PMC5645835 DOI: 10.1002/vms3.51] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 10/06/2016] [Accepted: 11/01/2016] [Indexed: 12/03/2022] Open
Abstract
Influenza A virus (IAV) is economically important in pig production and has broad public health implications. In Europe, active IAV surveillance includes demonstration of antigen in nasal swabs and/or demonstration of antibodies in serum (SER) samples; however, collecting appropriate numbers of individual pig samples can be costly and labour‐intensive. The objective of this study was to compare the probability of detecting IAV antibody positive populations using SER versus oral fluid (OF) samples. Paired pen samples, one OF and 5–14 SER samples, were collected cross‐sectional or longitudinally. A commercial nucleoprotein (NP)‐based blocking ELISA was used to test 244 OF and 1004 SER samples from 123 pens each containing 20–540 pigs located in 27 UK herds. Overall, the IAV antibody detection rate was higher in SER samples compared to OFs under the study conditions. Pig age had a significant effect on the probability of detecting positive pens. For 3–9‐week‐old pigs the probability of detecting IAV antibody positive samples in a pen with 95% confidence intervals was 40% (23–60) for OF and 61% (0.37–0.80) for SER (P = 0.04), for 10–14‐week‐old pigs it was 19% (8–40) for OF and 93% (0.71–0.99) for SER (P < 0.01), and for 18–20‐week‐old pigs it was 67% (41–85) for OF and 81% (0.63–0.91) for SER (P = 0.05). Collecting more than one OF sample in pens with more than 25 less than 18‐week‐old pigs should be further investigated in the future to elucidate the suitability of OF for IAV surveillance in herds with large pen sizes.
Collapse
Affiliation(s)
- Priscilla F Gerber
- The Roslin Institute and The Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianScotlandUK
| | - Lorna Dawson
- School of AgricultureFood and Rural DevelopmentNewcastle UniversityNewcastle upon TyneUK
| | - Ben Strugnell
- Evidence-based Veterinary Consultancy (EBVC) Ltd.Rural Enterprise CentreRedhillsPenrithCumbriaUK
| | - Robert Burgess
- Evidence-based Veterinary Consultancy (EBVC) Ltd.Rural Enterprise CentreRedhillsPenrithCumbriaUK
| | - Helen Brown
- The Roslin Institute and The Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianScotlandUK
| | - Tanja Opriessnig
- The Roslin Institute and The Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianScotlandUK.,Department of Veterinary Diagnostic and Production Animal MedicineIowa State UniversityAmesIowaUSA
| |
Collapse
|
6
|
Galliher-Beckley A, Pappan LK, Madera R, Burakova Y, Waters A, Nickles M, Li X, Nietfeld J, Schlup JR, Zhong Q, McVey S, Dritz SS, Shi J. Characterization of a novel oil-in-water emulsion adjuvant for swine influenza virus and Mycoplasma hyopneumoniae vaccines. Vaccine 2015; 33:2903-8. [PMID: 25936722 DOI: 10.1016/j.vaccine.2015.04.065] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/14/2015] [Accepted: 04/16/2015] [Indexed: 11/16/2022]
Abstract
Vaccines consisting of subunit or inactivated bacteria/virus and potent adjuvants are widely used to control and prevent infectious diseases. Because inactivated and subunit antigens are often less antigenic than live microbes, a growing need exists for the development of new and improved vaccine adjuvants that can elicit rapid and long-lasting immunity. Here we describe the development and characterization of a novel oil-in-water emulsion, OW-14. OW-14 contains low-cost plant-based emulsifiers and was added to antigen at a ratio of 1:3 with simple hand mixing. OW-14 was stable for prolonged periods of time at temperatures ranging from 4 to 40°C and could be sterilized by autoclaving. Our results showed that OW-14 adjuvanted inactivated swine influenza viruses (SIV; H3N2 and H1N1) and Mycoplasma hyopneumoniae (M. hyo) vaccines could be safely administered to piglets in two doses, three weeks apart. Injection sites were monitored and no adverse reactions were observed. Vaccinated pigs developed high and prolonged antibody titers to both SIV and M. hyo. Interestingly, antibody titers were either comparable or greater than those produced by commercially available FluSure (SIV) or RespiSure (M. hyo) vaccines. We also found that OW-14 can induce high antibody responses in pigs that were vaccinated with a decreased antigen dose. This study provides direct evidence that we have developed an easy-to-use and low-cost emulsion that can act as a powerful adjuvant in two common types of swine vaccines.
Collapse
Affiliation(s)
- A Galliher-Beckley
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - L K Pappan
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Rachel Madera
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Y Burakova
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; Department of Chemical Engineering, College of Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - A Waters
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - M Nickles
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - X Li
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - J Nietfeld
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Manhattan, KS 66506, USA
| | - J R Schlup
- Department of Chemical Engineering, College of Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Q Zhong
- Department of Food Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - S McVey
- United States Department of Agriculture, Agricultural Research Service, Arthropod Borne Animal Disease Research Unit, Manhattan, KS 66502, USA
| | - S S Dritz
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Manhattan, KS 66506, USA
| | - J Shi
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
7
|
Sandbulte MR, Spickler AR, Zaabel PK, Roth JA. Optimal Use of Vaccines for Control of Influenza A Virus in Swine. Vaccines (Basel) 2015; 3:22-73. [PMID: 26344946 PMCID: PMC4494241 DOI: 10.3390/vaccines3010022] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/09/2015] [Accepted: 01/19/2015] [Indexed: 12/29/2022] Open
Abstract
Influenza A virus in swine (IAV-S) is one of the most important infectious disease agents of swine in North America. In addition to the economic burden of IAV-S to the swine industry, the zoonotic potential of IAV-S sometimes leads to serious public health concerns. Adjuvanted, inactivated vaccines have been licensed in the United States for over 20 years, and there is also widespread usage of autogenous/custom IAV-S vaccines. Vaccination induces neutralizing antibodies and protection against infection with very similar strains. However, IAV-S strains are so diverse and prone to mutation that these vaccines often have disappointing efficacy in the field. This scientific review was developed to help veterinarians and others to identify the best available IAV-S vaccine for a particular infected herd. We describe key principles of IAV-S structure and replication, protective immunity, currently available vaccines, and vaccine technologies that show promise for the future. We discuss strategies to optimize the use of available IAV-S vaccines, based on information gathered from modern diagnostics and surveillance programs. Improvements in IAV-S immunization strategies, in both the short term and long term, will benefit swine health and productivity and potentially reduce risks to public health.
Collapse
Affiliation(s)
- Matthew R Sandbulte
- Center for Food Security and Public Health, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| | - Anna R Spickler
- Center for Food Security and Public Health, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| | - Pamela K Zaabel
- Center for Food Security and Public Health, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| | - James A Roth
- Center for Food Security and Public Health, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
8
|
Goodell CK, Prickett J, Kittawornrat A, Johnson J, Zhang J, Wang C, Zimmerman JJ. Evaluation of Screening Assays for the Detection of Influenza A Virus Serum Antibodies in Swine. Transbound Emerg Dis 2014; 63:24-35. [PMID: 24571447 DOI: 10.1111/tbed.12214] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Indexed: 12/22/2022]
Abstract
Increased surveillance of influenza A virus (IAV) infections in human and swine populations is mandated by public health and animal health concerns. Antibody assays have proven useful in previous surveillance programmes because antibodies provide a record of prior exposure and the technology is inexpensive. The objective of this research was to compare the performance of influenza serum antibody assays using samples collected from pigs (vaccinated or unvaccinated) inoculated with either A/Swine/OH/511445/2007 γ H1N1 virus or A/Swine/Illinois/02907/2009 Cluster IV H3N2 virus and followed for 42 days. Weekly serum samples were tested for anti-IAV antibodies using homologous and heterologous haemagglutination-inhibition (HI) assays, commercial swine influenza H1N1 and H3N2 indirect ELISAs, and a commercial influenza nucleoprotein (NP)-blocking ELISA. The homologous HIs showed 100% diagnostic sensitivity, but largely failed to detect infection with the heterologous virus. With diagnostic sensitivities of 1.4% and 4.9%, respectively, the H1N1 and H3N2 indirect ELISAs were ineffective at detecting IAV antibodies in swine infected with the contemporary influenza viruses used in the study. At a cut-off of S/N ≤ 0.60, the sensitivity and specificity of the NP-blocking ELISA were estimated at 95.5% and 99.6%, respectively. Statistically significant factors which affected S/N results include vaccination status, inoculum (virus subtype), day post-inoculation and the interactions between those factors (P < 0.0001). Serum antibodies against NP provide an ideal universal diagnostic screening target and could provide a cost-effective approach for the detection and surveillance of IAV infections in swine populations.
Collapse
Affiliation(s)
- C K Goodell
- Department of Veterinary Diagnostics and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - J Prickett
- Department of Veterinary Diagnostics and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - A Kittawornrat
- Department of Veterinary Diagnostics and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - J Johnson
- Department of Veterinary Diagnostics and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - J Zhang
- Department of Veterinary Diagnostics and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - C Wang
- Department of Veterinary Diagnostics and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - J J Zimmerman
- Department of Veterinary Diagnostics and Production Animal Medicine, Iowa State University, Ames, IA, USA
| |
Collapse
|
9
|
Zhao N, Lange E, Kubald S, Grund C, Beer M, Harder TC. Distinction of subtype-specific antibodies against European porcine influenza viruses by indirect ELISA based on recombinant hemagglutinin protein fragment-1. Virol J 2013; 10:246. [PMID: 23898799 PMCID: PMC3733666 DOI: 10.1186/1743-422x-10-246] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 07/22/2013] [Indexed: 11/17/2022] Open
Abstract
Background Serological investigations of swine influenza virus infections and epidemiological conclusions thereof are challenging due to the complex and regionally variable pattern of co-circulating viral subtypes and lineages and varying vaccination regimes. Detection of subtype-specific antibodies currently depends on hemagglutination inhibition (HI) assays which are difficult to standardize and unsuitable for large scale investigations. Methods The nucleocapsid protein (NP) and HA1 fragments of the hemagglutinin protein (HA) of five different lineages (H1N1av, H1N1pdm, H1pdmN2, H1N2, H3N2) of swine influenza viruses were bacterially expressed and used as diagnostic antigens in indirect ELISA. Results Proteins were co-translationally mono-biotinylated and refolded in vitro into an antigenically authentic conformation. Western blotting and indirect ELISA revealed highly subtype-specific antigenic characteristics of the recombinant HA1 proteins although some cross reactivity especially among antigens of the H1 subtype were evident. Discrimination of antibodies directed against four swine influenza virus subtypes co-circulating in Germany was feasible using the indirect ELISA format. Conclusions Bacterially expressed recombinant NP and HA1 swine influenza virus proteins served as antigens in indirect ELISAs and provided an alternative to commercial blocking NP ELISA and HI assays concerning generic (NP-specific) and HA subtype-specific sero-diagnostics, respectively, on a herd basis.
Collapse
Affiliation(s)
- Na Zhao
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, Greifswald 17493, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
Avian-like H1N1 and reassortant H3N2 and H1N2 influenza A viruses with a human-like haemagglutinin have been co-circulating in swine in Europe for more than a decade. We aimed to examine the infection dynamics of the three swine influenza virus (SIV) lineages at the farm level, and to identify possible regional and seasonal variations in their circulation. Sera were collected from six successive generations of fattening pigs (2006-2008) in a total 80 farrow-to-finish herds in Belgium, Italy, France and Spain and examined for antibodies against the three SIVs in haemagglutination inhibition tests. Overall, in all regions and periods, 9.7% of all farms were negative for SIV, 49% were infected with one subtype, 38% with two subtypes and 3.9% with all three SIVs. We found serological evidence for the circulation of all three subtypes in Belgium, Italy and Spain, while only infections with H1N1 and H1N2 SIVs were detected in France. Despite temporary changes in the circulation of H1N2 in Belgium and in Spain, there was no true seasonal variation. The exact combination of subtypes on the same farm differed in each of the sampling periods. On the other hand, 21 farms were found to be consistently infected with the same SIV subtype throughout the study. This can either be explained by the persistence of the virus in a farm, or by the periodical re-introduction of SIVs of the same subtype.
Collapse
|
11
|
Panyasing Y, Goodell CK, Wang C, Kittawornrat A, Prickett JR, Schwartz KJ, Ballagi A, Lizano S, Zimmerman JJ. Detection of influenza A virus nucleoprotein antibodies in oral fluid specimens from pigs infected under experimental conditions using a blocking ELISA. Transbound Emerg Dis 2012; 61:177-84. [PMID: 23046061 DOI: 10.1111/tbed.12019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Indexed: 11/27/2022]
Abstract
In commercial swine populations, influenza is an important component of the porcine respiratory disease complex (PRDC) and a pathogen with major economic impact. Previously, a commercial blocking ELISA (FlockChek(™) Avian Influenza Virus MultiS-Screen(®) Antibody Test Kit, IDEXX Laboratories, Inc., Westbrook, ME, USA) designed to detect influenza A nucleoprotein (NP) antibodies in avian serum was shown to accurately detect NP antibodies in swine serum. The purpose of this study was to determine whether this assay could detect NP antibodies in swine oral fluid samples. Initially, the procedure for performing the NP-blocking ELISA on oral fluid was modified from the serum testing protocol by changing sample dilution, sample volume, incubation time and incubation temperature. The detection of NP antibody was then evaluated using pen-based oral fluid samples (n = 182) from pigs inoculated with either influenza A virus subtype H1N1 or H3N2 under experimental conditions and followed for 42 days post inoculation (DPI). NP antibodies in oral fluid were detected from DPI 7 to 42 in all inoculated groups, that is, the mean sample-to-negative (S/N) ratio of influenza-inoculated pigs was significantly different (P < 0.0001) from uninoculated controls (unvaccinated or vaccinated-uninoculated groups) through this period. Oral fluid versus serum S/N ratios from the same pen showed a correlation of 0.796 (Pearson's correlation coefficient, P < 0.0001). The results showed that oral fluid samples from influenza virus-infected pigs contained detectable levels of NP antibodies for ≥42 DPI. Future research will be required to determine whether this approach could be used to monitor the circulation of influenza virus in commercial pig populations.
Collapse
Affiliation(s)
- Y Panyasing
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Evaluation of three commercially available influenza A type-specific blocking enzyme-linked immunosorbent assays for seroepidemiological studies of influenza A virus infection in pigs. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:334-7. [PMID: 22219314 DOI: 10.1128/cvi.05358-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The reverse zoonotic transmission of the pandemic H1N1 2009 influenza virus to swine necessitates enhanced surveillance of swine for influenza virus infection. Using a well-characterized panel of naturally infected swine sera, we evaluated and optimized the performances of three commercially available competitive enzyme-linked immunosorbent assays (ELISAs), namely, the IDEXX Influenza A Ab test, IDEXX AI MultiS-Screen Ab test, and IDVet ID Screen influenza A antibody competition ELISA, for detecting influenza A virus-reactive antibodies in swine. Receiver operating characteristic (ROC) analysis suggests that adjustment of the manufacturer-recommended cutoff values optimizes the sensitivity and specificity of these assays, making them applicable for seroepidemiology studies of swine influenza. Using such optimized cutoff levels, the sensitivity and specificity of the IDEXX Influenza A Ab test were 86% and 89%, respectively; those for the IDEXX AI MultiS-Screen Ab test were 91% and 87%, respectively; and those for the IDVet ID Screen influenza A test were 95% and 79%, respectively.
Collapse
|
13
|
Hause BM, Oleson TA, Bey RF, Stine DL, Simonson RR. Antigenic categorization of contemporary H3N2 Swine influenza virus isolates using a high-throughput serum neutralization assay. J Vet Diagn Invest 2010; 22:352-9. [PMID: 20453207 DOI: 10.1177/104063871002200302] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In vivo, neutralizing antibodies are critical for viral clearance. A high-throughput serum neutralization (HTSN) assay was developed to antigenically categorize Swine influenza virus (SIV) isolates. Uncategorized viruses were tested using a panel of antisera representing the H3N2 SIV subtypes and the results expressed as a serum neutralization ratio. Antisera were generated against contemporary isolates representing circulating H3N2 SIV subtypes (clusters I, III, IV). Reference viruses and the corresponding antisera were evaluated using traditional hemagglutination inhibition (HI) and the HTSN assays and good correlation (r = 0.84) was observed between the 2 tests. Categorical clustering of 40 recent (2008-2009) SIV isolates was assessed using the HTSN assay. The H3N2 SIV isolates with amino acid similarity >97% to the commonly used H3N2 cluster IV reference strain A/Swine/Ontario/33853/2005 (ON05) showed strong reactivity with cluster IV antisera. Isolates with <97% amino acid similarity to ON05 sporadically or completely failed to react with any antiserum. A cluster of 3 isolates with weak reaction with cluster III antiserum may be a potential emerging cluster of H3N2 with moderate genetic similarity to cluster II H3N2 (93% similarity). Potential uses of the HTSN assay include identification of broadly cross-reactive or antigenically distinct SIV isolates for use in vaccine virus selection or as part of surveillance efforts monitoring antigenic drift.
Collapse
Affiliation(s)
- Ben M Hause
- Newport Laboratories, 1520 Prairie Drive, Worthington, MN 56187, USA.
| | | | | | | | | |
Collapse
|
14
|
Nagarajan MM, Simard G, Longtin D, Simard C. Single-step multiplex conventional and real-time reverse transcription polymerase chain reaction assays for simultaneous detection and subtype differentiation of Influenza A virus in swine. J Vet Diagn Invest 2010; 22:402-8. [PMID: 20453214 DOI: 10.1177/104063871002200309] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Because pigs are considered intermediate hosts for the emergence of novel influenza virus reassortants with associated zoonotic potential, monitoring and characterization of circulating influenza viruses in pigs are important for adequate control of infection. For this, rapid molecular diagnostic methods other than immunoassays are needed. Three novel single-step multiplex reverse transcription polymerase chain reaction (RT-PCR) assays were developed in the current study for simultaneous detection and subtype differentiation of Influenza A virus in pigs. A conventional single-step pentaplex RT-PCR was designed for concomitant detection of the generic matrix (M) gene, hemagglutinin H1 and H3, and neuraminidase N1 and N2 genes of Swine influenza virus (SIV). In the other 2 single-step tetraplex real-time RT-PCR assays, the primers and fluorescent probes were targeted for the simultaneous detection of common M, H1, H3, and N2 SIV genes (first assay), and for M, H1, and H3 SIV genes and the H5 gene of highly pathogenic avian influenza virus of Eurasian lineage (second assay). The real-time RT-PCR assays had detection sensitivity limits ranging from 10(1) to 10(3) copies of respective in vitro RNA transcripts of M, H1, H3, H5, and N2 genes. The multiplex assays were evaluated by using SIV isolates, clinical specimens, and the appropriate synthetic template. The recent H1N1 pandemic strain isolated from pigs also was tested in simplex RT-PCR and real-time RT-PCR assays with the H1 primers and probes. The efficacy of the multiplex RT-PCR and real-time RT-PCR shows the suitability of multiplex RT-PCR and real-time RT-PCR for rapid subtype identification and monitoring in North American pigs of Influenza A virus.
Collapse
Affiliation(s)
- Malliga M Nagarajan
- St-Hyacinthe Laboratory, Canadian Food Inspection Agency, 3400 Casavant Boulevard West, St-Hyacinthe, QC, Canada J2S 8E3
| | | | | | | |
Collapse
|
15
|
Ciacci-Zanella JR, Vincent AL, Prickett JR, Zimmerman SM, Zimmerman JJ. Detection of anti-influenza A nucleoprotein antibodies in pigs using a commercial influenza epitope-blocking enzyme-linked immunosorbent assay developed for avian species. J Vet Diagn Invest 2010; 22:3-9. [PMID: 20093676 DOI: 10.1177/104063871002200102] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Influenza virus causes acute respiratory disease in pigs and is of concern for its potential public health significance. Many subtypes of influenza virus have been isolated from pigs, and the virus continues to evolve in swine populations. Current antibody assays have limited antigenic recognition, and accurate, broad-spectrum, high through-put screening tests are needed to detect infections in swine herds and to aid in the implementation of control measures. In the current study, a commercial blocking enzyme-linked immunosorbent assay (ELISA) developed for the detection of Influenza A virus nucleoprotein antibodies in avian species was evaluated for the detection of anti-influenza serum antibodies in swine. Serum samples used to evaluate the test were archived samples from influenza research conducted at the U.S. Department of Agriculture-Agricultural Research Service-National Animal Disease Center and included samples from influenza-inoculated pigs (H1N1, H1N2, H2N3, and H3N2), contact-infected pigs, vaccinated pigs, and negative controls. Based on samples of known status (n = 453), a receiver operating characteristic (ROC) curve analysis of the ELISA results estimated the optimized diagnostic sensitivity and specificity at 96.6% (95% confidence interval [CI]: 92.3, 98.9) and 99.3% (95% CI: 97.6, 99.9), respectively. By using the cutoff established in the ROC analysis, the assay was evaluated in pigs infected with 2 isolates of the 2009 pandemic H1N1 virus. Overall, the assay showed excellent diagnostic performance against the range of influenza subtypes investigated and could serve as a useful screening assay for swine.
Collapse
Affiliation(s)
- Janice R Ciacci-Zanella
- Virus and Prion Diseases of Livestock Research Unit, National Animal Disease Center, USDA-ARS, 1920 Dayton Road, Ames, IA 50010, USA
| | | | | | | | | |
Collapse
|