1
|
Wang H, Zhou G, Liu H, Peng R, Sun T, Li S, Chen M, Wang Y, Shi Q, Xie X. Detection of Porcine Circovirus (PCV) Using CRISPR-Cas12a/13a Coupled with Isothermal Amplification. Viruses 2024; 16:1548. [PMID: 39459882 PMCID: PMC11512303 DOI: 10.3390/v16101548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024] Open
Abstract
The impact of porcine circovirus (PCV) on the worldwide pig industry is profound, leading to notable economic losses. Early and prompt identification of PCV is essential in managing and controlling this disease effectively. A range of detection techniques for PCV have been developed and primarily divided into two categories focusing on nucleic acid or serum antibody identification. The methodologies encompass conventional polymerase chain reaction (PCR), real-time fluorescence quantitative PCR (qPCR), fluorescence in situ hybridization (FISH), loop-mediated isothermal amplification (LAMP), immunofluorescence assay (IFA), immunohistochemistry (IHC), and enzyme-linked immunosorbent assay (ELISA). Despite their efficacy, these techniques are often impeded by the necessity for substantial investment in equipment, specialized knowledge, and intricate procedural steps, which complicate their application in real-time field detections. To surmount these challenges, a sensitive, rapid, and specific PCV detection method using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas12a/13a coupled with isothermal amplification, such as enzymatic recombinase amplification (ERA), recombinase polymerase amplification (RPA), and loop-mediated isothermal amplification (LAMP), has been developed. This novel method has undergone meticulous optimization for detecting PCV types 2, 3, and 4, boasting a remarkable sensitivity to identify a single copy per microliter. The specificity of this technique is exemplary, with no observable interaction with other porcine viruses such as PEDV, PRRSV, PRV, and CSFV. Its reliability has been validated with clinical samples, where it produced a perfect alignment with qPCR findings, showcasing a 100% coincidence rate. The elegance of merging CRISPR-Cas technology with isothermal amplification assays lies in its on-site testing without the need for expensive tools or trained personnel, rendering it exceptionally suitable for on-site applications, especially in resource-constrained swine farming environments. This review assesses and compares the process and characteristics inherent in the utilization of ERA/LAMP/RPA-CRISPR-Cas12a/Cas13a methodologies for the detection of PCV, providing critical insights into their practicality and effectiveness.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xiaobao Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (H.W.); (G.Z.); (H.L.); (R.P.); (T.S.); (S.L.); (M.C.); (Y.W.); (Q.S.)
| |
Collapse
|
2
|
Neef A, Nath BK, Das T, Luque D, Forwood JK, Raidal SR, Das S. Recombinantly expressed virus-like particles (VLPs) of canine circovirus for development of an indirect ELISA. Vet Res Commun 2024; 48:1121-1133. [PMID: 38163840 DOI: 10.1007/s11259-023-10290-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Canine circovirus (CanineCV) is an emerging pathogen in domestic dogs, detected in multiple countries in association with varying clinical and pathological presentations including diarrhoea, vasculitis, granulomatous inflammation, and respiratory signs. Understanding the pathology of CanineCV is confounded by the fact that it has been detected in asymptomatic dogs as well as in diseased dogs concurrently infected with known pathogens. Recombinantly expressed self-assembling Virus-like particles (VLPs) lack viral genomic material but imitate the capsid surface conformations of wild type virion, allowing arrays of biological applications including subunit vaccine development and immunodiagnostics. In this study, full length CanineCV capsid gene was expressed in Escherichia coli followed by two-step purification process to yield soluble capsid protein in high concentration. Transmission electron microscopy (TEM) confirmed the capsid antigen self-assembled into 17-20 nm VLPs in glutathione S-transferase (GST) buffer, later utilised to develop an indirect enzyme-linked immunosorbent assay (iELISA). The respective sensitivity and specificity of the proposed iELISA were 94.10% and 88.40% compared with those obtained from Western blot. The mean OD450 value for western blot positive samples was 1.22 (range 0.12-3.39) and negative samples was 0.21 (range 0.07-0.41). An optimal OD450 cut-off of 0.35 was determined by ROC curve analysis. Median inter-assay and intra-assay validation revealed that the iELISA test results were reproducible with coefficients of variation 7.70 (range 5.6-11.9) and 4.21 (range 1.2-7.4). Our results demonstrated that VLP-based iELISA is a highly sensitive method for serological diagnosis of CanineCV infections in dogs, suitable for large-scale epidemiological studies.
Collapse
Affiliation(s)
- Alison Neef
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - Babu Kanti Nath
- Biosecurity Research Program and Training Centre, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia.
| | - Tridip Das
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - Daniel Luque
- Electron Microscope Unit, Mark Wainwright Analytical Centre, School of Biomedical Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Jade K Forwood
- Biosecurity Research Program and Training Centre, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
- School of Dentistry and Medical Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
- Training Hub Promoting Regional Industry and Innovation in Virology and Epidemiology, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - Shane R Raidal
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
- Training Hub Promoting Regional Industry and Innovation in Virology and Epidemiology, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - Shubhagata Das
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
- Training Hub Promoting Regional Industry and Innovation in Virology and Epidemiology, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| |
Collapse
|
3
|
Akram F, Haq IU, Shah FI, Aqeel A, Ahmed Z, Mir AS, Qureshi SS, Raja SI. Genus Thermotoga: A valuable home of multifunctional glycoside hydrolases (GHs) for industrial sustainability. Bioorg Chem 2022; 127:105942. [PMID: 35709577 DOI: 10.1016/j.bioorg.2022.105942] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
Abstract
Nature is a dexterous and prolific chemist for cataloging a number of hostile niches that are the ideal residence of various thermophiles. Apart from having other species, these subsurface environments are considered a throne of bacterial genus Thermotoga. The genome sequence of Thermotogales encodes complex and incongruent clusters of glycoside hydrolases (GHs), which are superior to their mesophilic counterparts and play a prominent role in various applications due to their extreme intrinsic stability. They have a tremendous capacity to use a wide variety of simple and multifaceted carbohydrates through GHs, formulate fermentative hydrogen and bioethanol at extraordinary yield, and catalyze high-temperature reactions for various biotechnological applications. Nevertheless, no stringent rules exist for the thermo-stabilization of biocatalysts present in the genus Thermotoga. These enzymes endure immense attraction in fundamental aspects of how these polypeptides attain and stabilize their distinctive three-dimensional (3D) structures to accomplish their physiological roles. Moreover, numerous genome sequences from Thermotoga species have revealed a significant fraction of genes most closely related to those of archaeal species, thus firming a staunch belief of lateral gene transfer mechanism. However, the question of its magnitude is still in its infancy. In addition to GHs, this genus is a paragon of encapsulins which carry pharmacological and industrial significance in the field of life sciences. This review highlights an intricate balance between the genomic organizations, factors inducing the thermostability, and pharmacological and industrial applications of GHs isolated from genus Thermotoga.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan.
| | - Ikram Ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan; Pakistan Academy of Science, Islamabad, Pakistan
| | - Fatima Iftikhar Shah
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Amna Aqeel
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Zeeshan Ahmed
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Azka Shahzad Mir
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Sumbal Sajid Qureshi
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Saleha Ibadat Raja
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| |
Collapse
|
4
|
The impact of porcine circovirus associated diseases on live attenuated classical swine fever vaccine in field farm applications. Vaccine 2019; 37:6535-6542. [PMID: 31500966 DOI: 10.1016/j.vaccine.2019.08.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/10/2019] [Accepted: 08/19/2019] [Indexed: 01/08/2023]
Abstract
Porcine circovirus associated diseases (PCVADs) are among the most important diseases affecting the worldwide swine industry. Vaccination against porcine circovirus type 2 (PCV2) infection has been utilized for disease control and effectively reduces clinical signs of PCVADs. To evaluate the efficacy of the PCV2 vaccine in field farms, we conducted a trial using conventional pigs immunized with the subunit PCV2 vaccine followed by PCV2 challenge. Immunized pigs demonstrated lower serum viral loads, less viral antigen staining in lymph nodes, and higher average daily weight gain, confirming the protective efficacy of the vaccine. However, low levels of PCV2 infection were still detected in vaccinated pigs after challenge, suggesting that the PCV2 vaccine was unable to eradicate the virus, which could lead to asymptomatic PCV2 subclinical infection (PCV2-SI) in pig farms. Additionally, PCV2 infection is a risk factor for impaired pig immune response development during the weaning to growth stages, which is a crucial period to receive vaccines against classical swine fever (CSF). Therefore, the impact of PCV2-SI or PCV2-systemic disease (PCV2-SD) on live attenuated CSF vaccine was investigated. After PCV2 challenge, there was no difference in levels of classical swine fever virus (CSFV) neutralizing antibodies (NA) between pigs with PCV2-SD and PCV2-SI, suggesting that the efficacy of CSF vaccine was compromised. Moreover, results of long-term monitoring of CSFV NA titers in PCV2-SI pigs with minimized interference by maternally-derived antibodies suggested that serum PCV2 viral loads greater than 102 copies/mL may compromise the efficacy of CSF vaccine. Overall, a conventional pig model was established to demonstrate the impaired efficacy of the subunit PCV2 vaccine and its impact on the CSF vaccine in vaccination-challenge trials. Additionally, the impaired efficacy of the PCV2 vaccine resulted in increased PCV2-SI, eventually leading to compromised the live attenuated CSF vaccine induced NA response in field farm applications.
Collapse
|
5
|
Lagoutte P, Mignon C, Stadthagen G, Potisopon S, Donnat S, Mast J, Lugari A, Werle B. Simultaneous surface display and cargo loading of encapsulin nanocompartments and their use for rational vaccine design. Vaccine 2018; 36:3622-3628. [PMID: 29759379 DOI: 10.1016/j.vaccine.2018.05.034] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/30/2018] [Accepted: 05/05/2018] [Indexed: 10/16/2022]
Abstract
In the past decades protein nanoparticles have successfully been used for vaccine applications. Their particulate nature and dense repetitive subunit organization makes them perfect carriers for antigen surface display and confers high immunogenicity. Nanoparticles have emerged as excellent candidates for vectorization of biological and immunostimulating molecules. Nanoparticles and biomolecular nanostructures such as ferritins or virus like particles have been used as diagnostic and therapeutic delivery systems, in vaccine development, as nanoreactors, etc. Recently, a new class of bacterial protein compartment has been discovered referred to as encapsulin nanocompartment. These compartments have been used for targeted diagnostics, as therapeutic delivery systems and as nanoreactors. Their biological origin makes them conveniently biocompatible and allows genetic functionalization. The aim of our study was to implement encapsulin nanocompartements for simultaneous epitope surface display and heterologous protein loading for rational vaccine design. For this proof-of-concept-study, we produced Thermotoga maritima encapsulin nanoparticles in E. coli. We demonstrated the ability of simultaneous display in our system by inserting Matrix protein 2 ectodomain (M2e) of influenza A virus at the nanoparticle surface and by packaging of a fluorescent reporter protein (GFP) into the internal cavity. Characterization of the nanoparticles by electronic microscopy confirmed homogenously shaped particles of 24 nm diameter in average. The results further show that engineering of the particle surface improved the loading capacity of the heterologous reporter protein suggesting that surface display may induce a critical elastic deformation resulting in improved stiffness. In Balb/c mice, nanoparticle immunization elicited antibody responses against both the surface epitope and the loaded cargo protein. These results confirm the potential of encapsulin nanocompartments for customized vaccine design and antigen delivery.
Collapse
Affiliation(s)
- Priscillia Lagoutte
- BIOASTER, Protein and Expression System Engineering unit, 40 avenue Tony Garnier, 69007 Lyon, France
| | - Charlotte Mignon
- BIOASTER, Protein and Expression System Engineering unit, 40 avenue Tony Garnier, 69007 Lyon, France
| | - Gustavo Stadthagen
- BIOASTER, Protein and Expression System Engineering unit, 40 avenue Tony Garnier, 69007 Lyon, France
| | - Supanee Potisopon
- BIOASTER, Protein and Expression System Engineering unit, 40 avenue Tony Garnier, 69007 Lyon, France
| | - Stéphanie Donnat
- BIOASTER, Protein and Expression System Engineering unit, 40 avenue Tony Garnier, 69007 Lyon, France
| | - Jan Mast
- Service Trace Elements and Nanomaterias, Sciensano, Groeselenbergstraat 99, B-1180 Brussels, Belgium
| | - Adrien Lugari
- BIOASTER, Protein and Expression System Engineering unit, 40 avenue Tony Garnier, 69007 Lyon, France.
| | - Bettina Werle
- BIOASTER, Protein and Expression System Engineering unit, 40 avenue Tony Garnier, 69007 Lyon, France.
| |
Collapse
|
6
|
Potential for the cross-species transmission of swine torque teno viruses. Vet Microbiol 2018; 215:66-70. [DOI: 10.1016/j.vetmic.2017.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 12/18/2017] [Accepted: 12/22/2017] [Indexed: 01/19/2023]
|
7
|
Fablet C, Rose N, Bernard C, Messager I, Piel Y, Grasland B. Estimation of the diagnostic performance of two ELISAs to detect PCV2 antibodies in pig sera using a Bayesian method. J Virol Methods 2017; 249:121-125. [DOI: 10.1016/j.jviromet.2017.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/21/2017] [Accepted: 09/03/2017] [Indexed: 01/13/2023]
|
8
|
Denner J, Mankertz A. Porcine Circoviruses and Xenotransplantation. Viruses 2017; 9:v9040083. [PMID: 28425928 PMCID: PMC5408689 DOI: 10.3390/v9040083] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/06/2017] [Accepted: 04/12/2017] [Indexed: 02/07/2023] Open
Abstract
Allotransplantation and xenotransplantation may be associated with the transmission of pathogens from the donor to the recipient. Whereas in the case of allotransplantation the transmitted microorganisms and their pathogenic effect are well characterized, the possible influence of porcine microorganisms on humans is mostly unknown. Porcine circoviruses (PCVs) are common in pig breeds and they belong to porcine microorganisms that still have not been fully addressed in terms of evaluating the potential risk of xenotransplantation using pig cells, tissues, and organs. Two types of PCVs are known: porcine circovirus (PCV) 1 and PCV2. Whereas PCV1 is apathogenic in pigs, PCV2 may induce severe pig diseases. Although most pigs are subclinically infected, we do not know whether this infection impairs pig transplant functionality, particularly because PCV2 is immunosuppressive. In addition, vaccination against PCV2 is able to prevent diseases, but in most cases not transmission of the virus. Therefore, PCV2 has to be eliminated to obtain xenotransplants from uninfected healthy animals. Although there is evidence that PCV2 does not infect—at least immunocompetent—humans, animals should be screened using sensitive methods to ensure virus elimination by selection, Cesarean delivery, vaccination, or embryo transfer.
Collapse
Affiliation(s)
- Joachim Denner
- Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany.
| | | |
Collapse
|
9
|
Huang Y, Xing N, Wang Z, Zhang X, Zhao X, Du Q, Chang L, Tong D. Ultrasensitive Detection of RNA and DNA Viruses Simultaneously Using Duplex UNDP-PCR Assay. PLoS One 2015; 10:e0141545. [PMID: 26544710 PMCID: PMC4636378 DOI: 10.1371/journal.pone.0141545] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/10/2015] [Indexed: 12/03/2022] Open
Abstract
Mixed infection of multiple viruses is common in modern intensive pig rearing. However, there are no methods available to detect DNA and RNA viruses in the same reaction system in preclinical level. In this study, we aimed to develop a duplex ultrasensitive nanoparticle DNA probe-based PCR assay (duplex UNDP-PCR) that was able to simultaneously detect DNA and RNA viruses in the same reaction system. PCV2 and TGEV are selected as representatives of the two different types of viruses. PCV2 DNA and TGEV RNA were simultaneously released from the serum sample by boiling with lysis buffer, then magnetic beads and gold nanoparticles coated with single and/or duplex specific probes for TGEV and PCV2 were added to form a sandwich-like complex with nucleic acids released from viruses. After magnetic separation, DNA barcodes specific for PCV2 and TGEV were eluted using DTT and characterized by specific PCR assay for specific DNA barcodes subsequently. The duplex UNDP-PCR showed similar sensitivity as that of single UNDP-PCR and was able to detect 20 copies each of PCV2 and TGEV in the serum, showing approximately 250-fold more sensitivity than conventional duplex PCR/RT-PCR assays. No cross-reaction was observed with other viruses. The positive detection rate of single MMPs- and duplex MMPs-based duplex UNDP-PCR was identical, with 29.6% for PCV2, 9.3% for TGEV and 3.7% for PCV2 and TGEV mixed infection. This duplex UNDP-PCR assay could detect TGEV (RNA virus) and PCV2 (DNA virus) from large-scale serum samples simultaneously without the need for DNA/RNA extraction, purification and reverse transcription of RNA, and showed a significantly increased positive detection rate for PCV2 (29%) and TGEV (11.7%) preclinical infection than conventional duplex PCR/RT-PCR. Therefore, the established duplex UNDP-PCR is a rapid and economical detection method, exhibiting high sensitivity, specificity and reproducibility.
Collapse
Affiliation(s)
- Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Na Xing
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Zengguo Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Xiujuan Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Xiaomin Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Qian Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Lingling Chang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
- * E-mail:
| |
Collapse
|
10
|
PCV2 vaccination induces IFN-γ/TNF-α co-producing T cells with a potential role in protection. Vet Res 2015; 46:20. [PMID: 25888899 PMCID: PMC4348102 DOI: 10.1186/s13567-015-0157-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/30/2015] [Indexed: 01/12/2023] Open
Abstract
Porcine circovirus type 2 (PCV2) is one of the economically most important pathogens for swine production worldwide. Vaccination is a powerful tool to control porcine circovirus diseases (PCVD). However, it is not fully understood how PCV2 vaccination interacts with the porcine immune system. Especially knowledge on the cellular immune response against PCV2 is sparse. In this study we analysed antigen-specific T cell responses against PCV2 in a controlled vaccination and infection experiment. We focused on the ability of CD4+ T cells to produce cytokines using multicolour flow cytometry (FCM). Vaccination with a PCV2 subunit vaccine (Ingelvac CircoFLEX®) induced PCV2-specific antibodies only in five out of 12 animals. Conversely, vaccine-antigen specific CD4+ T cells which simultaneously produced IFN-γ and TNF-α and had a phenotype of central and effector memory T cells were detected in all vaccinated piglets. After challenge, seroconversion occurred earlier in vaccinated and infected pigs compared to the non-vaccinated, infected group. Vaccinated pigs were fully protected against viremia after subsequent challenge. Therefore, our data suggests that the induction of IFN-γ/TNF-α co-producing T cells by PCV2 vaccination may serve as a potential correlate of protection for this type of vaccine.
Collapse
|
11
|
Wang Y, Lu Y, Liu D, Wei Y, Guo L, Wu H, Huang L, Liu J, Liu C. Enhanced Th1-biased immune efficacy of porcine circovirus type 2 Cap-protein-based subunit vaccine when coadministered with recombinant porcine IL-2 or GM-CSF in mice. Appl Microbiol Biotechnol 2014; 99:1155-63. [PMID: 25487886 DOI: 10.1007/s00253-014-6167-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 02/05/2023]
Abstract
Porcine circovirus type 2 (PCV2) capsid (Cap) protein is the primary protective antigen responsible for inducing PCV2-specific protective immunity, so it is a desirable target for the development of recombinant subunit vaccines to prevent PCV2-associated diseases. Interleukin 2 (IL-2) and granulocyte-macrophage colony-stimulating factor (GM-CSF), used as immune adjuvants, have been shown to enhance the immunogenicity of certain antigens or vaccines in various experimental models. In this study, five different subunit vaccines (the PCV2-Cap, Cap-PoIL-2, PCV2-Cap + PoIL-2, Cap-PoGM-CSF, and PCV2-Cap + PoGM-CSF vaccines) were prepared based on baculovirus-expressed recombinant proteins. The immunogenicity of these vaccines was evaluated to identify the immunoenhancement by PoIL-2 and PoGM-CSF of the Cap-protein-based PCV2 subunit vaccine in mice. The PCV2-Cap + PoIL-2, Cap-PoGM-CSF, PCV2-Cap + PoGM-CSF, and PCV2-Cap vaccines induced significantly higher levels of PCV2-specific antibodies than the Cap-PoIL-2 vaccine, whereas there was no apparent difference between these four vaccines. Our results indicate that neither PoIL-2 nor PoGM-CSF had effect on the enhancement of the humoral immunity induced by the PCV2-Cap vaccine. Furthermore, the PCV2-Cap + PoIL-2, Cap-PoGM-CSF, and PCV2-Cap + PoGM-CSF vaccines elicited stronger lymphocyte proliferative responses and greater IL-2 and interferon gamma (IFN-γ) secretion. This suggests that PoIL-2 and PoGM-CSF substantially augmented the Th1-biased immune response to the PCV2-Cap vaccine. Following challenge, the viral loads in the lungs of the PCV2-Cap + PoIL-2-, Cap-PoGM-CSF-, and PCV2-Cap + PoGM-CSF-treated groups were dramatically lower than those in the Cap-PoIL-2- and PCV2-Cap-treated groups, indicating that the three vaccines induced stronger protective effects against challenge. These findings show that PoIL-2 and PoGM-CSF essentially enhanced the Th1-biased protective efficacy of the PCV2-Cap vaccine when coadministered with the protein or delivered as Cap-PoGM-CSF, and that the "antigen-cytokine"- or "antigen + cytokine"-based vaccines that we report here provide new basis for the development of safer and more effective vaccines.
Collapse
Affiliation(s)
- Yiping Wang
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Shin MK, Yoon SH, Kim MH, Lyoo YS, Suh SW, Yoo HS. Assessing PCV2 antibodies in field pigs vaccinated with different porcine circovirus 2 vaccines using two commercial ELISA systems. J Vet Sci 2014; 16:25-9. [PMID: 25234326 PMCID: PMC4367146 DOI: 10.4142/jvs.2015.16.1.25] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/18/2014] [Indexed: 11/23/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) is the primary causative agent for post-weaning, multisystemic, wasting syndrome. Consequently, serologic detection of and vaccination against PCV2 are important for the swine industry. Among several serological tests, the enzyme-linked immunosorbent assay (ELISA) is commonly used to measure anti-PCV2 antibody levels. In the present study, we used two commercial ELISA systems to comparatively evaluate anti-PCV2 antibodies in field pigs treated with three different PCV2 vaccines. Among a total of 517 serum samples, the results of the two ELISAs were fully concordant for 365 positive and 42 negative samples, indicating 78.7% agreement. In addition, the Pearson coefficient (0.636) indicated a moderate correlation between data from the two ELISAs. Results from the farms with pigs vaccinated with the three different PCV2 vaccines demonstrated that most of the vaccinated animals underwent seroconversion. However, the increase and duration of antibody titers varied depending on the vaccine, the presence of maternal antibodies, and the vaccination program. PCV2 serologic status and anti-PCV2 antibody levels of herds from this study could be utilized to determine the best timing for vaccination and assessing vaccination compliance.
Collapse
Affiliation(s)
- Min-Kyoung Shin
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | |
Collapse
|
13
|
Pileri E, Cortey M, Rodríguez F, Sibila M, Fraile L, Segalés J. Comparison of the immunoperoxidase monolayer assay and three commercial ELISAs for detection of antibodies against porcine circovirus type 2. Vet J 2014; 201:429-32. [DOI: 10.1016/j.tvjl.2014.05.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 05/13/2014] [Accepted: 05/18/2014] [Indexed: 10/25/2022]
|
14
|
A commercial vaccine based on PCV2a and an experimental vaccine based on a variant mPCV2b are both effective in protecting pigs against challenge with a 2013 U.S. variant mPCV2b strain. Vaccine 2014; 32:230-7. [DOI: 10.1016/j.vaccine.2013.11.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 11/06/2013] [Indexed: 11/23/2022]
|
15
|
Wang YP, Liu D, Guo LJ, Tang QH, Wei YW, Wu HL, Liu JB, Li SB, Huang LP, Liu CM. Enhanced protective immune response to PCV2 subunit vaccine by co-administration of recombinant porcine IFN-γ in mice. Vaccine 2012; 31:833-8. [PMID: 23219694 DOI: 10.1016/j.vaccine.2012.11.062] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 11/15/2012] [Accepted: 11/21/2012] [Indexed: 11/24/2022]
Abstract
The capsid (Cap) protein of PCV2 is the major immunogenic protein that is crucial to induce PCV2-specific neutralizing antibodies and protective immunity; thus, it is a suitable target antigen for the research and development of genetically engineered vaccines against PCV2 infection. IFN-γ has exhibited potential efficacy as an immune adjuvant that enhances the immunogenicity of certain vaccines in experimental animal models. In this study, three recombinant proteins: PCV2-Cap protein, porcine IFN-γ (PoIFN-γ), and the fusion protein (Cap-PoIFN-γ) of PCV2-Cap protein and PoIFN-γ were respectively expressed in the baculovirus system, and analyzed by Western blot and indirect ELISA. Additionally, we evaluated the enhancement of the protective immune response to the Cap protein-based PCV2 subunit vaccine elicited by co-administration of PoIFN-γ in mice. Vaccination of mice with the PCV2-Cap+PoIFN-γ vaccine elicited significantly higher levels of PCV2-specific IPMA antibodies, neutralizing antibodies, and lymphocyte proliferative responses compared to the Cap-PoIFN-γ vaccine, the PCV2-Cap vaccine, and LG-strain. Following virulent PCV2 challenge, no viraemia was detected in all immunized groups, and the viral loads in lungs of the PCV2-Cap+PoIFN-γ group were significantly lower compared to the Cap-PoIFN-γ group, the LG-strain group, and the mock group, but slightly lower compared to the PCV2-Cap group. These findings suggested that PoIFN-γ substantially enhanced the protective immune response to the Cap protein-based PCV2 subunit vaccine, and that the PCV2-Cap+PoIFN-γ subunit vaccine potentially serves as an attractive candidate vaccine for the prevention and control of PCV2-associated diseases.
Collapse
Affiliation(s)
- Yi-Ping Wang
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Opriessnig T, Langohr I. Current State of Knowledge on Porcine Circovirus Type 2-Associated Lesions. Vet Pathol 2012; 50:23-38. [DOI: 10.1177/0300985812450726] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Porcine circovirus type 2 (PCV2), a small single-stranded DNA virus, was initially discovered in 1998 and is highly prevalent in the domestic pig population. Disease manifestations associated with PCV2 include postweaning multisystemic wasting disease (PMWS), enteric disease, respiratory disease, porcine dermatitis and nephropathy syndrome (PDNS), and reproductive failure. Although these clinical manifestations involve different organ systems, there is considerable overlap in clinical expression of disease and presence of lesions between pigs and within herds. It is now widely accepted that PCV2 can be further subdivided into different types, of which PCV2a and PCV2b are present worldwide and of greatest importance. This review will focus on PCV2-associated lesions in different organ systems.
Collapse
Affiliation(s)
- T. Opriessnig
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - I. Langohr
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan
| |
Collapse
|
17
|
Beach NM, Meng XJ. Efficacy and future prospects of commercially available and experimental vaccines against porcine circovirus type 2 (PCV2). Virus Res 2011; 164:33-42. [PMID: 22005075 DOI: 10.1016/j.virusres.2011.09.041] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 09/30/2011] [Accepted: 09/30/2011] [Indexed: 01/14/2023]
Abstract
Porcine circovirus type 2 (PCV2) is the causative agent of an economically significant collection of disease syndromes in pigs, now known as porcine circovirus associated diseases (PCVADs) in the United States or porcine circovirus diseases (PCVDs) in Europe. Inactivated and subunit vaccines based on PCV2a genotype are commercially available and have been shown to be effective at decreasing mortality and increasing growth parameters in commercial swine herds. Since 2003, there has been a drastic global shift in the predominant prevalence of PCV2b genotype in swine populations, concurrently in most but not all cases with increased severity of clinical disease. Although the current commercial vaccines based on PCV2a do confer cross-protection against PCV2b, novel experimental vaccines based on PCV2b genotype such as modified live-attenuated vaccines are being developed and may provide a superior protection and reduce vaccine costs. In this review, we discuss the current understanding of the impact of PCV2 infection on the host immune response, review the efficacy of the currently available commercial PCV2 vaccines in experimental and field conditions, and provide insight into novel experimental approaches that are useful in the development of next generation vaccines against PCV2.
Collapse
Affiliation(s)
- Nathan M Beach
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0913, USA
| | | |
Collapse
|