1
|
Kim YK, Song J. Metabolic imbalance and brain tumors: The interlinking metabolic pathways and therapeutic actions of antidiabetic drugs. Pharmacol Res 2025; 215:107719. [PMID: 40174814 DOI: 10.1016/j.phrs.2025.107719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/04/2025]
Abstract
Brain tumors are complex, heterogeneous malignancies, often associated with significant morbidity and mortality. Emerging evidence suggests the important role of metabolic syndrome, such as that observed in diabetes mellitus, in the progression of brain tumors. Several studies indicated that hyperglycemia, insulin resistance, oxidative stress, and altered adipokine profiles influence tumor growth, proliferation, and treatment resistance. Intriguingly, antidiabetic drugs (e.g., metformin, sulfonylureas, dipeptidyl peptidase-4 (DPP-4) inhibitors, glucagon-like peptide-1 (GLP-1) receptor agonists, and thiazolidinediones) have shown promise as adjunctive or repurposed agents in managing brain tumors. Metformin can impair tumor cell proliferation, enhance treatment sensitivity, and modify the tumor microenvironment by activating AMP-activated protein kinase (AMPK) and inhibiting mammalian target of rapamycin (mTOR) signaling pathways. DPP-4 inhibitors and GLP-1 receptor agonists can target both metabolic and inflammatory aspects of brain tumors, while thiazolidinediones may induce apoptosis in tumor cells and synergize with other therapeutics. Consequently, further studies and clinical trials are needed to confirm the efficacy, safety, and utility of metabolic interventions in treating brain tumors. Here, we review the evidence for the metabolic interconnections between metabolic diseases and brain tumors and multiple actions of anti-diabetes drugs in brain tumors.
Collapse
Affiliation(s)
- Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun, 58128, Korea.
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun, 58128, Korea.
| |
Collapse
|
2
|
Srivastava S, Anbiaee R, Houshyari M, Laxmi, Sridhar SB, Ashique S, Hussain S, Kumar S, Taj T, Akbarnejad Z, Taghizadeh-Hesary F. Amino acid metabolism in glioblastoma pathogenesis, immune evasion, and treatment resistance. Cancer Cell Int 2025; 25:89. [PMID: 40082966 PMCID: PMC11908050 DOI: 10.1186/s12935-025-03721-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/01/2025] [Indexed: 03/16/2025] Open
Abstract
Glioblastoma (GBM) ranks among the most lethal primary tumors of the central nervous system. This is partly due to its complex intracellular metabolism and interactions with the surrounding tumor microenvironment (TME). Compelling evidence represents that altered amino acids (AAs) metabolism plays a crucial role in both areas. The role of AAs and their metabolites in glioma biology is an emerging topic. Therefore, this review was conducted to summarize the current knowledge about the molecular mechanisms by which AAs participate in the GBM pathogenesis. AAs can directly influence tumor progression by affecting tumor cell metabolism or indirectly by releasing bioactive agents through particular metabolic pathways. This review begins by examining the metabolic pathways of essential AAs, such as tryptophan, tyrosine, and phenylalanine, which contribute to synthesizing critical neurotransmitters and shape tumor metabolism signatures. We explore how these pathways impact tumor growth and immune modulation, focusing on how AAs and their metabolites can promote malignant properties in GBM cells. AAs also play a pivotal role in reprogramming the TME, contributing to immune evasion and resistance to therapy. The review further discusses how tumor metabolism signatures, influenced by AA metabolism, can enhance the immunosuppressive microenvironment, providing new avenues for targeted immunotherapies. Finally, we outline potential therapeutic strategies to modulate AA metabolism and emphasize critical opportunities for future research to improve GBM management.
Collapse
Affiliation(s)
- Shriyansh Srivastava
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, 203201, India
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), Sector 3 Pushp Vihar, New Delhi, 110017, India
| | - Robab Anbiaee
- Radio Oncology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Houshyari
- Radio Oncology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Laxmi
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, 203201, India
| | | | - Sumel Ashique
- Department of Pharmaceutical Technology, Bharat Technology, Uluberia, 711316, West Bengal, India
| | - Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, 248007, Uttarakhand, India
| | - Sachin Kumar
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), Sector 3 Pushp Vihar, New Delhi, 110017, India
| | - Tahreen Taj
- Department of Pharmacology, Yenepoya Pharmacy college and research centre, Yenepoya (Deemed to be) university, Mangalore, 575018, India
| | - Zeinab Akbarnejad
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Clinical Oncology Department, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Rosito M, Maqbool J, Reccagni A, Mangano M, D'Andrea T, Rinaldi A, Peruzzi G, Silvestri B, Rosa A, Trettel F, D'Alessandro G, Catalano M, Fucile S, Limatola C. Ketogenic diet induces an inflammatory reactive astrocytes phenotype reducing glioma growth. Cell Mol Life Sci 2025; 82:73. [PMID: 39921723 PMCID: PMC11807044 DOI: 10.1007/s00018-025-05600-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/23/2024] [Accepted: 01/16/2025] [Indexed: 02/10/2025]
Abstract
The use of a ketogenic diet (KD) in glioma is currently tested as an adjuvant treatment in standard chemotherapy regimens. The metabolic shift induced by the KD leads to the generation of ketone bodies that can influence glioma cells and the surrounding microenvironment, but the mechanisms have not yet been fully elucidated. Here, we investigated the potential involvement of glial cells as mediators of the KD-induced effects on tumor growth and survival rate in glioma-bearing mice. Specifically, we describe that exposing glioma-bearing mice to a KD or to β-hydroxybutyrate (β-HB), one of the main KD metabolic products, reduced glioma growth in vivo, induced a pro-inflammatory phenotype in astrocytes and increased functional glutamate transporters. Moreover, we described increased intracellular basal Ca2+ levels in GL261 glioma cells treated with β-HB or co-cultured with astrocytes. These data suggest that pro-inflammatory astrocytes triggered by β-HB can be beneficial in counteracting glioma proliferation and neuronal excitotoxicity, thus protecting brain parenchyma.
Collapse
Affiliation(s)
- Maria Rosito
- Department of Physiology and Pharmacology, Sapienza University, P.Le Aldo Moro 5, 00185, Rome, Italy.
- Center for Life Nanoscience & Neuroscience, Istituto Italiano di Tecnologia@Sapienza, Rome, Italy.
| | - Javeria Maqbool
- Department of Physiology and Pharmacology, Sapienza University, P.Le Aldo Moro 5, 00185, Rome, Italy
| | - Alice Reccagni
- Department of Physiology and Pharmacology, Sapienza University, P.Le Aldo Moro 5, 00185, Rome, Italy
| | - Micol Mangano
- Department of Physiology and Pharmacology, Sapienza University, P.Le Aldo Moro 5, 00185, Rome, Italy
| | | | - Arianna Rinaldi
- Department of Physiology and Pharmacology, Sapienza University, P.Le Aldo Moro 5, 00185, Rome, Italy
| | - Giovanna Peruzzi
- Center for Life Nanoscience & Neuroscience, Istituto Italiano di Tecnologia@Sapienza, Rome, Italy
| | - Beatrice Silvestri
- Center for Life Nanoscience & Neuroscience, Istituto Italiano di Tecnologia@Sapienza, Rome, Italy
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Alessandro Rosa
- Center for Life Nanoscience & Neuroscience, Istituto Italiano di Tecnologia@Sapienza, Rome, Italy
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Flavia Trettel
- Department of Physiology and Pharmacology, Sapienza University, P.Le Aldo Moro 5, 00185, Rome, Italy
| | - Giuseppina D'Alessandro
- Department of Physiology and Pharmacology, Sapienza University, P.Le Aldo Moro 5, 00185, Rome, Italy
- IRCCS Neuromed, Pozzilli, IS, Italy
| | - Myriam Catalano
- Department of Physiology and Pharmacology, Sapienza University, P.Le Aldo Moro 5, 00185, Rome, Italy
| | - Sergio Fucile
- Department of Physiology and Pharmacology, Sapienza University, P.Le Aldo Moro 5, 00185, Rome, Italy
- IRCCS Neuromed, Pozzilli, IS, Italy
| | - Cristina Limatola
- IRCCS Neuromed, Pozzilli, IS, Italy.
- Department of Physiology and Pharmacology, Laboratory Affiliated to Institute Pasteur Italia, Sapienza University, P.Le Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
4
|
Malhotra D, Gabrani R. Metabolic shifts in glioblastoma: unraveling altered pathways and exploring novel therapeutic avenues. Mol Biol Rep 2025; 52:146. [PMID: 39841290 DOI: 10.1007/s11033-025-10242-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 01/09/2025] [Indexed: 01/23/2025]
Abstract
Metabolic reprogramming stands out as a defining characteristic of cancer, including glioblastoma (GB), enabling tumor cells to overcome growth and survival challenges in adverse conditions. The dysregulation of metabolic processes in GB is crucial to its pathogenesis, influencing both tumorigenesis and the disease's invasive tendencies. This altered metabolism supplies essential energy substrates for uncontrolled cell proliferation and also creates an immunosuppressive microenvironment, complicating conventional therapies. A comprehensive understanding of the complexities of metabolic dysregulation in carbohydrate, amino acid, lipid and nucleotide pathways in GB holds promise for effective therapeutic interventions. Key metabolic enzymes, transporters, and signaling pathways and mitochondrial metabolism have been examined for their roles in GB pathology and their possible therapeutic potential. Addressing these metabolic targets has shown efficacy in preclinical models and is currently being evaluated in clinical trials. Combination therapies that exploit metabolic vulnerabilities alongside conventional treatments hold the promise of improving patient outcomes. This review explores the dynamic interplay between glioblastoma's aggressiveness and altered metabolism, offering insights into potential therapeutic strategies. Moreover, this review discusses the recent advancements in drug development aimed at targeting these dysregulated metabolic pathways.
Collapse
Affiliation(s)
- Dinky Malhotra
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector 62, Noida, UP, 201309, India
| | - Reema Gabrani
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector 62, Noida, UP, 201309, India.
| |
Collapse
|
5
|
Duraj T, Kalamian M, Zuccoli G, Maroon JC, D'Agostino DP, Scheck AC, Poff A, Winter SF, Hu J, Klement RJ, Hickson A, Lee DC, Cooper I, Kofler B, Schwartz KA, Phillips MCL, Champ CE, Zupec-Kania B, Tan-Shalaby J, Serfaty FM, Omene E, Arismendi-Morillo G, Kiebish M, Cheng R, El-Sakka AM, Pflueger A, Mathews EH, Worden D, Shi H, Cincione RI, Spinosa JP, Slocum AK, Iyikesici MS, Yanagisawa A, Pilkington GJ, Chaffee A, Abdel-Hadi W, Elsamman AK, Klein P, Hagihara K, Clemens Z, Yu GW, Evangeliou AE, Nathan JK, Smith K, Fortin D, Dietrich J, Mukherjee P, Seyfried TN. Clinical research framework proposal for ketogenic metabolic therapy in glioblastoma. BMC Med 2024; 22:578. [PMID: 39639257 PMCID: PMC11622503 DOI: 10.1186/s12916-024-03775-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor in adults, with a universally lethal prognosis despite maximal standard therapies. Here, we present a consensus treatment protocol based on the metabolic requirements of GBM cells for the two major fermentable fuels: glucose and glutamine. Glucose is a source of carbon and ATP synthesis for tumor growth through glycolysis, while glutamine provides nitrogen, carbon, and ATP synthesis through glutaminolysis. As no tumor can grow without anabolic substrates or energy, the simultaneous targeting of glycolysis and glutaminolysis is expected to reduce the proliferation of most if not all GBM cells. Ketogenic metabolic therapy (KMT) leverages diet-drug combinations that inhibit glycolysis, glutaminolysis, and growth signaling while shifting energy metabolism to therapeutic ketosis. The glucose-ketone index (GKI) is a standardized biomarker for assessing biological compliance, ideally via real-time monitoring. KMT aims to increase substrate competition and normalize the tumor microenvironment through GKI-adjusted ketogenic diets, calorie restriction, and fasting, while also targeting glycolytic and glutaminolytic flux using specific metabolic inhibitors. Non-fermentable fuels, such as ketone bodies, fatty acids, or lactate, are comparatively less efficient in supporting the long-term bioenergetic and biosynthetic demands of cancer cell proliferation. The proposed strategy may be implemented as a synergistic metabolic priming baseline in GBM as well as other tumors driven by glycolysis and glutaminolysis, regardless of their residual mitochondrial function. Suggested best practices are provided to guide future KMT research in metabolic oncology, offering a shared, evidence-driven framework for observational and interventional studies.
Collapse
Affiliation(s)
- Tomás Duraj
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA.
| | | | - Giulio Zuccoli
- Neuroradiology, Private Practice, Philadelphia, PA, 19103, USA
| | - Joseph C Maroon
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Adrienne C Scheck
- Department of Child Health, University of Arizona College of Medicine, Phoenix, Phoenix, AZ, 85004, USA
| | - Angela Poff
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Sebastian F Winter
- Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Jethro Hu
- Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Rainer J Klement
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, 97422, Schweinfurt, Germany
| | | | - Derek C Lee
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA
| | - Isabella Cooper
- Ageing Biology and Age-Related Diseases Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstr. 48, 5020, Salzburg, Austria
| | - Kenneth A Schwartz
- Department of Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Matthew C L Phillips
- Department of Neurology, Waikato Hospital, Hamilton, 3204, New Zealand
- Department of Medicine, University of Auckland, Auckland, 1142, New Zealand
| | - Colin E Champ
- Exercise Oncology & Resiliency Center and Department of Radiation Oncology, Allegheny Health Network, Pittsburgh, PA, 15212, USA
| | | | - Jocelyn Tan-Shalaby
- School of Medicine, University of Pittsburgh, Veteran Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA
| | - Fabiano M Serfaty
- Department of Clinical Medicine, State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, 20550-170, Brazil
- Serfaty Clínicas, Rio de Janeiro, RJ, 22440-040, Brazil
| | - Egiroh Omene
- Department of Oncology, Cross Cancer Institute, Edmonton, AB, T6G 1Z2, Canada
| | - Gabriel Arismendi-Morillo
- Department of Medicine, Faculty of Health Sciences, University of Deusto, 48007, Bilbao (Bizkaia), Spain
- Facultad de Medicina, Instituto de Investigaciones Biológicas, Universidad del Zulia, Maracaibo, 4005, Venezuela
| | | | - Richard Cheng
- Cheng Integrative Health Center, Columbia, SC, 29212, USA
| | - Ahmed M El-Sakka
- Metabolic Terrain Institute of Health, East Congress Street, Tucson, AZ, 85701, USA
| | - Axel Pflueger
- Pflueger Medical Nephrologyand , Internal Medicine Services P.L.L.C, 6 Nelson Road, Monsey, NY, 10952, USA
| | - Edward H Mathews
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, 0002, South Africa
| | | | - Hanping Shi
- Department of Gastrointestinal Surgery and Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Raffaele Ivan Cincione
- Department of Clinical and Experimental Medicine, University of Foggia, 71122, Foggia, Puglia, Italy
| | - Jean Pierre Spinosa
- Integrative Oncology, Breast and Gynecologic Oncology Surgery, Private Practice, Rue Des Terreaux 2, 1002, Lausanne, Switzerland
| | | | - Mehmet Salih Iyikesici
- Department of Medical Oncology, Altınbaş University Bahçelievler Medical Park Hospital, Istanbul, 34180, Turkey
| | - Atsuo Yanagisawa
- The Japanese College of Intravenous Therapy, Tokyo, 150-0013, Japan
| | | | - Anthony Chaffee
- Department of Neurosurgery, Sir Charles Gairdner Hospital, Perth, 6009, Australia
| | - Wafaa Abdel-Hadi
- Clinical Oncology Department, Cairo University, Giza, 12613, Egypt
| | - Amr K Elsamman
- Neurosurgery Department, Cairo University, Giza, 12613, Egypt
| | - Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, 6410 Rockledge Drive, Suite 610, Bethesda, MD, 20817, USA
| | - Keisuke Hagihara
- Department of Advanced Hybrid Medicine, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Zsófia Clemens
- International Center for Medical Nutritional Intervention, Budapest, 1137, Hungary
| | - George W Yu
- George W, Yu Foundation For Nutrition & Health and Aegis Medical & Research Associates, Annapolis, MD, 21401, USA
| | - Athanasios E Evangeliou
- Department of Pediatrics, Medical School, Aristotle University of Thessaloniki, Papageorgiou Hospital, Efkarpia, 56403, Thessaloniki, Greece
| | - Janak K Nathan
- Dr. DY Patil Medical College, Hospital and Research Centre, Pune, Maharashtra, 411018, India
| | - Kris Smith
- Barrow Neurological Institute, Dignity Health St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - David Fortin
- Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Jorg Dietrich
- Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | | | | |
Collapse
|
6
|
Amereh M, Shojaei S, Seyfoori A, Walsh T, Dogra P, Cristini V, Nadler B, Akbari M. Insights from a multiscale framework on metabolic rate variation driving glioblastoma multiforme growth and invasion. COMMUNICATIONS ENGINEERING 2024; 3:176. [PMID: 39587319 PMCID: PMC11589919 DOI: 10.1038/s44172-024-00319-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 11/01/2024] [Indexed: 11/27/2024]
Abstract
Non-physiological levels of oxygen and nutrients within the tumors result in heterogeneous cell populations that exhibit distinct necrotic, hypoxic, and proliferative zones. Among these zonal cellular properties, metabolic rates strongly affect the overall growth and invasion of tumors. Here, we report on a hybrid discrete-continuum (HDC) mathematical framework that uses metabolic data from a biomimetic two-dimensional (2D) in-vitro cancer model to predict three-dimensional (3D) behaviour of in-vitro human glioblastoma (hGB). The mathematical model integrates modules of continuum, discrete, and neurons. Results indicated that the HDC model is capable of quantitatively predicting growth, invasion length, and the asymmetric finger-type invasion pattern in in-vitro hGB tumors. Additionally, the model could predict the reduction in invasion length of hGB tumoroids in response to temozolomide (TMZ). This model has the potential to incorporate additional modules, including immune cells and signaling pathways governing cancer/immune cell interactions, and can be used to investigate targeted therapies.
Collapse
Affiliation(s)
- Meitham Amereh
- Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Road, Victoria, V8P 5C2, BC, Canada
- Laboratory for Innovations in MicroEngineering (LiME), University of Victoria, 3800 Finnerty Road, Victoria, V8P 5C2, BC, Canada
- Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, V8P 5C2, BC, Canada
| | - Shahla Shojaei
- Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Road, Victoria, V8P 5C2, BC, Canada
- Department of Anatomy and Cell Sciences, University of Manitoba, 66 Chancellors Cir, Winnipeg, R3B 2E9, MB, Canada
| | - Amir Seyfoori
- Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Road, Victoria, V8P 5C2, BC, Canada
- Laboratory for Innovations in MicroEngineering (LiME), University of Victoria, 3800 Finnerty Road, Victoria, V8P 5C2, BC, Canada
| | - Tavia Walsh
- Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Road, Victoria, V8P 5C2, BC, Canada
| | - Prashant Dogra
- Mathematics in Medicine Program, Department of Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, 77030, TX, USA
- Department of Physiology and Biophysics, Weill Cornell Medical College, 1300 York Ave., New York, 10065, NY, USA
| | - Vittorio Cristini
- Mathematics in Medicine Program, Department of Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, 77030, TX, USA
- Neal Cancer Center, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, 77030, TX, USA
- Department of Imaging Physics, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, 77030, TX, USA
- Physiology, Biophysics, and Systems Biology Program, Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Ave., New York, 10065, NY, USA
| | - Ben Nadler
- Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Road, Victoria, V8P 5C2, BC, Canada
| | - Mohsen Akbari
- Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Road, Victoria, V8P 5C2, BC, Canada.
- Laboratory for Innovations in MicroEngineering (LiME), University of Victoria, 3800 Finnerty Road, Victoria, V8P 5C2, BC, Canada.
- Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, V8P 5C2, BC, Canada.
- School of Biomedical Engineering, University of British Columbia, 2329 West Mall, Vancouver, V6T 1Z4, BC, Canada.
| |
Collapse
|
7
|
Kopec M, Beton-Mysur K, Surmacki J, Abramczyk H. Metabolism changes caused by glucose in normal and cancer human brain cell lines by Raman imaging and chemometric methods. Sci Rep 2024; 14:16626. [PMID: 39025939 PMCID: PMC11258355 DOI: 10.1038/s41598-024-67718-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024] Open
Abstract
Glucose is the main source of energy for the human brain. This paper presents a non-invasive technique to study metabolic changes caused by glucose in human brain cell lines. In this paper we present the spectroscopic characterization of human normal brain (NHA; astrocytes) and human cancer brain (CRL-1718; astrocytoma and U-87 MG; glioblastoma) control cell lines and cell lines upon supplementation with glucose. Based on Raman techniques we have identified biomarkers that can monitor metabolic changes in lipid droplets, mitochondria and nucleus caused by glucose. We have studied the vibrations at 750 cm-1, 1444 cm-1, 1584 cm-1 and 1656 cm-1 as a function of malignancy grade. We have compared the concentration of cytochrome, lipids and proteins in the grade of cancer aggressiveness in normal and cancer human brain cell lines. Chemometric analysis has shown that control normal, control cancer brain cell lines and normal and cancer cell lines after supplementation with glucose can be distinguished based on their unique vibrational properties. PLSDA (Partial Least Squares Discriminant Analysis) and ANOVA tests have confirmed the main role of cytochromes, proteins and lipids in differentiation of control human brain cells and cells upon supplementation with glucose. We have shown that Raman techniques combined with chemometric analysis provide additional insight to monitor the biology of astrocytes, astrocytoma and glioblastoma after glucose supplementation.
Collapse
Affiliation(s)
- Monika Kopec
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590, Lodz, Poland.
| | - Karolina Beton-Mysur
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590, Lodz, Poland
| | - Jakub Surmacki
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590, Lodz, Poland
| | - Halina Abramczyk
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590, Lodz, Poland.
| |
Collapse
|
8
|
Goldman M, Lucke-Wold B, Martinez-Sosa M, Katz J, Mehkri Y, Valisno J, Quintin S. Steroid utility, immunotherapy, and brain tumor management: an update on conflicting therapies. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:659-675. [PMID: 36338521 PMCID: PMC9630032 DOI: 10.37349/etat.2022.00106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/17/2022] [Indexed: 11/05/2022] Open
Abstract
Steroid use is a widely accepted practice for both the treatment and prevention of tumor-induced edema, but there are many unknowns regarding their current clinical utility with modern anti-tumor therapies. This decreases edema and relieves the symptomatic mass effect. There are clearly understood benefits and commonly accepted complications of methylprednisolone (MP) use, but the topic is recently controversial. With immunotherapy advancing, a robust immune response is crucial for full therapeutic efficacy. The immunosuppression of MP may interfere with future and current therapeutics relying on the integrity of the patient’s immune system. This further emphasizes the need for alternative agents to effectively treat tumor-induced cerebral edema. This review highlights the current clinical utility of steroids to treat brain tumor-related edema and the underlying pathophysiology. It also reviews details regarding different steroid formulations and dosing. Research available regarding concurrent steroid use with immunotherapy is detailed next, followed by alternatives to steroids and barriers to their adoption. Finally, this paper discusses pre-clinical findings and emerging treatments aimed to augment or replace steroid use.
Collapse
Affiliation(s)
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| | | | | | | | | | | |
Collapse
|