1
|
Tanaka M, Tuka B, Vécsei L. Navigating the Neurobiology of Migraine: From Pathways to Potential Therapies. Cells 2024; 13:1098. [PMID: 38994951 PMCID: PMC11240811 DOI: 10.3390/cells13131098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024] Open
Abstract
Migraine is a debilitating neurological disorder characterized by recurring episodes of throbbing headaches that are frequently accompanied by sensory disturbances, nausea, and sensitivity to light and sound [...].
Collapse
Affiliation(s)
- Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
| | - Bernadett Tuka
- Department of Radiology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary;
| | - László Vécsei
- HUN-REN-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
2
|
Prado J, Westerink RHS, Popov-Celeketic J, Steen-Louws C, Pandit A, Versteeg S, van de Worp W, Kanters DHAJ, Reedquist KA, Koenderman L, Hack CE, Eijkelkamp N. Cytokine receptor clustering in sensory neurons with an engineered cytokine fusion protein triggers unique pain resolution pathways. Proc Natl Acad Sci U S A 2021; 118:e2009647118. [PMID: 33836560 PMCID: PMC7980471 DOI: 10.1073/pnas.2009647118] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
New therapeutic approaches to resolve persistent pain are highly needed. We tested the hypothesis that manipulation of cytokine receptors on sensory neurons by clustering regulatory cytokine receptor pairs with a fusion protein of interleukin (IL)-4 and IL-10 (IL4-10 FP) would redirect signaling pathways to optimally boost pain-resolution pathways. We demonstrate that a population of mouse sensory neurons express both receptors for the regulatory cytokines IL-4 and IL-10. This population increases during persistent inflammatory pain. Triggering these receptors with IL4-10 FP has unheralded biological effects, because it resolves inflammatory pain in both male and female mice. Knockdown of both IL4 and IL10 receptors in sensory neurons in vivo ablated the IL4-10 FP-mediated inhibition of inflammatory pain. Knockdown of either one of the receptors prevented the analgesic gain-of-function of IL4-10 FP. In vitro, IL4-10 FP inhibited inflammatory mediator-induced neuronal sensitization more effectively than the combination of cytokines, confirming its superior activity. The IL4-10 FP, contrary to the combination of IL-4 and IL-10, promoted clustering of IL-4 and IL-10 receptors in sensory neurons, leading to unique signaling, that is exemplified by activation of shifts in the cellular kinome and transcriptome. Interrogation of the potentially involved signal pathways led us to identify JAK1 as a key downstream signaling element that mediates the superior analgesic effects of IL4-10 FP. Thus, IL4-10 FP constitutes an immune-biologic that clusters regulatory cytokine receptors in sensory neurons to transduce unique signaling pathways required for full resolution of persistent inflammatory pain.
Collapse
Affiliation(s)
- Judith Prado
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands
| | - Remco H S Westerink
- Neurotoxicology Research Group, Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Jelena Popov-Celeketic
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands
| | - Cristine Steen-Louws
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands
| | - Aridaman Pandit
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands
| | - Sabine Versteeg
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands
| | - Wouter van de Worp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands
| | - Deon H A J Kanters
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands
| | - Kris A Reedquist
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands
| | - Leo Koenderman
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands
| | - C Erik Hack
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands
| | - Niels Eijkelkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands;
| |
Collapse
|
3
|
Borsook D, Youssef AM, Simons L, Elman I, Eccleston C. When pain gets stuck: the evolution of pain chronification and treatment resistance. Pain 2018; 159:2421-2436. [PMID: 30234696 PMCID: PMC6240430 DOI: 10.1097/j.pain.0000000000001401] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
It is well-recognized that, despite similar pain characteristics, some people with chronic pain recover, whereas others do not. In this review, we discuss possible contributions and interactions of biological, social, and psychological perturbations that underlie the evolution of treatment-resistant chronic pain. Behavior and brain are intimately implicated in the production and maintenance of perception. Our understandings of potential mechanisms that produce or exacerbate persistent pain remain relatively unclear. We provide an overview of these interactions and how differences in relative contribution of dimensions such as stress, age, genetics, environment, and immune responsivity may produce different risk profiles for disease development, pain severity, and chronicity. We propose the concept of "stickiness" as a soubriquet for capturing the multiple influences on the persistence of pain and pain behavior, and their stubborn resistance to therapeutic intervention. We then focus on the neurobiology of reward and aversion to address how alterations in synaptic complexity, neural networks, and systems (eg, opioidergic and dopaminergic) may contribute to pain stickiness. Finally, we propose an integration of the neurobiological with what is known about environmental and social demands on pain behavior and explore treatment approaches based on the nature of the individual's vulnerability to or protection from allostatic load.
Collapse
Affiliation(s)
- David Borsook
- Center for Pain and the Brain, Boston Children’s (BCH), McLean and Massachusetts Hospitals (MGH), Boston MA
- Departments of Anesthesia (BCH), Psychiatry (MGH, McLean) and Radiology (MGH)
| | - Andrew M Youssef
- Center for Pain and the Brain, Boston Children’s (BCH), McLean and Massachusetts Hospitals (MGH), Boston MA
| | - Laura Simons
- Department of Anesthesia, Stanford University, Palo Alto, CA
| | | | - Christopher Eccleston
- Centre for Pain Research, University of Bath, UK
- Department of Clinical and Health Psychology, Ghent University, Belgium
| |
Collapse
|
4
|
Prado J, Popov-Celeketic J, Steen-Louws C, Raoof R, Hack E, Eijkelkamp N. Development of Recombinant Proteins to Treat Chronic Pain. J Vis Exp 2018. [PMID: 29708532 DOI: 10.3791/57071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Chronic pain is difficult to treat and new approaches to resolve persistent pain are urgently needed. Anti-inflammatory cytokines are promising candidates for treating debilitating pain conditions due to their capacity to regulate aberrant neuro-immune interactions. However, physiologically they work in a network of various cytokines, and therefore their therapeutic effect may not be optimal when used as stand-alone drugs. To overcome this limitation, we developed a fusion protein of the anti-inflammatory cytokines IL4 and IL10. Here, we describe the methods for production and quality control of IL4-10 recombinant fusion protein and we test the effectiveness of the IL4-10 fusion protein to resolve pain in a mouse model of persistent inflammatory pain.
Collapse
Affiliation(s)
- Judith Prado
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University
| | - Jelena Popov-Celeketic
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University
| | - Cristine Steen-Louws
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University
| | - Ramin Raoof
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University
| | - Eric Hack
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University
| | - Niels Eijkelkamp
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University; Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht University;
| |
Collapse
|
5
|
Solstrand Dahlberg L, Linnman CN, Lee D, Burstein R, Becerra L, Borsook D. Responsivity of Periaqueductal Gray Connectivity Is Related to Headache Frequency in Episodic Migraine. Front Neurol 2018; 9:61. [PMID: 29487563 PMCID: PMC5816750 DOI: 10.3389/fneur.2018.00061] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/24/2018] [Indexed: 01/17/2023] Open
Abstract
Migraineurs show hypersensitivity to sensory stimuli at various stages throughout the migraine cycle. A number of putative processes have been implicated including a dysfunction in the descending pain modulatory system in which the periaqueductal gray (PAG) is considered to play a crucial role. Recurring migraine attacks could progressively perturb this system, lowering the threshold for future attacks, and contribute to disease chronification. Here, we investigated PAG connectivity with other brain regions during a noxious thermal stimulus to determine changes in migraineurs, and associations with migraine frequency. 21 episodic migraine patients and 22 matched controls were included in the study. During functional MRI, a thermode was placed on the subjects' temple delivering noxious and non-noxious heat stimuli. A psychophysiological interaction (PPI) analysis was carried out to examine pain-induced connectivity of the PAG with other brain regions. The PPI analysis showed increased PAG connectivity with the S1 face representation area and the supplementary motor area, an area involved with pain expectancy, in patients with higher frequency of migraine attacks. PAG connectivity with regions involved with the descending pain modulatory system (i.e., prefrontal cortex) was decreased in the migraineurs versus healthy individuals. Our results suggest that high frequency migraineurs may have diminished resistance to cephalic pain and a less efficient inhibitory pain modulatory response to external stressor (i.e., noxious heat). The findings support the notion that in migraine there is less effective pain modulation (viz., decreased pain inhibition or increased pain facilitation), potentially contributing to increased occurrence of attacks/chronification of migraine.
Collapse
Affiliation(s)
- Linda Solstrand Dahlberg
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Clas N Linnman
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Danielle Lee
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.,Center for Pain and the Brain, Harvard Medical School, Boston, MA, United States
| | - Rami Burstein
- Department of Anesthesiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Lino Becerra
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Center for Pain and the Brain, Harvard Medical School, Boston, MA, United States.,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - David Borsook
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Center for Pain and the Brain, Harvard Medical School, Boston, MA, United States.,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
6
|
Peng K, Steele SC, Becerra L, Borsook D. Brodmann area 10: Collating, integrating and high level processing of nociception and pain. Prog Neurobiol 2017; 161:1-22. [PMID: 29199137 DOI: 10.1016/j.pneurobio.2017.11.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/16/2017] [Accepted: 11/28/2017] [Indexed: 02/08/2023]
Abstract
Multiple frontal cortical brain regions have emerged as being important in pain processing, whether it be integrative, sensory, cognitive, or emotional. One such region, Brodmann Area 10 (BA 10), is the largest frontal brain region that has been shown to be involved in a wide variety of functions including risk and decision making, odor evaluation, reward and conflict, pain, and working memory. BA 10, also known as the anterior prefrontal cortex, frontopolar prefrontal cortex or rostral prefrontal cortex, is comprised of at least two cytoarchitectonic sub-regions, medial and lateral. To date, the explicit role of BA 10 in the processing of pain hasn't been fully elucidated. In this paper, we first review the anatomical pathways and functional connectivity of BA 10. Numerous functional imaging studies of experimental or clinical pain have also reported brain activations and/or deactivations in BA 10 in response to painful events. The evidence suggests that BA 10 may play a critical role in the collation, integration and high-level processing of nociception and pain, but also reveals possible functional distinctions between the subregions of BA 10 in this process.
Collapse
Affiliation(s)
- Ke Peng
- Center for Pain and the Brain, Harvard Medical School, Boston, MA, United States; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, United States; Department of Psychiatry and Radiology, Massachusetts General Hospital, Charlestown, MA, United States.
| | - Sarah C Steele
- Center for Pain and the Brain, Harvard Medical School, Boston, MA, United States; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, United States; Department of Psychiatry and Radiology, Massachusetts General Hospital, Charlestown, MA, United States
| | - Lino Becerra
- Center for Pain and the Brain, Harvard Medical School, Boston, MA, United States; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, United States; Department of Psychiatry and Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Department of Psychiatry, Mclean Hospital, Belmont, MA, United States
| | - David Borsook
- Center for Pain and the Brain, Harvard Medical School, Boston, MA, United States; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, United States; Department of Psychiatry and Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Department of Psychiatry, Mclean Hospital, Belmont, MA, United States
| |
Collapse
|
7
|
Borsook D, Veggeberg R, Erpelding N, Borra R, Linnman C, Burstein R, Becerra L. The Insula: A "Hub of Activity" in Migraine. Neuroscientist 2016; 22:632-652. [PMID: 26290446 PMCID: PMC5723020 DOI: 10.1177/1073858415601369] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The insula, a "cortical hub" buried within the lateral sulcus, is involved in a number of processes including goal-directed cognition, conscious awareness, autonomic regulation, interoception, and somatosensation. While some of these processes are well known in the clinical presentation of migraine (i.e., autonomic and somatosensory alterations), other more complex behaviors in migraine, such as conscious awareness and error detection, are less well described. Since the insula processes and relays afferent inputs from brain areas involved in these functions to areas involved in higher cortical function such as frontal, temporal, and parietal regions, it may be implicated as a brain region that translates the signals of altered internal milieu in migraine, along with other chronic pain conditions, through the insula into complex behaviors. Here we review how the insula function and structure is altered in migraine. As a brain region of a number of brain functions, it may serve as a model to study new potential clinical perspectives for migraine treatment.
Collapse
Affiliation(s)
- David Borsook
- Pain/Analgesia Imaging Neuroscience (P.A.I.N.) Group, Department of Anesthesia, Boston Children's Hospital, Center for Pain and the Brain, Harvard Medical School, Waltham, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Departments of Psychiatry and Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Rosanna Veggeberg
- Pain/Analgesia Imaging Neuroscience (P.A.I.N.) Group, Department of Anesthesia, Boston Children's Hospital, Center for Pain and the Brain, Harvard Medical School, Waltham, MA, USA
| | - Nathalie Erpelding
- Pain/Analgesia Imaging Neuroscience (P.A.I.N.) Group, Department of Anesthesia, Boston Children's Hospital, Center for Pain and the Brain, Harvard Medical School, Waltham, MA, USA
| | - Ronald Borra
- Pain/Analgesia Imaging Neuroscience (P.A.I.N.) Group, Department of Anesthesia, Boston Children's Hospital, Center for Pain and the Brain, Harvard Medical School, Waltham, MA, USA
| | - Clas Linnman
- Pain/Analgesia Imaging Neuroscience (P.A.I.N.) Group, Department of Anesthesia, Boston Children's Hospital, Center for Pain and the Brain, Harvard Medical School, Waltham, MA, USA
| | - Rami Burstein
- Department of Anesthesia, Beth Israel Deaconess Hospital, Harvard Medical School, Boston, MA, USA
| | - Lino Becerra
- Pain/Analgesia Imaging Neuroscience (P.A.I.N.) Group, Department of Anesthesia, Boston Children's Hospital, Center for Pain and the Brain, Harvard Medical School, Waltham, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Departments of Psychiatry and Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
8
|
Reward deficiency and anti-reward in pain chronification. Neurosci Biobehav Rev 2016; 68:282-297. [DOI: 10.1016/j.neubiorev.2016.05.033] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 12/12/2022]
|
9
|
Maleki N, Barmettler G, Moulton EA, Scrivani S, Veggeberg R, Spierings ELH, Burstein R, Becerra L, Borsook D. Female migraineurs show lack of insular thinning with age. Pain 2016; 156:1232-1239. [PMID: 25775358 DOI: 10.1097/j.pain.0000000000000159] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Gray matter loss in cortical regions is a normal ageing process for the healthy brain. There have been few studies on the process of ageing of the brain in chronic neurological disorders. In this study, we evaluated changes in the cortical thickness by age in 92 female subjects (46 patients with migraine and 46 healthy controls) using high-field magnetic resonance imaging. The results indicate that in contrast to healthy subjects, migraineurs show a lack of thinning in the insula by age. The functional significance of the lack of thinning is unknown, but it may contribute to the overall cortical hyperexcitability of the migraine brain because the region is tightly involved in a number of major brain networks involved in interoception, salience, nociception, and autonomic function, including the default mode network.
Collapse
Affiliation(s)
- Nasim Maleki
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA Center for Pain and the Brain and PAIN Group, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Boston, MA, USA Department of Psychiatry, PAIN Group, Brain Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA, USA Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA Anesthesia and Critical Care, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Becerra L, Bishop J, Barmettler G, Xie Y, Navratilova E, Porreca F, Borsook D. Triptans disrupt brain networks and promote stress-induced CSD-like responses in cortical and subcortical areas. J Neurophysiol 2015; 115:208-17. [PMID: 26490291 DOI: 10.1152/jn.00632.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/18/2015] [Indexed: 12/24/2022] Open
Abstract
A number of drugs, including triptans, promote migraine chronification in susceptible individuals. In rats, a period of triptan administration over 7 days can produce "latent sensitization" (14 days after discontinuation of drug) demonstrated as enhanced sensitivity to presumed migraine triggers such as environmental stress and lowered threshold for electrically induced cortical spreading depression (CSD). Here we have used fMRI to evaluate the early changes in brain networks at day 7 of sumatriptan administration that may induce latent sensitization as well as the potential response to stress. After continuous infusion of sumatriptan, rats were scanned to measure changes in resting state networks and the response to bright light environmental stress. Rats receiving sumatriptan, but not saline infusion, showed significant differences in default mode, autonomic, basal ganglia, salience, and sensorimotor networks. Bright light stress produced CSD-like responses in sumatriptan-treated but not control rats. Our data show the first brain-related changes in a rat model of medication overuse headache and suggest that this approach could be used to evaluate the multiple brain networks involved that may promote this condition.
Collapse
Affiliation(s)
- L Becerra
- P.A.I.N. Group, Boston Children's Hospital, Waltham, Massachusetts; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts; and
| | - J Bishop
- P.A.I.N. Group, Boston Children's Hospital, Waltham, Massachusetts
| | - G Barmettler
- P.A.I.N. Group, Boston Children's Hospital, Waltham, Massachusetts
| | - Y Xie
- Department of Pharmacology, University of Arizona, Tucson, Arizona
| | - E Navratilova
- Department of Pharmacology, University of Arizona, Tucson, Arizona
| | - F Porreca
- Department of Pharmacology, University of Arizona, Tucson, Arizona
| | - D Borsook
- P.A.I.N. Group, Boston Children's Hospital, Waltham, Massachusetts; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts; and
| |
Collapse
|
11
|
Burstein R, Noseda R, Borsook D. Migraine: multiple processes, complex pathophysiology. J Neurosci 2015; 35:6619-29. [PMID: 25926442 PMCID: PMC4412887 DOI: 10.1523/jneurosci.0373-15.2015] [Citation(s) in RCA: 517] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/09/2015] [Accepted: 03/20/2015] [Indexed: 12/29/2022] Open
Abstract
Migraine is a common, multifactorial, disabling, recurrent, hereditary neurovascular headache disorder. It usually strikes sufferers a few times per year in childhood and then progresses to a few times per week in adulthood, particularly in females. Attacks often begin with warning signs (prodromes) and aura (transient focal neurological symptoms) whose origin is thought to involve the hypothalamus, brainstem, and cortex. Once the headache develops, it typically throbs, intensifies with an increase in intracranial pressure, and presents itself in association with nausea, vomiting, and abnormal sensitivity to light, noise, and smell. It can also be accompanied by abnormal skin sensitivity (allodynia) and muscle tenderness. Collectively, the symptoms that accompany migraine from the prodromal stage through the headache phase suggest that multiple neuronal systems function abnormally. As a consequence of the disease itself or its genetic underpinnings, the migraine brain is altered structurally and functionally. These molecular, anatomical, and functional abnormalities provide a neuronal substrate for an extreme sensitivity to fluctuations in homeostasis, a decreased ability to adapt, and the recurrence of headache. Advances in understanding the genetic predisposition to migraine, and the discovery of multiple susceptible gene variants (many of which encode proteins that participate in the regulation of glutamate neurotransmission and proper formation of synaptic plasticity) define the most compelling hypothesis for the generalized neuronal hyperexcitability and the anatomical alterations seen in the migraine brain. Regarding the headache pain itself, attempts to understand its unique qualities point to activation of the trigeminovascular pathway as a prerequisite for explaining why the pain is restricted to the head, often affecting the periorbital area and the eye, and intensifies when intracranial pressure increases.
Collapse
Affiliation(s)
- Rami Burstein
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, Harvard Medical School, Boston, Massachusetts 02115
| | - Rodrigo Noseda
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, Harvard Medical School, Boston, Massachusetts 02115
| | - David Borsook
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, and Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
12
|
Dahlem MA, Schmidt B, Bojak I, Boie S, Kneer F, Hadjikhani N, Kurths J. Cortical hot spots and labyrinths: why cortical neuromodulation for episodic migraine with aura should be personalized. Front Comput Neurosci 2015; 9:29. [PMID: 25798103 PMCID: PMC4350394 DOI: 10.3389/fncom.2015.00029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/18/2015] [Indexed: 12/26/2022] Open
Abstract
Stimulation protocols for medical devices should be rationally designed. For episodic migraine with aura we outline model-based design strategies toward preventive and acute therapies using stereotactic cortical neuromodulation. To this end, we regard a localized spreading depression (SD) wave segment as a central element in migraine pathophysiology. To describe nucleation and propagation features of the SD wave segment, we define the new concepts of cortical hot spots and labyrinths, respectively. In particular, we firstly focus exclusively on curvature-induced dynamical properties by studying a generic reaction-diffusion model of SD on the folded cortical surface. This surface is described with increasing level of details, including finally personalized simulations using patient's magnetic resonance imaging (MRI) scanner readings. At this stage, the only relevant factor that can modulate nucleation and propagation paths is the Gaussian curvature, which has the advantage of being rather readily accessible by MRI. We conclude with discussing further anatomical factors, such as areal, laminar, and cellular heterogeneity, that in addition to and in relation to Gaussian curvature determine the generalized concept of cortical hot spots and labyrinths as target structures for neuromodulation. Our numerical simulations suggest that these target structures are like fingerprints, they are individual features of each migraine sufferer. The goal in the future will be to provide individualized neural tissue simulations. These simulations should predict the clinical data and therefore can also serve as a test bed for exploring stereotactic cortical neuromodulation.
Collapse
Affiliation(s)
- Markus A Dahlem
- Department of Physics, Humboldt-Universität zu Berlin Berlin, Germany ; Department of Biological Physik, Max Planck Institute for the Physics of Complex Systems Dresden, Germany
| | - Bernd Schmidt
- Department of Physics, Humboldt-Universität zu Berlin Berlin, Germany
| | - Ingo Bojak
- Cybernetics Research Group, School of Systems Engineering, University of Reading Reading, UK
| | - Sebastian Boie
- Department of Mathematics, The University of Auckland Auckland, New Zealand
| | - Frederike Kneer
- Department of Software Engineering and Theoretical Computer Science, Technische Universität Berlin Berlin, Germany
| | - Nouchine Hadjikhani
- Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital Charlestown, MA, USA
| | - Jürgen Kurths
- Department of Physics, Humboldt-Universität zu Berlin Berlin, Germany ; Potsdam Institute for Climate Impact Research Potsdam, Germany ; Institute for Complex Systems and Mathematical Biology, University of Aberdeen Aberdeen, UK
| |
Collapse
|