1
|
Liu S, Wang C, Guo J, Yang Y, Huang M, Li L, Wang Y, Qin Y, Zhang M. Serum Cytokines Predict the Severity of Coronary Artery Disease Without Acute Myocardial Infarction. Front Cardiovasc Med 2022; 9:896810. [PMID: 35651907 PMCID: PMC9149173 DOI: 10.3389/fcvm.2022.896810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/25/2022] [Indexed: 12/05/2022] Open
Abstract
Introduction Various cytokines were involved in the process of atherosclerosis, and their serum levels were correlated with coronary artery disease (CAD) to varying degrees. However, there were limited reports about the correlation between serum cytokines and the severity of coronary atherosclerotic lesion in patients with non-acute myocardial infarction (AMI). The purpose of this study was to investigate the relationship between serum cytokines and the severity of CAD, and identify the predictors of severe CAD in patients suspected to have CAD but AMI had been ruled out. Methods A total of 502 patients who had suspected CAD and underwent coronary angiography were enrolled. The serum levels of IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12p70, IL-17, TNF-α, IFN-α,and IFN-γ were determined by multiplexed particle-based flow cytometric assays technology. And the severity of CAD was evaluated by Gensini score (GS). Results The serum levels of IL-4, IL-12p70, IL-17, and IFN-α were significantly lower in the severe CAD group (GS≥30) than those in the non-severe CAD group (GS < 30). And IL-12p70 and IL-17 were negatively correlated with the severity of CAD. Multivariate logistic regression analyses demonstrated that two serum cytokines (IL-12p70 and IL-17), one clinical protective factor (HDL-C), and two clinical risk factors (gender and diabetes) were the independent predictors of severe CAD. ROC curve analysis showed that multivariate mode combined these predictors had a good performance in predicting severe CAD. Conclusion The combination of serum cytokines (IL-12p70 and IL-17) and clinical risk factors (HDL-C, gender, and diabetes) may help identify patients with more severe coronary artery lesions from those with suspected CAD but not AMI, and may contribute to guiding the risk stratification for patients with chest discomfort in health care facilities without sufficient medical resources (especially cardiac catheterization resources).
Collapse
Affiliation(s)
- Sheng Liu
- Center for Coronary Heart Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Chenyang Wang
- Center for Coronary Heart Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jinzhu Guo
- Department of Cardiology, Baotou Jiuyuan District Hospital, Baotou, China
| | - Yunxiao Yang
- Surgical Center of Structural Heart Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Mengling Huang
- Center for Coronary Heart Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Li Li
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yu Wang
- Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yanwen Qin
- Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ming Zhang
- Center for Coronary Heart Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Lian Z, Song JX, Yu SR, Su LN, Cui YX, Li SF, Lee CY, Liang HZ, Chen H. Therapeutic targets of rosuvastatin on heart failure and associated biological mechanisms: A study of network pharmacology and experimental validation. Eur J Pharmacol 2021; 895:173888. [PMID: 33493484 DOI: 10.1016/j.ejphar.2021.173888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 11/20/2022]
Abstract
To explore the potential targets underlying the effect of rosuvastatin on heart failure (HF) by utilizing a network pharmacology approach and experiments to identify the results. PharmMapper and other databases were mined for information relevant to the prediction of rosuvastatin targets and HF-related targets. Then, the rosuvastatin-HF target gene networks were created in Cytoscape software. Eventually, the targets and enriched pathways were examined by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Furthermore, we constructed an HF animal model and used rosuvastatin to treat them, identifying the changes in heart function and related protein expression. We further used different cells to explore the mechanisms of rosuvastatin. Thirty-five intersection targets indicated the therapeutic targets linked to HF. GO analysis showed that 481 biological processes, 4 cellular components and 23 molecular functions were identified. KEGG analysis showed 13 significant treatment pathways. In animal experiments, rosuvastatin significantly improved the cardiac function of post-myocardial infarction mice and prevented the development of HF after myocardial infarction by inhibiting IL-1Β expression. Cell experiments showed that rosuvastatin could reduce the expression of IL-1B in HUVEC and THP-1 cells. The therapeutic mechanism of rosuvastatin against HF may be closely related to the inhibition of the expression of apoptosis-related proteins, inflammatory factors, and fibrosis-related genes. However, IL-1Β is one of the most important target genes.
Collapse
Affiliation(s)
- Zheng Lian
- Department of Cardiology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China; Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Jun-Xian Song
- Department of Cardiology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China; Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Shi-Ran Yu
- Department of Cardiology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China; Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Li-Na Su
- Department of Cardiology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China; Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Yu-Xia Cui
- Department of Cardiology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China; Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Su-Fang Li
- Department of Cardiology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China; Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Chong-Yoo Lee
- Department of Cardiology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China; Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Hui-Zhu Liang
- Department of Cardiology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China; Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Hong Chen
- Department of Cardiology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China; Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
3
|
Gong L, Wang X, Pan J, Zhang M, Liu D, Liu M, Li L, An F. The co-treatment of rosuvastatin with dapagliflozin synergistically inhibited apoptosis via activating the PI3K/AKt/mTOR signaling pathway in myocardial ischemia/reperfusion injury rats. Open Med (Wars) 2020; 15:47-57. [PMID: 33385063 PMCID: PMC7754177 DOI: 10.1515/med-2021-0005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/10/2020] [Accepted: 11/09/2020] [Indexed: 01/05/2023] Open
Abstract
Objective The purpose of the present study was to evaluate the role of co-treatment of rosuvastatin (RSV) and dapagliflozin (DGZ) preconditioning in myocardium ischemia/reperfusion (I/R) injury and to further investigate the underlying mechanism. Methods Sprague-Dawley (SD) rats (n = 25) were divided into five groups randomly: (1) Sham, (2) I/R, (3) I/R + RSV (10 mg/kg), (4) IR + DGZ (1 mg/kg), and (5) I/R + RSV (10 mg/kg) + DGZ (1 mg/kg). The I/R model was induced with 30 min of left anterior descending occlusion followed by 120 min of reperfusion. Results In vivo pretreatment with RSV and DGZ, respectively, showed a significant reduction of infarction size, a significant increase in the levels of left ventricular systolic pressure, and maximal rate increase in left ventricular pressure (+dp/dtmax), decrease in the levels of left ventricular end-diastolic pressure (LVEDP), maximal rate of decrease of left ventricular pressure (−dp/dtmax) and activity of cardiac enzymes of creatine kinase (CK), creatine kinase MB isoenzymes (CK-MB), and hyper-tensive cardiac troponin I compared with the I/R group. H9C2 cells were exposed to hypoxia/reoxygenation to simulate an I/R model. In vitro administration of 25 µM RSV and 50 µM DGZ significantly enhanced cell viability, upregulated the expression levels of p-PI3K, p-Akt, p-mTOR, and Bcl-2, whereas it downregulated cleaved-caspase3, Bax. TUNEL assay indicated that pretreatment with RSV and DGZ decreased the apoptosis of H9C2 cells. Conclusion The combination of RSV and DGZ significantly enhances the cardioprotective effects compared with RSV or DGZ alone. RSV and DGZ have the potential cardioprotective effects against I/R injury by activating the PI3K/AKt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Lei Gong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 WenHuaXi Road, Jinan, Shandong 250012, China.,The Second Affiliated Hospital of Xuzhou Medical University, No.32 MeiJian Road, Quanshan District, Xuzhou, Jiangsu 221000, China
| | - Xuyang Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 WenHuaXi Road, Jinan, Shandong 250012, China
| | - Jinyu Pan
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 WenHuaXi Road, Jinan, Shandong 250012, China
| | - Mingjun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 WenHuaXi Road, Jinan, Shandong 250012, China
| | - Dian Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 WenHuaXi Road, Jinan, Shandong 250012, China
| | - Ming Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 WenHuaXi Road, Jinan, Shandong 250012, China
| | - Li Li
- The Second Affiliated Hospital of Xuzhou Medical University, No.32 MeiJian Road, Quanshan District, Xuzhou, Jiangsu 221000, China
| | - Fengshuang An
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 WenHuaXi Road, Jinan, Shandong 250012, China
| |
Collapse
|
4
|
Xu J, Xiong Y, Li Q, Hu M, Huang P, Xu J, Tian X, Jin C, Liu J, Qian L, Yang Y. Optimization of Timing and Times for Administration of Atorvastatin-Pretreated Mesenchymal Stem Cells in a Preclinical Model of Acute Myocardial Infarction. Stem Cells Transl Med 2019; 8:1068-1083. [PMID: 31245934 PMCID: PMC6766601 DOI: 10.1002/sctm.19-0013] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/25/2019] [Indexed: 12/14/2022] Open
Abstract
Our previous studies showed that the combination of atorvastatin (ATV) and single injection of ATV-pretreated mesenchymal stem cells (MSCs) (ATV -MSCs) at 1 week post-acute myocardial infarction (AMI) promoted MSC recruitment and survival. This study aimed to investigate whether the combinatorial therapy of intensive ATV with multiple injections of ATV -MSCs has greater efficacy at different stages to better define the optimal strategy for MSC therapy in AMI. In order to determine the optimal time window for MSC treatment, we first assessed stromal cell-derived factor-1 (SDF-1) dynamic expression and inflammation. Next, we compared MSC recruitment and differentiation, cardiac function, infarct size, and angiogenesis among animal groups with single, dual, and triple injections of ATV -MSCs at early (Early1, Early2, Early3), mid-term (Mid1, Mid2, Mid3), and late (Late1, Late2, Late3) stages. Compared with AMI control, intensive ATV significantly augmented SDF-1 expression 1.5∼2.6-fold in peri-infarcted region with inhibited inflammation. ATV -MSCs implantation with ATV administration further enhanced MSC recruitment rate by 3.9%∼24.0%, improved left ventricular ejection fraction (LVEF) by 2.0%∼16.2%, and reduced infarct size in all groups 6 weeks post-AMI with most prominent improvement in mid groups and still effective in late groups. Mechanistically, ATV -MSCs remarkably suppressed inflammation and apoptosis while increasing angiogenesis. Furthermore, triple injections of ATV -MSCs were much more effective than single administration during early and mid-term stages of AMI with the best effects in Mid3 group. We conclude that the optimal strategy is multiple injections of ATV -MSCs combined with intensive ATV administration at mid-term stage of AMI. The translational potential of this strategy is clinically promising. Stem Cells Translational Medicine 2019;8:1068-1083.
Collapse
Affiliation(s)
- Jun Xu
- State Key Laboratory of Cardiovascular DiseaseFuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople's Republic of China
- McAllister Heart Institute, University of North Carolina at Chapel HillChapel HillNorth CarolinaUnited States
- Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUnited States
| | - Yu‐Yan Xiong
- State Key Laboratory of Cardiovascular DiseaseFuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Qing Li
- State Key Laboratory of Cardiovascular DiseaseFuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Meng‐Jin Hu
- State Key Laboratory of Cardiovascular DiseaseFuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Pei‐Sen Huang
- State Key Laboratory of Cardiovascular DiseaseFuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople's Republic of China
- McAllister Heart Institute, University of North Carolina at Chapel HillChapel HillNorth CarolinaUnited States
- Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUnited States
| | - Jun‐Yan Xu
- State Key Laboratory of Cardiovascular DiseaseFuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Xia‐Qiu Tian
- State Key Laboratory of Cardiovascular DiseaseFuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Chen Jin
- State Key Laboratory of Cardiovascular DiseaseFuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Jian‐Dong Liu
- McAllister Heart Institute, University of North Carolina at Chapel HillChapel HillNorth CarolinaUnited States
- Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUnited States
| | - Li Qian
- McAllister Heart Institute, University of North Carolina at Chapel HillChapel HillNorth CarolinaUnited States
- Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUnited States
| | - Yue‐Jin Yang
- State Key Laboratory of Cardiovascular DiseaseFuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople's Republic of China
| |
Collapse
|
5
|
Wei W, Peng J, Shen T. Rosuvastatin Alleviates Ischemia/Reperfusion Injury in Cardiomyocytes by Downregulating Hsa-miR-24-3p to Target Upregulated Uncoupling Protein 2. Cell Reprogram 2019; 21:99-107. [PMID: 30835496 DOI: 10.1089/cell.2018.0039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Statins could reduce the risks of coronary heart disease death and ischemic cardiovascular events. In this study, we aim to explore the role of rosuvastatin in ischemia/reperfusion (I/R)-injured cardiomyocytes and the possible mechanism. An I/R model was established by oxygen-glucose deprivation/reperfusion (OGD/R). The protective effects of rosuvastatin pretreatment on OGD/R-injured cardiomyocytes were performed using MTT assay, lactate dehydrogenase (LDH) release assay, and quantitative real-time polymerase chain reaction (qRT-PCR). Bioinformatics software TargetScan and miRTarBase were used to predict the targeted miRNAs with uncoupling protein (UCP)2. Furthermore, verify the binding capacity of hsa-miR-24-3p and UCP2 with qRT-PCR and dual-luciferase reporter assay. The expression of UCP2, cell viability, LDH level, and apoptosis level affected by downregulated hsa-miR-24-3p were assessed using qRT-PCR, western blotting, MTT, the LDH kit, and flow cytometry. Pretreatment with rosuvastatin could significantly augment cell viability, reduce LDH level, increase the expression of UCP2, and downregulate hsa-miR-24-3p in OGD/R-injured H9c2 cells. miR-24-3p was closely connected with UCP2, and downregulated miR-24-3p could promote UCP2 expression, which presented cell viability increasing, LDH release and cell apoptosis inhibition in OGD/R condition. Moreover, it decreased the protein expression of Cleaved-Caspase-9 and Cyto C. This is the first time our study suggests that rosuvastatin pretreatment protects cardiomyocytes from OGD/R through upregulating UCP2 through downregulation of hsa-miR-24-3p.
Collapse
Affiliation(s)
- Wenjuan Wei
- 1 Department of Cardiovascular Medicine, The First People's Hospital of Xiaoshan Hangzhou, Hangzhou, China
| | - Jun Peng
- 1 Department of Cardiovascular Medicine, The First People's Hospital of Xiaoshan Hangzhou, Hangzhou, China
| | - Ting Shen
- 2 Electrocardiogram Room of Department of Functional Examination, Zhejiang Province Tongde Hospital, Hangzhou, China
| |
Collapse
|
6
|
Liu P, An Q, Chen X, Huang J, Yang GY, Zhu W. Rosuvastatin for enhancement of aneurysm neck endothelialization after coil embolization: promotion of endothelial progenitor cells in a rodent model. J Neurosurg 2016; 124:1265-74. [DOI: 10.3171/2015.3.jns142841] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT
Coil embolization is a safe, efficient, and minimally invasive technique for the treatment of intracranial aneurysms. However, coil embolization is associated with a higher risk of recurrence than clip ligation. In this study, the authors explore a new approach through the promotion of endothelial progenitor cells (EPCs) to optimize endothelialization of the aneurysm neck and reduce the risk of recurrence.
METHODS
A coiled aneurysm model was created in 48 adult male Sprague-Dawley rats via microsurgery. Half of these animals were treated with rosuvastatin (20 mg/kg) in saline via gavage for 10, 20, or 30 days. The other half were administered saline without rosuvastatin. An additional 15 rats underwent “mock surgery” (identical anesthesia and saline gavage but no surgery). The endothelial repair process in the coiled aneurysms was evaluated via flow cytometry, im-munostaining, and electronic microscopy. The mock surgery group was used for comparison in flow cytometry studies. The effects of rosuvastatin on viability and functioning of Sprague-Dawley rat bone marrow-derived EPCs were also explored via MTT, migration, and tube formation assays.
RESULTS
The aneurysm neck repair score was significantly higher in the rosuvastatin-treated rats than in the untreated rats (p < 0.05). The circulating EPC count was increased and maintained at a higher level in rosuvastatin-treated rats compared with the aneurysm rats that did not receive rosuvastatin (p < 0.05). Immunostaining showed that the aneurysm neck endothelium was more integrated and the number of kinase insert domain receptor-positive cells was increased in the rosuvastatin-treated rats. Further study demonstrated that rosuvastatin promoted EPC proliferation, migration, and tube formation.
CONCLUSIONS
Rosuvastatin promoted endothelialization of the coiled aneurysm neck via induction of EPCs, suggesting that promoting endothelialization provides an additional therapeutic opportunity during vascular endothelium repair.
Collapse
Affiliation(s)
- Peixi Liu
- 1Department of Neurosurgery, Huashan Hospital of Fudan University
| | - Qingzhu An
- 1Department of Neurosurgery, Huashan Hospital of Fudan University
| | - Xi Chen
- 1Department of Neurosurgery, Huashan Hospital of Fudan University
| | - Jun Huang
- 3Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- 2Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; and
- 3Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Zhu
- 1Department of Neurosurgery, Huashan Hospital of Fudan University
| |
Collapse
|
7
|
Zhang Y, Sun M, Han Y, Zhai K, Tang Y, Qin X, Cao Z, Yu B, Kou J. The saponin DT-13 attenuates tumor necrosis factor-α-induced vascular inflammation associated with Src/NF-кB/MAPK pathway modulation. Int J Biol Sci 2015; 11:970-81. [PMID: 26157351 PMCID: PMC4495414 DOI: 10.7150/ijbs.11635] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/15/2015] [Indexed: 01/20/2023] Open
Abstract
This study aimed to explore the effect of DT-13 (25(R,S)-ruscogenin- 1-O- [β-d-glucopyranosyl- (1→2)][β-d-xylopyranosyl-(1→3)]-β -d- fucopyranoside) on tumor necrosis factor (TNF)-α-induced vascular inflammation and the potential molecular mechanisms. In vitro, DT-13 suppressed TNF-α-induced adhesion and migration of human umbilical vein endothelial cells (HUVECs) by inhibiting the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). DT-13 markedly suppressed NF-кB p65 phosphorylation, and when NF-кB p65 was over-expressed, the inhibitory effect of DT-13 on adhesion molecular decreased. DT-13 also suppressed TNF-α induced luciferase activities of ICAM-1 and VCAM-1 promoter containing NF-κB binding sites. Furthermore, DT-13 markedly suppressed p38 phosphorylation and Src degradation induced by TNF-α, whereas had no significant effect on ERK and JNK activation. In vivo, DT-13 at 4 mg/kg prevented vascular inflammation and the expression of adhesion molecules induced by TNF-α in mice. These findings suggest that DT-13 abrogates vascular inflammation by down-regulating adhesion molecules associated with modulating the NF-кB, p38MAPK, Src signaling pathways, and NF-κB binding site is at least one of the targets of DT-13. This study provides novel information regarding the mechanism by which DT-13 exerts its effects on vascular inflammation, which is important for the onset and progression of various diseases.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Minhui Sun
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Yuwei Han
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Kefeng Zhai
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Youmei Tang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Xiaoying Qin
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Zhengyu Cao
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Junping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| |
Collapse
|
8
|
Nigro P, Perrucci GL, Gowran A, Zanobini M, Capogrossi MC, Pompilio G. c-kit(+) cells: the tell-tale heart of cardiac regeneration? Cell Mol Life Sci 2015; 72:1725-40. [PMID: 25575564 PMCID: PMC11113938 DOI: 10.1007/s00018-014-1832-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/18/2014] [Accepted: 12/30/2014] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease is the leading cause of morbidity and mortality in the developed world. Although ongoing therapeutic strategies ameliorate symptoms and prolong life for patients with cardiovascular diseases, they do not solve the critical issue related to the loss of cardiac tissue. Accordingly, stem/progenitor cell therapy has emerged as a paramount approach for cardiac repair and regeneration. In this regard, c-kit(+) cells have animated much interest and controversy. These cells are self-renewing, clonogenic, and multipotent and display a noteworthy potential to differentiate into all cardiovascular lineages. However, their functional contribution to cardiomyocyte turnover is one of the centrally debated issues concerning their regenerative potential. Regardless, plentiful preclinical and clinical studies have been conducted which provide evidence for the capacity of c-kit(+) cells to improve cardiac function. The purpose of this review is to give a comprehensive, impartial, critical description and evaluation of the literature on c-kit(+) cells from bench to bedside in order to address their true potential, benefits and controversies.
Collapse
Affiliation(s)
- Patrizia Nigro
- Laboratory of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138, Milan, Italy,
| | | | | | | | | | | |
Collapse
|
9
|
Wang M, Li Z, Zhang X, Xie X, Zhang Y, Wang X, Hou Y. Rosuvastatin attenuates atrial structural remodelling in rats with myocardial infarction through the inhibition of the p38 MAPK signalling pathway. Heart Lung Circ 2014; 24:386-94. [PMID: 25613240 DOI: 10.1016/j.hlc.2014.11.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 09/14/2014] [Accepted: 11/08/2014] [Indexed: 01/12/2023]
Abstract
OBJECTIVE The purpose of this study was to verify the hypothesis that rosuvastatin attenuates atrial structural remodelling in rats with myocardial infarction (MI) through the regulation of the p38 mitogen-activated protein kinase (MAPK) signalling pathway. METHODS A total of 66 rats were used in this study to establish a model of MI. The 56 rats that survived the first 24h after surgery were randomly divided into four groups: the control group (C group), the rosuvastatin group (R group), the low-dose torasemide group (T1 group), and the high-dose torasemide group (T2 group). The four groups of rats received daily intragastric administration of normal saline, rosuvastatin, or torasemide (T1: 1mg/kg body weight; T2: 2mg/kg body weight) for a total of four weeks. The rats in the sham-operated group (n=14) also received daily intragastric administration of normal saline for four weeks. After four weeks of intervention, the left ventricular end-diastolic pressure (LVEDP) was measured in all groups of rats by haemodynamic methods. The rats were then sacrificed, and the left atrial tissues were collected. The collagen volume fractions (CVFs) in the left atrial tissues were determined using Masson's trichrome staining. The expression of phosphorylated p38 (P-p38) MAPK in the left atrial tissues was examined by immunohistochemistry and western blot analysis. RESULTS The results showed that LVEDP, CVF, and P-p38 MAPK expression were drastically elevated in the four MI groups in comparison to the sham-operated group (p<0.001). Rosuvastatin elevated the left ventricular fractional shortening (LVFS) and left ventricular ejection fraction (LVEF). Both rosuvastatin and torasemide improved the haemodynamic parameters. No significant difference was detected in LVEDP between the R group and the T1 group (p=0.37). In contrast, LVEDP was significantly higher in the R group than in the T2 group (p <0.05). CVF (%) was markedly decreased in the R group compared to the C, T1, and T2 groups (decreased by 47.4%, 28%, and 20.1%, respectively). Immunohistochemical analysis showed that the indices of P-p38 MAPK positive cells were significantly decreased in the R group in comparison with the C, T1, and T2 groups (decreased by 44.6%, 36.6%, and 21.4%, respectively). Western blot analysis demonstrated that P-p38 MAPK expression was markedly reduced in the R group compared with the C and T1 groups (reduced by 67% and 40.5%, respectively). The level of P-p38 MAPK in the R group was slightly higher than in the T2 group. However, the difference was not statistically significant (p>0.05). CONCLUSION Rosuvastatin attenuates atrial structural remodelling in rats with MI. The mechanism underlying this phenomenon may be associated with the downregulation of P-p38 MAPK by rosuvastatin.
Collapse
Affiliation(s)
- Mengzan Wang
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China; Department of Cardiology, People's Hospital of Liaocheng, Liaocheng 252000, PR China
| | - Zhiyuan Li
- Department of Cardiology, Shandong Provincial Taishan Hospital, Taian 271000, PR China; Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Xiaohong Zhang
- Department of Echocardiography, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Xinxing Xie
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Yujiao Zhang
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Ximin Wang
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Yinglong Hou
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China.
| |
Collapse
|