1
|
Oddsdóttir C, Sigurðardóttir ÓG, Friðriksdóttir V, Svansson V, Bragason BÞ, Björnsdóttir S. Severe subcutaneous infection with Clostridium septicum in a herd of native Icelandic horses. Acta Vet Scand 2025; 67:8. [PMID: 39910631 PMCID: PMC11800538 DOI: 10.1186/s13028-025-00792-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/08/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Cellulitis due to infection with clostridia has not been documented in horses in Iceland. However, clostridia are well-known pathogens in Icelandic sheep, which have traditionally shared grazing land with horses. Clostridial infections of equine muscle or subcutis following injection with medicinal products have been described in other countries but have never been reported in Iceland. In this case report, we present the first documented outbreak of subcutaneous clostridial infection in horses in Iceland following subcutaneous injection. CASE PRESENTATION In November 2022, 16 out of 32 horses, that some days earlier had received a subcutaneous injection of Noromectin® 1% injectable solution, developed clinical signs indicating malignant oedema. The clinical signs included pyrexia, depression, swollen limbs, chest and neck, reluctance to move and dyspnoea, leading to the death or euthanasia of five horses. In addition, one horse was found dead with no previously noted clinical signs. Necropsy of one of the five horses revealed severe, acute cellulitis in the neck region, as well as lymphadenitis in regional lymph nodes. Abscesses, some with subsequent spontaneous drainage of seropurulent material, were observed at the presumed injection site on eight surviving horses approximately 2 weeks post-injection. Bacterial culture of samples from the necropsied horse and from abscesses from three surviving horses yielded the growth of C. septicum. Analysis of water samples from the pasture where the herd was kept also revealed the presence of C. septicum. Whole genome sequencing suggested that the isolates from the diseased horses contained the same C. septicum strain, whereas the strain isolated from the water samples differed from the disease-causing isolates. CONCLUSIONS Clinical signs compatible with serious subcutaneous C. septicum infection were seen in over half of 32 horses injected with an ivermectin product, with the subsequent death of six of the horses. In the absence of other obvious sources, the outbreak suggests that C. septicum spores on the skin of these horses were introduced under the skin when they were injected. Such infections have not been reported in Iceland, although ivermectin products formulated for subcutaneous injection have been widely used for more than 30 years. The outbreak warrants further investigation into C. septicum in the environment of grazing horses in Iceland.
Collapse
Affiliation(s)
- Charlotta Oddsdóttir
- Division of Bacteriology and Pathology, Institute for Experimental Pathology at Keldur, Keldnavegi 3, 112, Reykjavík, Iceland.
| | - Ólöf G Sigurðardóttir
- Division of Bacteriology and Pathology, Institute for Experimental Pathology at Keldur, Keldnavegi 3, 112, Reykjavík, Iceland
| | - Vala Friðriksdóttir
- Division of Bacteriology and Pathology, Institute for Experimental Pathology at Keldur, Keldnavegi 3, 112, Reykjavík, Iceland
| | - Vilhjálmur Svansson
- Division of Virology, Molecular Biology and Parasitology, Institute for Experimental Pathology at Keldur, Keldnavegi 3, 112, Reykjavík, Iceland
| | - Birkir Þór Bragason
- Division of Virology, Molecular Biology and Parasitology, Institute for Experimental Pathology at Keldur, Keldnavegi 3, 112, Reykjavík, Iceland
| | | |
Collapse
|
2
|
Rodrigues RR, Conrad N, Ferreira MRA, Júnior CM, Alves MLF, Sedrez PA, Müller V, Neis A, Bilhalva MA, Galvão CC, Leite FPL, Conceição FR. Immunogenicity of a recombinant chimera composed of CROP domain segments from the hemorrhagic and lethal toxins of Paeniclostridium sordellii. Anaerobe 2025; 91:102938. [PMID: 39793918 DOI: 10.1016/j.anaerobe.2025.102938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 01/13/2025]
Abstract
Paeniclostridium sordellii is responsible for severe infections in horses, cattle, and sheep, however, conventional vaccines exhibit limitations in production and immunogenicity. This study assessed the immunogenicity of a recombinant bacterin composed of a chimera (rQTcsHL) that combines segments from the lethal (TcsL) and hemorrhagic (TcsH) toxins in mice and sheep. Both immunized animal groups exhibited elevated levels of IgG, with the mice demonstrating moderate protection (<50 %) against lethal challenges, comparable to that of the conventional vaccine. Further molecular optimization is essential to enhance its efficacy.
Collapse
Affiliation(s)
- Rafael Rodrigues Rodrigues
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Rio Grande do Sul, Brazil.
| | - Neida Conrad
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Rio Grande do Sul, Brazil
| | | | - Clóvis Moreira Júnior
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Rio Grande do Sul, Brazil
| | - Mariliana Luiza Ferreira Alves
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Rio Grande do Sul, Brazil; Instituto Federal Sul-rio-grandense, IFSul, Campus Pelotas, Rio Grande do Sul, Brazil
| | - Pamela Aristimunho Sedrez
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Rio Grande do Sul, Brazil; Instituto de Biologia, Departamento de Microbiologia e Parasitologia, Universidade Federal de Pelotas, Rio Grande do Sul, Brazil
| | - Vitória Müller
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Rio Grande do Sul, Brazil
| | - Alessandra Neis
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Rio Grande do Sul, Brazil
| | - Miguel Andrade Bilhalva
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Rio Grande do Sul, Brazil
| | - Cleideanny Cancela Galvão
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Rio Grande do Sul, Brazil
| | - Fábio Pereira Leivas Leite
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Rio Grande do Sul, Brazil
| | - Fabricio Rochedo Conceição
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
3
|
Rodrigues Rodrigues R, Alves MLF, Bilhalva MA, Kremer FS, Junior CM, Ferreira MRA, Galvão CC, Quatrin PHDN, Conceição FR. Large Clostridial Toxins: A Brief Review and Insights into Antigen Design for Veterinary Vaccine Development. Mol Biotechnol 2024:10.1007/s12033-024-01303-6. [PMID: 39472390 DOI: 10.1007/s12033-024-01303-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/08/2024] [Indexed: 12/18/2024]
Abstract
The group of large clostridial toxins (LCTs) includes toxins A (TcdA) and B (TcdB) from Clostridioides difficile, hemorrhagic and lethal toxins from Paeniclostridium sordellii, alpha toxin from Clostridium novyi (TcnA), and cytotoxin from Clostridium perfringens. These toxins are associated with severe pathologies in livestock, including gas gangrene (P. sordellii and C. novyi), infectious necrotic hepatitis (C. novyi), avian necrotic enteritis (C. perfringens), and enterocolitis (C. difficile). Immunoprophylaxis is crucial for controlling these diseases, but traditional vaccines face production challenges, such as labor-intensive processes, and often exhibit low immunogenicity. This has led to increased interest in recombinant vaccines. While TcdA and TcdB are well-studied for human immunization, other LCTs remain poorly characterized and require further investigation. Therefore, this study emphasizes the importance of understanding lesser-explored toxins and proposes using immunoinformatics to identify their immunodominant regions. By mapping these regions using silico tools and considering their homology with TcdA and TcdB, the study aims to guide future research in veterinary vaccinology. It also explores alternatives to overcome the limitations of conventional and recombinant vaccines, offering guidelines for developing more effective vaccination strategies against severe infections in animals.
Collapse
Affiliation(s)
- Rafael Rodrigues Rodrigues
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas - Campus Universitário, Capão do Leão, Rio Grande Do Sul, CEP 96160-000, Brazil.
| | - Mariliana Luiza Ferreira Alves
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas - Campus Universitário, Capão do Leão, Rio Grande Do Sul, CEP 96160-000, Brazil
- Instituto Federal Sul-Rio-Grandense, IFSul, Campus Pelotas, Pelotas, Rio Grande Do Sul, Brasil
| | - Miguel Andrade Bilhalva
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas - Campus Universitário, Capão do Leão, Rio Grande Do Sul, CEP 96160-000, Brazil
| | - Frederico Schmitt Kremer
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas - Campus Universitário, Capão do Leão, Rio Grande Do Sul, CEP 96160-000, Brazil
| | - Clóvis Moreira Junior
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas - Campus Universitário, Capão do Leão, Rio Grande Do Sul, CEP 96160-000, Brazil
| | - Marcos Roberto Alves Ferreira
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas - Campus Universitário, Capão do Leão, Rio Grande Do Sul, CEP 96160-000, Brazil
| | - Cleideanny Cancela Galvão
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas - Campus Universitário, Capão do Leão, Rio Grande Do Sul, CEP 96160-000, Brazil
| | - Pedro Henrique Dala Nora Quatrin
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas - Campus Universitário, Capão do Leão, Rio Grande Do Sul, CEP 96160-000, Brazil
| | - Fabricio Rochedo Conceição
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas - Campus Universitário, Capão do Leão, Rio Grande Do Sul, CEP 96160-000, Brazil
| |
Collapse
|
4
|
Characterization and Genomic Analysis of a Novel Lytic Phage DCp1 against Clostridium perfringens Biofilms. Int J Mol Sci 2023; 24:ijms24044191. [PMID: 36835606 PMCID: PMC9965233 DOI: 10.3390/ijms24044191] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
Clostridium perfringens (C. perfringens) is one of the foremost pathogens responsible for diarrhea in foals. As antibiotic resistance increases, phages that specifically lyse bacteria are of great interest to us with regard to C. perfringens. In this study, a novel C. perfringens phage DCp1 was isolated from the sewage of a donkey farm. Phage DCp1 had a non-contractile short tail (40 nm in length) and a regular icosahedral head (46 nm in diameter). Whole-genome sequencing indicated that phage DCp1 had a linear double-stranded DNA genome with a total length of 18,555 bp and a G + C content of 28.2%. A total of 25 ORFs were identified in the genome, 6 of which had been assigned to functional genes, others were annotated to encode hypothetical proteins. The genome of phage DCp1 lacked any tRNA, virulence gene, drug resistance gene, or lysogenic gene. Phylogenetic analysis indicated that phage DCp1 belonged to the family Guelinviridae, Susfortunavirus. Biofilm assay showed that phage DCp1 was effective in inhibiting the formation of C. perfringens D22 biofilms. Phage DCp1 could completely degrade the biofilm after 5 h of interaction. The current study provides some basic information for further research on phage DCp1 and its application.
Collapse
|
5
|
Kalender H, Öngör H, Timurkaan N, Karagülle B, Karabulut B, İncili CA, Başar HE, Ekinci E, Çevik A, Atıl E, Çetinkaya B. Detection and molecular characterization of Clostridium perfringens, Paeniclostridium sordellii and Clostridium septicum from lambs and goat kids with hemorrhagic abomasitis in Turkey. BMC Vet Res 2023; 19:8. [PMID: 36639759 PMCID: PMC9837962 DOI: 10.1186/s12917-023-03569-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The pathogenic Clostridia cause neurotoxic, histotoxic and enterotoxic infections in humans and animals. Several Clostridium species have been associated with abomasitis in ruminants. The present study aimed to investigate the frequency, and the presence of virulence genes, of Clostridium perfringens, Paeniclostridium sordellii and Clostridium septicum in lambs and goat kids with hemorrhagic abomasitis. RESULTS A total of 38 abomasum samples, collected from lambs and goat kids of 1 week to 1 month of age in different farms located in eastern Turkey between 2021 and 2022, were evaluated by histopathology, culture and PCR. At necropsy, the abomasum of the animals was excessively filled with caseinized content and gas, and the abomasum mucosa was hemorrhagic in varying degrees. In histopathological evaluation, acute necrotizing hemorrhagic inflammation was noted in abomasum samples. The examination of swab samples by culture and PCR revealed that C. perfringens type A was the most frequently detected species (86.84%) either alone or in combination with other Clostridium species. P. sordellii, C. perfringens type F and C. septicum were also harboured in the samples, albeit at low rates. Beta2 toxin gene (cpb2) was found in three of C. perfringens type A positive samples. CONCLUSION It was suggested that vaccination of pregnant animals with toxoid vaccines would be beneficial in terms of protecting newborn animals against Clostridial infections. This study investigated the presence of clostridial toxin genes in abomasal samples for the first time in Turkey.
Collapse
Affiliation(s)
- Hakan Kalender
- grid.411320.50000 0004 0574 1529Faculty of Veterinary Medicine, Department of Microbiology, Firat University, Elazig, Turkey
| | - Hasan Öngör
- grid.411320.50000 0004 0574 1529Faculty of Veterinary Medicine, Department of Microbiology, Firat University, Elazig, Turkey
| | - Necati Timurkaan
- grid.411320.50000 0004 0574 1529Faculty of Veterinary Medicine, Department of Pathology, Firat University, Elazig, Turkey
| | - Burcu Karagülle
- grid.411320.50000 0004 0574 1529Faculty of Veterinary Medicine, Department of Microbiology, Firat University, Elazig, Turkey
| | - Burak Karabulut
- grid.411320.50000 0004 0574 1529Faculty of Veterinary Medicine, Department of Pathology, Firat University, Elazig, Turkey
| | - Canan Akdeniz İncili
- grid.411320.50000 0004 0574 1529Faculty of Veterinary Medicine, Department of Pathology, Firat University, Elazig, Turkey
| | - Hatip Enfal Başar
- grid.411320.50000 0004 0574 1529Faculty of Veterinary Medicine, Department of Microbiology, Firat University, Elazig, Turkey
| | - Elif Ekinci
- grid.411690.b0000 0001 1456 5625Faculty of Veterinary Medicine, Department of Pathology, Dicle University, Diyarbakir, Turkey
| | - Aydın Çevik
- grid.411320.50000 0004 0574 1529Faculty of Veterinary Medicine, Department of Pathology, Firat University, Elazig, Turkey
| | - Eray Atıl
- Pendik Veterinary Control Institute, Istanbul, Turkey
| | - Burhan Çetinkaya
- grid.411320.50000 0004 0574 1529Faculty of Veterinary Medicine, Department of Microbiology, Firat University, Elazig, Turkey
| |
Collapse
|
6
|
Gonzalez-Astudillo V, Asin-Ros J, Moore J, Uzal FA, Navarro MA. Paeniclostridium sordellii-associated peripartum metritis in goats. Vet Pathol 2023; 60:69-74. [PMID: 36321809 DOI: 10.1177/03009858221133506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Paeniclostridium sordellii is involved in enteric and histotoxic infections in several animal species. In humans, P. sordellii has been linked to gynecological disease, an association not previously investigated in animals. To unveil a potential association of P. sordellii with veterinary reproductive disease, a retrospective search of the database of the California Animal Health and Food Safety Laboratory System (1990-2020) was conducted and identified 9 cases of goats with P. sordellii-associated metritis or endometritis that were confirmed by immunofluorescence antibody test and/or bacterial isolation, and often co-colonized by Escherichia coli. Six of 9 does were also copper deficient. Polymerase chain reaction (PCR) on formalin-fixed, paraffin-embedded uterine tissue identified the sordellilysin gene in all 9 cases, and the lethal toxin gene in 4. Our findings suggest goats could be predisposed to P. sordellii-associated endometritis/metritis and toxemia when co-infected with E. coli. The role of mineral deficiencies influencing vulnerability to puerperal bacterial infections in goats is possible but remains undetermined. To our knowledge, this is the first report documenting the association of P. sordellii with veterinary gynecological disease.
Collapse
Affiliation(s)
| | | | - Janet Moore
- University of California, Davis, San Bernardino, CA
| | | | | |
Collapse
|
7
|
Clostridial Diseases of Horses: A Review. Vaccines (Basel) 2022; 10:vaccines10020318. [PMID: 35214776 PMCID: PMC8876495 DOI: 10.3390/vaccines10020318] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 11/17/2022] Open
Abstract
The clostridial diseases of horses can be divided into three major groups: enteric/enterotoxic, histotoxic, and neurotoxic. The main enteric/enterotoxic diseases include those produced by Clostridium perfringens type C and Clostridioides difficile, both of which are characterized by enterocolitis. The main histotoxic diseases are gas gangrene, Tyzzer disease, and infectious necrotic hepatitis. Gas gangrene is produced by one or more of the following microorganisms: C. perfringens type A, Clostridium septicum, Paeniclostridium sordellii, and Clostridium novyi type A, and it is characterized by necrotizing cellulitis and/or myositis. Tyzzer disease is produced by Clostridium piliforme and is mainly characterized by multifocal necrotizing hepatitis. Infectious necrotic hepatitis is produced by Clostridium novyi type B and is characterized by focal necrotizing hepatitis. The main neurotoxic clostridial diseases are tetanus and botulism, which are produced by Clostridium tetani and Clostridium botulinum, respectively. Tetanus is characterized by spastic paralysis and botulism by flaccid paralysis. Neither disease present with specific gross or microscopic lesions. The pathogenesis of clostridial diseases involves the production of toxins. Confirming a diagnosis of some of the clostridial diseases of horses is sometimes difficult, mainly because some agents can be present in tissues of normal animals. This paper reviews the main clostridial diseases of horses.
Collapse
|
8
|
Antimicrobial Selection for the Equine Practitioner. Vet Clin North Am Equine Pract 2021; 37:461-494. [PMID: 34243881 DOI: 10.1016/j.cveq.2021.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial drugs play an important, often central, role in the therapeutic management of mature horses and foals with a variety of illnesses, including those requiring critical care. Antimicrobial use must be based on rational principles involving thorough patient evaluation and sound clinical judgment that indicate a high likelihood that the patient has a bacterial infection and that antimicrobials are indicated to promote recovery. The aim of antimicrobial treatment is to inflict an insult on infecting bacteria sufficient to kill the organism or render it susceptible to inactivation by natural host defenses or the local microenvironment without adversely affecting the patient.
Collapse
|
9
|
Junior CAO, Silva ROS, Lobato FCF, Navarro MA, Uzal FA. Gas gangrene in mammals: a review. J Vet Diagn Invest 2020; 32:175-183. [PMID: 32081096 DOI: 10.1177/1040638720905830] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Gas gangrene is a necrotizing infection of subcutaneous tissue and muscle that affects mainly ruminants and horses, but also other domestic and wild mammals. Clostridium chauvoei, C. septicum, C. novyi type A, C. perfringens type A, and C. sordellii are the etiologic agents of this disease, acting singly or in combination. Although a presumptive diagnosis of gas gangrene can be established based on clinical history, clinical signs, and gross and microscopic changes, identification of the clostridia involved is required for confirmatory diagnosis. Gross and microscopic lesions are, however, highly suggestive of the disease. Although the disease has a worldwide distribution and can cause significant economic losses, the literature is limited mostly to case reports. Thus, we have reviewed the current knowledge of gas gangrene in mammals.
Collapse
Affiliation(s)
- Carlos A Oliveira Junior
- Veterinary School, Federal University of Minas Gerais, Brazil (Oliveira Junior, Silva, Lobato).,California Animal Health and Food Safety Laboratory, University of California, Davis, CA (Navarro, Uzal)
| | - Rodrigo O S Silva
- Veterinary School, Federal University of Minas Gerais, Brazil (Oliveira Junior, Silva, Lobato).,California Animal Health and Food Safety Laboratory, University of California, Davis, CA (Navarro, Uzal)
| | - Francisco C F Lobato
- Veterinary School, Federal University of Minas Gerais, Brazil (Oliveira Junior, Silva, Lobato).,California Animal Health and Food Safety Laboratory, University of California, Davis, CA (Navarro, Uzal)
| | - Mauricio A Navarro
- Veterinary School, Federal University of Minas Gerais, Brazil (Oliveira Junior, Silva, Lobato).,California Animal Health and Food Safety Laboratory, University of California, Davis, CA (Navarro, Uzal)
| | - Francisco A Uzal
- Veterinary School, Federal University of Minas Gerais, Brazil (Oliveira Junior, Silva, Lobato).,California Animal Health and Food Safety Laboratory, University of California, Davis, CA (Navarro, Uzal)
| |
Collapse
|