1
|
Wang Z, Wang M, Liu J, Zhao D, Wang J, Wei F. Macrophage is crucial for tongue development by regulating myogenesis and vascularization. BMC Oral Health 2025; 25:678. [PMID: 40316997 PMCID: PMC12049047 DOI: 10.1186/s12903-025-06059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 04/24/2025] [Indexed: 05/04/2025] Open
Abstract
BACKGROUND Abnormal tongue development is a craniofacial deformity that affects dental-maxillofacial esthetics and function. Recent evidence has identified macrophages as multi-functional immune cells crucial for heart and brain development. However, it is still unknown whether macrophages affect tongue development. Therefore, this study aims to assess the distribution, phenotype, and roles of macrophages in the developing tongue. METHODS In this study, immunohistochemical (IHC) and multiplex immunofluorescence (mIF) staining were conducted on C57BL/6 mice at embryonic day (E) 13.5, E14.5, E16.5, and E18.5 to analyze the distribution and phenotype of macrophages. Hematoxylin-Eosin (HE), IHC, IF, and mIF staining were also performed on embryonic CX3 CR1-CreERT2; Rosa-DTA conditional macrophage-depleted mice to investigate the effects on fetal tongue development and elucidate mechanisms from myogenesis, vascularization, and cell apoptosis. Statistical significance between the two groups was determined using unpaired two-tailed Student's t-tests. For comparisons involving three or more groups, one-way analysis of variance (ANOVA) followed by Tukey's multiple comparison tests was utilized. A significance level of P < 0.05 was set for statistical significance. RESULTS Macrophages were present in the developing tongue from E13.5 to E18.5, with a majority being of the M2 phenotype. Depletion of macrophages resulted in abnormal tongue morphology, decreased tongue height, width, and size, as well as reduced and disorganized muscle fibers. Depletion of macrophages also increased apoptosis. Vascular morphogenesis was impacted, with reductions in the luminal and vascular wall cross-sectional areas of the lingual artery. Vascular endothelial cells were reduced and disorganized with decreased expression of VEGFA and TGF-β1. Moreover, macrophages were located near vascular endothelial cells and secreted pro-angiogenic factors, suggesting their involvement in promoting vascularization. CONCLUSIONS Our findings indicate that macrophages play crucial roles in fetal tongue development by affecting myogenesis, cell apoptosis, and vascular growth.
Collapse
Affiliation(s)
- Ziyao Wang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, Shandong, 250012, China
| | - Mengqiao Wang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, Shandong, 250012, China
| | - Jiani Liu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, Shandong, 250012, China
| | - Delu Zhao
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, Shandong, 250012, China
| | - Jixiao Wang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, Shandong, 250012, China
| | - Fulan Wei
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, Shandong, 250012, China.
| |
Collapse
|
2
|
Zhang T, Xu PX. The role of Eya1 and Eya2 in the taste system of mice from embryonic stage to adulthood. Front Cell Dev Biol 2023; 11:1126968. [PMID: 37181748 PMCID: PMC10167055 DOI: 10.3389/fcell.2023.1126968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Members of the Eya family, which are a class of transcription factors with phosphatase activity, are widely expressed in cranial sensory organs during development. However, it is unclear whether these genes are expressed in the taste system during development and whether they play any role in specifying taste cell fate. In this study, we report that Eya1 is not expressed during embryonic tongue development but that Eya1-expressing progenitors in somites or pharyngeal endoderm give rise to tongue musculature or taste organs, respectively. In the Eya1-deficient tongues, these progenitors do not proliferate properly, resulting in a smaller tongue at birth, impaired growth of taste papillae, and disrupted expression of Six1 in the papillary epithelium. On the other hand, Eya2 is specifically expressed in endoderm-derived circumvallate and foliate papillae located on the posterior tongue during development. In adult tongues, Eya1 is predominantly expressed in IP3R3-positive taste cells in the taste buds of the circumvallate and foliate papillae, while Eya2 is persistently expressed in these papillae at higher levels in some epithelial progenitors and at lower levels in some taste cells. We found that conditional knockout of Eya1 in the third week or Eya2 knockout reduced Pou2f3+, Six1+ and IP3R3+ taste cells. Our data define for the first time the expression patterns of Eya1 and Eya2 during the development and maintenance of the mouse taste system and suggest that Eya1 and Eya2 may act together to promote lineage commitment of taste cell subtypes.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Pin-Xian Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Cell Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
3
|
Goto A, Kokabu S, Dusadeemeelap C, Kawaue H, Matsubara T, Tominaga K, Addison WN. Tongue Muscle for the Analysis of Head Muscle Regeneration Dynamics. J Dent Res 2022; 101:962-971. [PMID: 35193429 DOI: 10.1177/00220345221075966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Tongue muscle damage impairs speaking and eating, thereby degrading overall health and quality of life. Skeletal muscles of the body are diverse in embryonic origin, anatomic location, and gene expression profiles. Responses to disease, atrophy, aging, or drugs vary among different muscles. Currently, most muscle studies are focused on limb muscles and the tongue is neglected. The regenerative ability of tongue muscle remains unknown, and thus there is need for tongue muscle research models. Here, we present a comprehensive characterization of the spatiotemporal dynamics in a mouse model of tongue muscle regeneration and establish a method for the isolation of primary tongue-derived satellite cells. We compare and contrast our observations with the tibialis anterior (TA) limb muscle. Acute injury was induced by intramuscular injection of cardiotoxin, a cytolytic agent, and examined at multiple timepoints. Initially, necrotic myofibers with fragmented sarcoplasm became infiltrated with inflammatory cells. Concomitantly, satellite cells expanded rapidly. Seven days postinjury, regenerated myofibers with centralized nuclei appeared. Full regeneration, as well as an absence of fibrosis, was evident 21 d postinjury. Primary tongue-derived satellite cells were isolated by enzymatic separation of tongue epithelium from mesenchyme followed by magnetic-activated cell sorting. We observed that tongue displays an efficient regenerative response similar to TA but with slightly faster kinetics. In vitro, tongue-derived satellite cells differentiated robustly into mature myotubes with spontaneous contractile behavior and myogenic marker expression. Comparison of gene expression signatures between tongue and TA-derived satellite cells revealed differences in the expression of positional-identity genes, including the HOX family. In conclusion, we have established a model for tongue regeneration useful for investigations of orofacial muscle biology. Furthermore, we showed that tongue is a viable source of satellite cells with unique properties and inherited positional memory.
Collapse
Affiliation(s)
- A Goto
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan.,Division of Oral and Maxillofacial Surgery, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - S Kokabu
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - C Dusadeemeelap
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - H Kawaue
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - T Matsubara
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - K Tominaga
- Division of Oral and Maxillofacial Surgery, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - W N Addison
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| |
Collapse
|
4
|
Kent RD. Developmental Functional Modules in Infant Vocalizations. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2021; 64:1581-1604. [PMID: 33861626 DOI: 10.1044/2021_jslhr-20-00703] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Purpose Developmental functional modules (DFMs) are biological modules that are defined by their structural (morphological), functional, or developmental elements, and, in some cases, all three of these. This review article considers the hypothesis that vocal development in the first year of life can be understood in large part with respect to DFMs that characterize the speech production system. Method Literature is reviewed on relevant embryology, orofacial reflexes, craniofacial muscle properties, stages of vocal development, and related topics to identity candidates for DFMs. Results The following DFMs are identified and described: laryngeal, pharyngo-laryngeal, mandibular, velopharyngeal, labial complex, and lingual complex. These DFMs and their submodules, considered along with phenomena such as rhythmic movements, account for several well-documented features of vocal development in the first year of life. The proposed DFMs, rooted in embryologic, histologic, and kinematic properties, serve as low-dimensional control variables for the developing vocal tract. Each DFM is semi-autonomous but interacts with other DFMs to produce patterns of vocal behavior. Discussion Considered in relation to contemporary profiles and models of vocal development in the first year of life, DFMs have interpretive and explanatory value. DFMs complement other approaches in the study of infant vocalizations and are grounded in biology.
Collapse
Affiliation(s)
- Ray D Kent
- Department of Communication Sciences & Disorders, University of Wisconsin-Madison
| |
Collapse
|
5
|
Jiang Y, Du Z, Chen L. Histological study of postnatal development of mouse tongues. Exp Ther Med 2018; 15:383-386. [PMID: 29375694 DOI: 10.3892/etm.2017.5350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/08/2017] [Indexed: 11/05/2022] Open
Abstract
Numerous factors, including trauma, tumors and myophagism, may lead to tongue defects, which are mostly repaired via muscular flaps. However, these methods cannot restore the muscular function and gustation function of the tongue. Intensive research on tongue development may offer useful clues for tongue regeneration based on tissue engineering or stem cell therapy. In the present study, staining results revealed that tongue muscle fibers became larger, mature and stronger, and the foliate and fungiform papillae also became mature from newborn to adult C57BL/6J genetic background mice. Immunofluorescence staining and polymerase chain reaction results revealed that C-kit was dynamically expressed in muscle cells, as well as in foliate and fungiform papilla cells from newborn to adult stages. The expression level decreased from P1 to P15 and increased at P90. The immunofluorescence staining results revealed that Ki-67 was expressed in muscle cells and papilla cells from newborn to adult stages, and high expression was observed at P6 and P15. In addition, the immunofluorescence staining results also demonstrated that msh homeobox 2 (Msx2) was dynamically expressed in postnatal tongue muscle cells; however, almost no expression was detected in papilla cells. There was relative high expression level of Msx2 at P1 and P6 stages, but this gradually decreased from P15, and it was expressed primarily in the muscle cells located in the marginal zone of the tongue at P90. These findings suggest that the amount of c-kit-expressing precursor cells in tongue muscle and papilla cells increases to promote tongue development at the early postnatal stage and to maintain homeostasis and functional adaptation of the tongue in the adult stage. Furthermore, Msx2 may serve an important role in postnatal tongue muscle development. The present study also suggests that C-kit and Msx2 may be used as cell markers for postnatal tongue regeneration and self-repair, and may provide an approach for developing treatment methods for tongue diseases with a postnatal onset.
Collapse
Affiliation(s)
- Yifeng Jiang
- Department of Stomatology, Shandong Medical College, Linyi, Shangdong 276002, P.R. China
| | - Zhen Du
- Department of Stomatology, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Long Chen
- Department of Stomatology, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| |
Collapse
|
6
|
Maldonado E, López-Gordillo Y, Partearroyo T, Varela-Moreiras G, Martínez-Álvarez C, Pérez-Miguelsanz J. Tongue Abnormalities Are Associated to a Maternal Folic Acid Deficient Diet in Mice. Nutrients 2017; 10:nu10010026. [PMID: 29283374 PMCID: PMC5793254 DOI: 10.3390/nu10010026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/15/2017] [Accepted: 12/25/2017] [Indexed: 12/27/2022] Open
Abstract
It is widely accepted that maternal folic acid (FA) deficiency during pregnancy is a risk factor for abnormal development. The tongue, with multiple genes working together in a coordinated cascade in time and place, has emerged as a target organ for testing the effect of FA during development. A FA-deficient (FAD) diet was administered to eight-week-old C57/BL/6J mouse females for 2–16 weeks. Pregnant dams were sacrificed at gestational day 17 (E17). The tongues and heads of 15 control and 210 experimental fetuses were studied. In the tongues, the maximum width, base width, height and area were compared with width, height and area of the head. All measurements decreased from 10% to 38% with increasing number of weeks on maternal FAD diet. Decreased head and tongue areas showed a harmonic reduction (Spearman nonparametric correlation, Rho = 0.802) with respect to weeks on a maternal FAD diet. Tongue congenital abnormalities showed a 10.9% prevalence, divided in aglossia (3.3%) and microglossia (7.6%), always accompanied by agnathia (5.6%) or micrognathia (5.2%). This is the first time that tongue alterations have been related experimentally to maternal FAD diet in mice. We propose that the tongue should be included in the list of FA-sensitive birth defect organs due to its relevance in several key food and nutrition processes.
Collapse
Affiliation(s)
- Estela Maldonado
- Laboratorio de Desarrollo y Crecimiento Craneofacial, Facultad de Odontología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (E.M.); (Y.L.-G.); (C.M.-Á.)
| | - Yamila López-Gordillo
- Laboratorio de Desarrollo y Crecimiento Craneofacial, Facultad de Odontología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (E.M.); (Y.L.-G.); (C.M.-Á.)
| | - Teresa Partearroyo
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU San Pablo, Boadilla del Monte, 28003 Madrid, Spain; (T.P.); (G.V.-M.)
| | - Gregorio Varela-Moreiras
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU San Pablo, Boadilla del Monte, 28003 Madrid, Spain; (T.P.); (G.V.-M.)
| | - Concepción Martínez-Álvarez
- Laboratorio de Desarrollo y Crecimiento Craneofacial, Facultad de Odontología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (E.M.); (Y.L.-G.); (C.M.-Á.)
- Departamento de Anatomía y Embriología Humana, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Juliana Pérez-Miguelsanz
- Departamento de Anatomía y Embriología Humana, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-913-941-380
| |
Collapse
|
7
|
Liu B, Liu C, Cong W, Li N, Zhou N, Tang Y, Wei C, Bai H, Zhang Y, Xiao J. Retinoid acid-induced microRNA-31-5p suppresses myogenic proliferation and differentiation by targeting CamkIIδ. Skelet Muscle 2017; 7:8. [PMID: 28526071 PMCID: PMC5437717 DOI: 10.1186/s13395-017-0126-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/02/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND We previously reported that Wnt5a/CaMKIIδ (calcium/calmodulin-dependent protein kinase II delta) pathway was involved in the embryonic tongue deformity induced by excess retinoic acid (RA). Our latest study found that the expression of miR-31-5p, which was predicted to target the 3'UTR of CamkIIδ, was raised in the RA-treated embryonic tongue. Thus, we hypothesized that the excess RA regulated Wnt5a/CaMKIIδ pathway through miR-31-5p in embryonic tongue. METHODS C2C12 myoblast line was employed as an in vitro model to examine the suppression of miR-31-5p on CamkIIδ expression, through which RA impaired the myoblast proliferation and differentiation in embryonic tongue. RESULTS RA stimulated the expression of miR-31-5p in both embryonic tongue and C2C12 myoblasts. Luciferase reporter assay confirmed that the 3'UTR of CamkIIδ was a target of miR-31-5p. MiR-31-5p mimics disrupted CamkIIδ expression, C2C12 proliferation and differentiation as excess RA did, while miR-31-5p inhibitor partially rescued these defects in the presence of RA. CONCLUSIONS Excess RA can stimulate miR-31-5p expression to suppress CamkIIδ, which represses the proliferation and differentiation of tongue myoblasts.
Collapse
Affiliation(s)
- Bo Liu
- Department of Basic Oral Sciences, College of Stomatology, Dalian Medical University, Dalian, 116044 People’s Republic of China
| | - Chao Liu
- Department of Basic Oral Sciences, College of Stomatology, Dalian Medical University, Dalian, 116044 People’s Republic of China
| | - Wei Cong
- Department of Basic Oral Sciences, College of Stomatology, Dalian Medical University, Dalian, 116044 People’s Republic of China
| | - Nan Li
- Department of Basic Oral Sciences, College of Stomatology, Dalian Medical University, Dalian, 116044 People’s Republic of China
| | - Nan Zhou
- Department of Basic Oral Sciences, College of Stomatology, Dalian Medical University, Dalian, 116044 People’s Republic of China
| | - Yi Tang
- Department of Basic Oral Sciences, College of Stomatology, Dalian Medical University, Dalian, 116044 People’s Republic of China
| | - Chao Wei
- Department of Basic Oral Sciences, College of Stomatology, Dalian Medical University, Dalian, 116044 People’s Republic of China
| | - Han Bai
- Department of Basic Oral Sciences, College of Stomatology, Dalian Medical University, Dalian, 116044 People’s Republic of China
| | - Ying Zhang
- Department of Basic Oral Sciences, College of Stomatology, Dalian Medical University, Dalian, 116044 People’s Republic of China
| | - Jing Xiao
- Department of Basic Oral Sciences, College of Stomatology, Dalian Medical University, Dalian, 116044 People’s Republic of China
| |
Collapse
|
8
|
Gao Y, Kobayashi H, Ganss B. The Human KROX-26/ZNF22 Gene is Expressed at Sites of Tooth Formation and Maps to the Locus for Permanent Tooth Agenesis (He-Zhao Deficiency). J Dent Res 2016; 82:1002-7. [PMID: 14630903 DOI: 10.1177/154405910308201213] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Tooth development is mediated by sequential and reciprocal interactions between dental epithelium and mesenchyme under the molecular control of secreted growth factors and responsive transcription factors. We have previously identified the transcription factor Krox-26 as a potential regulator of tooth formation in mice. The purpose of this study was to investigate a potentially similar role for the human KROX-26 orthologue. We cloned the KROX-26 gene and found its single mRNA transcript (2.4 kb) to be expressed in multiple adult tissues. During fetal development, KROX-26 is expressed in the epithelial component of the developing tooth organ during early bud and cap stages as well as in osteoblasts of craniofacial bone and the developing tongue. The KROX-26 gene was mapped to chromosome 10q11.21, a locus that has been associated with permanent tooth agenesis (He-Zhao deficiency). These results indicate a potential function for KROX-26 in the molecular regulation of tooth formation in humans.
Collapse
Affiliation(s)
- Y Gao
- Canadian Institutes for Health Research Group in Matrix Dynamics, University of Toronto, Faculty of Dentistry, Fitzgerald Building, Room 239, 150 College Street, Toronto, ON M5S 3E2, Canada
| | | | | |
Collapse
|
9
|
Kent RD. Nonspeech Oral Movements and Oral Motor Disorders: A Narrative Review. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2015; 24:763-89. [PMID: 26126128 PMCID: PMC4698470 DOI: 10.1044/2015_ajslp-14-0179] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 04/02/2015] [Accepted: 06/13/2015] [Indexed: 05/25/2023]
Abstract
PURPOSE Speech and other oral functions such as swallowing have been compared and contrasted with oral behaviors variously labeled quasispeech, paraspeech, speechlike, and nonspeech, all of which overlap to some degree in neural control, muscles deployed, and movements performed. Efforts to understand the relationships among these behaviors are hindered by the lack of explicit and widely accepted definitions. This review article offers definitions and taxonomies for nonspeech oral movements and for diverse speaking tasks, both overt and covert. METHOD Review of the literature included searches of Medline, Google Scholar, HighWire Press, and various online sources. Search terms pertained to speech, quasispeech, paraspeech, speechlike, and nonspeech oral movements. Searches also were carried out for associated terms in oral biology, craniofacial physiology, and motor control. RESULTS AND CONCLUSIONS Nonspeech movements have a broad spectrum of clinical applications, including developmental speech and language disorders, motor speech disorders, feeding and swallowing difficulties, obstructive sleep apnea syndrome, trismus, and tardive stereotypies. The role and benefit of nonspeech oral movements are controversial in many oral motor disorders. It is argued that the clinical value of these movements can be elucidated through careful definitions and task descriptions such as those proposed in this review article.
Collapse
Affiliation(s)
- Ray D. Kent
- Waisman Center, University of Wisconsin–Madison
| |
Collapse
|
10
|
Hong SJ, Cha BG, Kim YS, Lee SK, Chi JG. Tongue Growth during Prenatal Development in Korean Fetuses and Embryos. J Pathol Transl Med 2015; 49:497-510. [PMID: 26471340 PMCID: PMC4696530 DOI: 10.4132/jptm.2015.09.17] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 09/17/2015] [Indexed: 11/22/2022] Open
Abstract
Background: Prenatal tongue development may affect oral-craniofacial structures, but this muscular organ has rarely been investigated. Methods: In order to document the physiology of prenatal tongue growth, we histologically examined the facial and cranial base structures of 56 embryos and 106 fetuses. Results: In Streeter’s stages 13–14 (fertilization age [FA], 28 to 32 days), the tongue protruded into the stomodeal cavity from the retrohyoid space to the cartilaginous mesenchyme of the primitive cranial base, and in Streeter’s stage 15 (FA, 33 to 36 days), the tongue rapidly swelled and compressed the cranial base to initiate spheno-occipital synchondrosis and continued to swell laterally to occupy most of the stomodeal cavity in Streeter’s stage 16–17 (FA, 37 to 43 days). In Streeter’s stage 18–20 (FA, 44 to 51 days), the tongue was vertically positioned and filled the posterior nasopharyngeal space. As the growth of the mandible and maxilla advanced, the tongue was pulled down and protruded anteriorly to form the linguomandibular complex. Angulation between the anterior cranial base (ACB) and the posterior cranial base (PCB) was formed by the emerging tongue at FA 4 weeks and became constant at approximately 124°–126° from FA 6 weeks until birth, which was consistent with angulations measured on adult cephalograms. Conclusions: The early clockwise growth of the ACB to the maxillary plane became harmonious with the counter-clockwise growth of the PCB to the tongue axis during the early prenatal period. These observations suggest that human embryonic tongue growth affects ACB and PCB angulation, stimulates maxillary growth, and induces mandibular movement to achieve the essential functions of oral and maxillofacial structures.
Collapse
Affiliation(s)
- Soo Jeong Hong
- Department of Oral Pathology, College of Dentistry, Gangnueng-Wonju National University, Gangneung, Korea
| | - Bong Geun Cha
- Department of Orthodontics, College of Dentistry, Gangnueng-Wonju National University, Gangneung, Korea
| | - Yeon Sook Kim
- Department of Dental Hygiene, College of Health Sciences, Cheongju University, Cheongju, Korea
| | - Suk Keun Lee
- Department of Oral Pathology, College of Dentistry, Gangnueng-Wonju National University, Gangneung, Korea
| | - Je Geun Chi
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
11
|
Randolph ME, Pavlath GK. A muscle stem cell for every muscle: variability of satellite cell biology among different muscle groups. Front Aging Neurosci 2015; 7:190. [PMID: 26500547 PMCID: PMC4595652 DOI: 10.3389/fnagi.2015.00190] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/21/2015] [Indexed: 12/22/2022] Open
Abstract
The human body contains approximately 640 individual skeletal muscles. Despite the fact that all of these muscles are composed of striated muscle tissue, the biology of these muscles and their associated muscle stem cell populations are quite diverse. Skeletal muscles are affected differentially by various muscular dystrophies (MDs), such that certain genetic mutations specifically alter muscle function in only a subset of muscles. Additionally, defective muscle stem cells have been implicated in the pathology of some MDs. The biology of muscle stem cells varies depending on the muscles with which they are associated. Here we review the biology of skeletal muscle stem cell populations of eight different muscle groups. Understanding the biological variation of skeletal muscles and their resident stem cells could provide valuable insight into mechanisms underlying the susceptibility of certain muscles to myopathic disease.
Collapse
|
12
|
Torii D, Soeno Y, Fujita K, Sato K, Aoba T, Taya Y. Embryonic tongue morphogenesis in an organ culture model of mouse mandibular arches: blocking Sonic hedgehog signaling leads to microglossia. In Vitro Cell Dev Biol Anim 2015; 52:89-99. [PMID: 26334330 DOI: 10.1007/s11626-015-9951-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/19/2015] [Indexed: 10/23/2022]
Abstract
Mouse tongue development is initiated with the formation of lateral lingual swellings just before fusion between the mediodorsal surfaces of the mandibular arches at around embryonic day 11.0. Here, we investigated the role of Sonic hedgehog (Shh) signaling in embryonic mouse tongue morphogenesis. For this, we used an organ culture model of the mandibular arches from mouse embryos at embryonic day 10.5. When the Shh signaling inhibitor jervine was added to the culture medium for 24-96 h, the formation of lateral lingual swellings and subsequent epithelial invagination into the mesenchyme were impaired markedly, leading to a hypoplastic tongue with an incomplete oral sulcus. Notably, jervine treatment reduced the proliferation of non-myogenic mesenchymal cells at the onset of forming the lateral lingual swellings, whereas it did not affect the proliferation and differentiation of a myogenic cell lineage, which created a cell community at the central circumferential region of the lateral lingual swellings as seen in vivo and in control cultures lacking the inhibitor. Thus, epithelium-derived Shh signaling stimulates the proliferation of non-myogenic mesenchymal cells essential for forming lateral lingual swellings and contributes to epithelial invagination into the mesenchyme during early tongue development.
Collapse
Affiliation(s)
- Daisuke Torii
- Department of Pharmacology, The Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan
| | - Yuuichi Soeno
- Department of Pathology, The Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan
| | - Kazuya Fujita
- Department of Pathology, The Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan
| | - Kaori Sato
- Department of Pathology, The Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan
| | - Takaaki Aoba
- Department of Pathology, The Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan
| | - Yuji Taya
- Department of Pathology, The Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan.
| |
Collapse
|
13
|
Guerrero L, Villar P, Martínez L, Badia-Careaga C, Arredondo JJ, Cervera M. In vivo cell tracking of mouse embryonic myoblasts and fast fibers during development. Genesis 2014; 52:793-808. [PMID: 24895317 DOI: 10.1002/dvg.22796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 05/30/2014] [Accepted: 05/31/2014] [Indexed: 11/05/2022]
Abstract
Fast and slow TnI are co-expressed in E11.5 embryos, and fast TnI is present from the very beginning of myogenesis. A novel green fluorescent protein (GFP) reporter mouse lines (FastTnI/GFP lines) that carry the primary and secondary enhancer elements of the mouse fast troponin I (fast TnI), in which reporter expression correlates precisely with distribution of the endogenous fTnI protein was generated. Using the FastTnI/GFP mouse model, we characterized the early myogenic events in mice, analyzing the migration of GFP+ myoblasts, and the formation of primary and secondary myotubes in transgenic embryos. Interestingly, we found that the two contractile fast and slow isoforms of TnI are expressed during the migration of myoblasts from the somites to the limbs and body wall, suggesting that both participate in these events. Since no sarcomeres are present in myoblasts, we speculate that the function of fast TnI in early myogenesis is, like Myosin and Tropomyosin, to participate in cell movement during the initial myogenic stages. genesis
Collapse
Affiliation(s)
- Lucia Guerrero
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas Alberto Sols, C.S.I.C., Madrid, Spain
| | | | | | | | | | | |
Collapse
|
14
|
Cong W, Wang R, Liu B, Liu H, Wang SC, Wang F, Xiao J. Genomic Profiling of Genes Contributing to Tongue Development. J HARD TISSUE BIOL 2013. [DOI: 10.2485/jhtb.22.135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Kent RD, Robbins J. Introduction to the special issue, Integrative neural systems underlying vital aerodigestive tract functions. Madison, Wisconsin, June 17–19, 2010. Head Neck 2011; 33 Suppl 1:S1-4. [PMID: 21901778 DOI: 10.1002/hed.21900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2011] [Indexed: 11/10/2022] Open
Affiliation(s)
- Ray D Kent
- Department of Communicative Disorders, Waisman Center, University of Wisconsin, Madison, Wisconsin, USA
| | | |
Collapse
|
16
|
Brennick MJ, Pack AI, Ko K, Kim E, Pickup S, Maislin G, Schwab RJ. Altered upper airway and soft tissue structures in the New Zealand Obese mouse. Am J Respir Crit Care Med 2009; 179:158-69. [PMID: 18996996 PMCID: PMC2633061 DOI: 10.1164/rccm.200809-1435oc] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 11/06/2008] [Indexed: 01/13/2023] Open
Abstract
RATIONALE The effect of obesity on upper airway soft tissue structure and size was examined in the New Zealand Obese (NZO) mouse and in a control lean mouse, the New Zealand White (NZW). OBJECTIVES We hypothesized that the NZO mouse has increased volume of neck fat and upper airway soft tissues and decreased pharyngeal airway caliber. METHODS Pharyngeal airway size, volume of the upper airway soft tissue structures, and distribution of fat in the neck and body were measured using magnetic resonance imaging (MRI). Dynamic MRI was used to examine the differences in upper airway caliber between inspiration and expiration in NZO versus NZW mice. MEASUREMENTS AND MAIN RESULTS The data support the hypothesis that, in obese NZO versus lean NZW mice, airway caliber was significantly smaller (P < 0.03), with greater parapharyngeal fat pad volumes (P < 0.0001) and a greater volume of other upper airway soft tissue structures (tongue, P = 0.003; lateral pharyngeal walls, P = 0.01; soft palate, P = 0.02). Dynamic MRI showed that the airway of the obese NZO mouse dilated during inspiration, whereas in the lean NZW mouse, the upper airway was reduced in size during inspiration. CONCLUSIONS In addition to the increased volume of pharyngeal soft tissue structures, direct fat deposits within the tongue may contribute to airway compromise in obesity. Pharyngeal airway dilation during inspiration in NZO mice compared with narrowing in NZW mice suggests that airway compromise in obese mice may lead to muscle activation to defend upper airway patency during inspiration.
Collapse
Affiliation(s)
- Michael J Brennick
- Center for Sleep and Respiratory Neurobiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Yanagisawa N, Abe S, Agematsu H, Sakiyama K, Usami A, Tamatsu Y, Ide Y. Myosin heavy chain composition of tongue muscle in microphthalmic (mi/mi) mice before and after weaning. Ann Anat 2006; 188:329-36. [PMID: 16856597 DOI: 10.1016/j.aanat.2006.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To elucidate the effects of teeth on muscle fibers in the tongue during the developmental process, we examined the expression of muscle contractile proteins and the genes for those proteins in normal mice and microphthalmic (mi/mi) mice with impaired tooth eruption. The mice were observed during the growth period, including weaning, which is when feeding movements undergo major changes. Expression of the myosin heavy chain (MyHC)-2a protein, whose contraction speed is relatively slow, disappeared after weaning in normal mice, while it remained in high concentrations even after weaning in mi/mi mice. The presence of MyHC-2a after weaning in mice with no tooth eruption was attributed to a compensation for lack of proper masticatory function and sucking-like movements, as MyHC-2a is necessary for these movements.
Collapse
Affiliation(s)
- Nobuaki Yanagisawa
- Department of Anatomy, Tokyo Dental College, 1-2-2 Masago, Mihama-Ku, Chiba 261-8502, Japan.
| | | | | | | | | | | | | |
Collapse
|
18
|
Nie X. Sox9 mRNA expression in the developing palate and craniofacial muscles and skeletons. Acta Odontol Scand 2006; 64:97-103. [PMID: 16546851 DOI: 10.1080/00016350500420089] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND SOX9 is a critical transcription factor for chondrogenesis and sex determination. Haploinsufficiency mutations of Sox9 in humans lead to campomelic dysplasia. Inactivation of Sox9 in the craniofacial region of mice results in an absence of endochondral bones and in malformation of other structures. This suggests that Sox9 plays multiple roles in craniofacial development and these remain to be elucidated. In order to study the functions of Sox9 in craniofacial development, a preliminary expression examination was performed. MATERIAL AND METHODS To detect the expression of Sox9 mRNA, antisense riboprobe was synthesized by in vitro transcription. Radioactive in situ hybridization was performed on sagittal and coronal sections of mice head from organogenesis to the early postnatal stage. RESULTS It was found that Sox9 was expressed in multiple stages and distinct processes. Besides the expression in cartilage, it was seen in the fusing stage of palatogenesis. Sox9 was also present during differentiation and maturation of craniofacial muscles. In addition, it was observed in intramembranous skeletal elements at restricted sites and stage. CONCLUSIONS The expression pattern suggests that Sox9 serves broad roles in craniofacial development.
Collapse
Affiliation(s)
- Xuguang Nie
- Sector of Anatomy and Cell Biology, Department of Biomedicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
19
|
Nie X. Apoptosis, proliferation and gene expression patterns in mouse developing tongue. ACTA ACUST UNITED AC 2005; 210:125-32. [PMID: 16151852 DOI: 10.1007/s00429-005-0009-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2005] [Indexed: 11/26/2022]
Abstract
The Fgf/Fgfr (Fgf receptor) and Bmp signal pathways are critical for embryonic development and postnatal growth. In order to address their roles in tongue development, preliminary study of expression patterns of some important members in the two families, as well as of apoptosis and proliferation, were carried out in mouse developing tongue. Apoptosis in tongue is a very late event in embryogenesis, restricted to the upper layer of the epithelium whereas proliferation is very vigorous at the early stage of tongue development and remains active throughout embryogenesis. Bmp2, -4 and -5 were localized within the mesenchyme at the early embryonic stage of tongue development (E12 to E13), whereas Bmp3 and Bmp7 were mainly expressed in the epithelium. Most of these molecules were also seen in the tongue muscles at postnatal stages. Among Fgfr isoforms, Fgfr1c, -2b, and -2c were detected in embryogenesis with peak expression at E11 to E13. Fgfr1c and Fgfr2c were localized within the mesenchyme, while Fgfr2b was mainly expressed in the epithelium. High expression of Fgf7 and Fgf10 was also detected in the mesenchyme at the early embryonic stage of tongue development, corresponding to the Fgfr expression, suggesting that they are among the principal ligands functioning at the early embryonic expanding stage. Fgf2 was seen in the tongue muscles at the late embryonic and postnatal stages. These results suggest that Bmp and Fgf signalling regulates tongue development at multiple stages, possibly related to proliferation and differentiation.
Collapse
Affiliation(s)
- Xuguang Nie
- Section of Anatomy and Cell Biology, Department of Biomedicine, University of Bergen, Jonas Lies V91, 5009, Bergen, Norway.
| |
Collapse
|
20
|
Schwab RJ, Pasirstein M, Kaplan L, Pierson R, Mackley A, Hachadoorian R, Arens R, Maislin G, Pack AI. Family aggregation of upper airway soft tissue structures in normal subjects and patients with sleep apnea. Am J Respir Crit Care Med 2005; 173:453-63. [PMID: 16210668 PMCID: PMC2662941 DOI: 10.1164/rccm.200412-1736oc] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
RATIONALE Sleep apnea is believed to be a genetic disorder. Thus, we hypothesized that anatomic risk factors for sleep apnea would demonstrate family aggregation. OBJECTIVES We used volumetric magnetic resonance imaging in a sib pair "quad" design to study the family aggregation of the size of upper airway soft tissue structures that are associated with increased risk for obstructive sleep apnea. METHODS We examined 55 sleep apnea probands (apnea-hypopnea index [AHI]: 43.2 +/- 26.3 events/h), 55 proband siblings (AHI: 11.8 +/- 16.6 events/h), 55 control subjects (AHI: 2.1 +/- 1.7 events/h), and 55 control siblings (AHI: 4.2 +/- 4.0 events/h). The study design used exact matching on ethnicity and sex, frequency matching on age, and statistical control for visceral neck fat and craniofacial dimensions. MEASUREMENTS AND MAIN RESULTS The data support our a priori hypothesis that the volume of the important upper airway soft tissue structures is heritable. The volume of the lateral pharyngeal walls (h(2) = 36.8%; p = 0.001), tongue (h(2) = 36.5%; p = 0.0001), and total soft tissue (h(2) = 37.5%; p = 0.0001) demonstrated significant levels of heritability after adjusting for sex, ethnicity, age, visceral neck fat, and craniofacial dimensions. In addition, our data indicate that heritability of the upper airway soft tissue structures is found in normal subjects and patients with apnea. Thus, it is not simply a consequence of the prevalence of apnea. CONCLUSIONS This is the first time family aggregation of size of the upper airway soft tissue structures has been demonstrated.
Collapse
Affiliation(s)
- Richard J Schwab
- Center for Sleep and Respiratory Neurobiology, 893 Maloney Building, University of Pennsylvania Medical Center, 3600 Spruce Street, Philadelphia, PA 19104-4283, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Nie X. Dkk1, -2, and -3 expression in mouse craniofacial development. J Mol Histol 2005; 36:367-72. [PMID: 16195809 DOI: 10.1007/s10735-005-9008-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Accepted: 08/31/2005] [Indexed: 11/26/2022]
Abstract
The Dickkopf family is important for embryogenesis and postnatal development and growth. Dkk1 is a strong head inducer and knockout of this gene leads to absence of anterior head structures, which are predominantly formed through neural crest migration. During early craniofacial development, Dkk1 to Dkk3 show developmentally regulated expression in a number of elements. However, their expression and roles in late times of craniofacial development are largely unknown. This study focuses on the expression profile of Dkk1-3 on late embryonic and early postnatal stages. It was found that Dkks were involved in a variety of craniofacial developmental processes, including facial outgrowth, myogenesis, osteogenesis, palatogenesis, olfactory epithelium and tooth development; and the expression persisted to postnatal stage in the muscles and bones. Their expression patterns suggest important roles in these processes; further study is warranted to elucidate these roles.
Collapse
Affiliation(s)
- Xuguang Nie
- Section of Anatomy and Cell Biology, Department of Biomedicine, University of Bergen, Jonas Lies V91, 5009, Bergen, Norway.
| |
Collapse
|
22
|
Schwab RJ. Genetic determinants of upper airway structures that predispose to obstructive sleep apnea. Respir Physiol Neurobiol 2005; 147:289-98. [PMID: 16043425 DOI: 10.1016/j.resp.2005.06.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Revised: 05/19/2005] [Accepted: 06/13/2005] [Indexed: 11/22/2022]
Abstract
Genetic factors are thought to play an important role in human development. Recent data indicate that obstructive sleep apnea may have a genetic basis. Sleep apnea is a very common disorder with significant cardiovascular and neurophysiologic morbidity. The pathogenesis of sleep apnea is related to a reduction in the size of the upper airway. The reduction in airway size is secondary to increased adipose tissue (enlargement of the parapharyngeal fat pads), alterations in craniofacial structure (reduction in mandibular size) and enlargement of the surrounding soft tissue structures (tongue, lateral pharyngeal walls). Genetic factors are one of the factors that have been proposed to mediate the size of each of these anatomic risk factors for sleep apnea. Recent evidence is accumulating about the genetic loci for these structural risk factors that predispose to the development of obstructive sleep apnea.
Collapse
Affiliation(s)
- Richard J Schwab
- Center for Sleep and Respiratory Neurobiology, Pulmonary, Allergy and Critical Care Division, Dept. of Medicine, University of Pennsylvania Medical Center, 893 Maloney Building, 3600 Spruce St., Philadelphia, PA 19104-4283, USA.
| |
Collapse
|
23
|
Abstract
This paper considers evidence that the speech muscles are unique in their genetic, developmental, functional and phenotypical properties. The literature was reviewed using PubMed, ScienceDirect, ComDisDome and other literature-retrieval systems to identify studies reporting on the craniofacial and laryngeal muscles. Particular emphasis was given to studies of muscle fibre composition. A number of studies on mandibular, lingual, palatal and laryngeal muscles in humans show that these muscles are distinct from limb and other muscles. These speech-related muscles typically contain diverse fibre types and these types can vary regionally within a muscle. In general, the muscles of the speech production system are designed for fast and/or variable contraction and fatigue resistance. The craniofacial and laryngeal muscles are unique among the muscle systems of the human body and the specialized properties of these muscles are relevant to understanding the biomechanics of speech and various speech disorders.
Collapse
Affiliation(s)
- Ray D Kent
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705-2280, USA.
| |
Collapse
|
24
|
Hsiao CD, Tsai WY, Horng LS, Tsai HJ. Molecular structure and developmental expression of three muscle-type troponin T genes in zebrafish. Dev Dyn 2003; 227:266-79. [PMID: 12761854 DOI: 10.1002/dvdy.10305] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Troponin T (Tnnt), a troponin component, interacts with tropomyosin and is crucial to the regulation of striated muscle contraction. To gain insight into the molecular evolution and developmental regulation of Tnnt gene (Tnnt) in lower vertebrates, zebrafish Tnnt1 (slow Tnnt), Tnnt2 (cardiac Tnnt), and Tnnt3b (fast Tnnt isoform b) were characterized. The polypeptides of zebrafish Tnnt1, Tnnt2, and Tnnt3b were conserved in the central tropomyosin- and C-terminal troponin I-binding domains. However, the N-terminal hypervariable regions were highly extended and rich in glutamic acid in polypeptides of Tnnt1 and Tnnt2, but not Tnnt3b. The Tnnt2 and Tnnt3b contain introns, whereas Tnnt1 is intron-free. During development, large to small, alternatively spliced variants were detected in Tnnt2, but not in Tnnt1 or Tnnt3. Whole-mount in situ hybridization showed zebrafish Tnnt1 and Tnnt2 are activated during early somitogenesis (10 hr postfertilization, hpf) and cardiogenesis (14 hpf), respectively, but Tnnt3b is not activated until middle somitogenesis (18 hpf). Tnnt2 and Tnnt3b expression was cardiac- and fast-muscle specific, but Tnnt1 was expressed in both slow and fast muscles. We propose that three, distinct, muscle-type Tnnt evolved after the divergence of fish and deuterostome invertebrates. In zebrafish, the developmental regulation of Tnnt during somitogenesis and cardiogenesis is more restricted and simpler than in tetrapods. These new findings may provide insight into the developmental regulation and molecular evolution of vertebrate Tnnt.
Collapse
Affiliation(s)
- Chung-Der Hsiao
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|