1
|
Askarizadeh F, Butler AE, Kesharwani P, Sahebkar A. Regulatory effect of curcumin on CD40:CD40L interaction and therapeutic implications. Food Chem Toxicol 2025; 200:115369. [PMID: 40043936 DOI: 10.1016/j.fct.2025.115369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/24/2025] [Accepted: 03/02/2025] [Indexed: 04/21/2025]
Abstract
Natural compounds have garnered significant attention as potential therapeutic agents due to their inherent properties. Their notable qualities, including safety, efficacy, favorable pharmacokinetic properties, and heightened effectiveness against certain diseases, particularly inflammatory conditions, make them particularly appealing. Among these compounds, curcumin has attracted considerable interest for its unique therapeutic properties and has therefore been extensively studied as a potential therapeutic agent for treating various diseases. Curcumin exhibits diverse anti-inflammatory, antioxidant, and antimicrobial effects. Curcumin's immune system regulatory ability has made it a promising compound for treatment of various inflammatory diseases, such as psoriasis, atherosclerosis, asthma, colitis, IBD, and arthritis. Among the signaling pathways implicated in these conditions, the CD40 receptor together with its ligand, CD40L, are recognized as central players. Studies have demonstrated that the interaction between CD40 and CD40L interaction acts as the primary mediator of the immune response in inflammatory diseases. Numerous studies have explored the impact of curcumin on the CD40:CD40L pathway, highlighting its regulatory effects on this inflammatory pathway and its potential therapeutic use in related inflammatory conditions. In this review, we will consider the evidence concerning curcumin's modulatory effects in inflammatory disease and its potential therapeutic role in regulating the CD40:CD40L pathway.
Collapse
Affiliation(s)
- Fatemeh Askarizadeh
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha Medical College and Hospitals, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Allard CC, Salti S, Mourad W, Hassan GS. Implications of CD154 and Its Receptors in the Pathogenesis and Treatment of Systemic Lupus Erythematosus. Cells 2024; 13:1621. [PMID: 39404385 PMCID: PMC11482534 DOI: 10.3390/cells13191621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
CD154, also known as CD40 ligand, is a costimulatory molecule involved in humoral and adaptive immune responses upon pairing with its classical receptor, CD40. The CD154/CD40 dyad is a key participant in the pathogenesis of many autoimmune diseases, including systemic lupus erythematosus (SLE). In SLE, the major cells at play, T and B lymphocytes, are shown to overexpress CD154 and CD40, respectively. Subsequently, these cells and other CD40-positive cells engage in numerous effector functions contributing to SLE development. With the recent identification of additional receptors for CD154, all belonging to the integrin family, the role of CD154 in SLE is more complex and calls for deeper investigation into its biological significance. Many therapeutic strategies directed against the CD154/CD40 couple have been deployed for the treatment of SLE and proved efficient in animal models and human studies. However, the incidence of thromboembolic complications in patients treated with these anti-CD154/CD40 antibodies halted their further clinical assessments and called for another class of therapies targeting these molecules. Second-generation antibodies directed against CD154 or CD40 are showing promising results in the advanced stages of clinical testing. Our review presents a thorough description of CD154 and its receptors, CD40 and the integrin family members in SLE pathogenesis. All these elements of the CD154 system represent important therapeutic targets for the treatment of SLE.
Collapse
Affiliation(s)
| | | | - Walid Mourad
- Laboratoire d’Immunologie Cellulaire et Moléculaire, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Rue Saint-Denis, Tour Viger, Montréal, QC H2X 0A9, Canada; (C.C.A.); (S.S.)
| | - Ghada S. Hassan
- Laboratoire d’Immunologie Cellulaire et Moléculaire, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Rue Saint-Denis, Tour Viger, Montréal, QC H2X 0A9, Canada; (C.C.A.); (S.S.)
| |
Collapse
|
3
|
Yu D, Lu Z, Chong Y. Integrins as a bridge between bacteria and cells: key targets for therapeutic wound healing. BURNS & TRAUMA 2024; 12:tkae022. [PMID: 39015251 PMCID: PMC11250365 DOI: 10.1093/burnst/tkae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 12/17/2023] [Accepted: 04/22/2024] [Indexed: 07/18/2024]
Abstract
Integrins are heterodimers composed of α and β subunits that are bonded through non-covalent interactions. Integrins mediate the dynamic connection between extracellular adhesion molecules and the intracellular actin cytoskeleton. Integrins are present in various tissues and organs where these heterodimers participate in diverse physiological and pathological responses at the molecular level in living organisms. Wound healing is a crucial process in the recovery from traumatic diseases and comprises three overlapping phases: inflammation, proliferation and remodeling. Integrins are regulated during the entire wound healing process to enhance processes such as inflammation, angiogenesis and re-epithelialization. Prolonged inflammation may result in failure of wound healing, leading to conditions such as chronic wounds. Bacterial colonization of a wound is one of the primary causes of chronic wounds. Integrins facilitate the infectious effects of bacteria on the host organism, leading to chronic inflammation, bacterial colonization, and ultimately, the failure of wound healing. The present study investigated the role of integrins as bridges for bacteria-cell interactions during wound healing, evaluated the role of integrins as nodes for bacterial inhibition during chronic wound formation, and discussed the challenges and prospects of using integrins as therapeutic targets in wound healing.
Collapse
Affiliation(s)
- Dong Yu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
| | - Zhaoyu Lu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
| | - Yang Chong
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
| |
Collapse
|
4
|
Novel Functions of Integrins as Receptors of CD154: Their Role in Inflammation and Apoptosis. Cells 2022; 11:cells11111747. [PMID: 35681441 PMCID: PMC9179867 DOI: 10.3390/cells11111747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 12/16/2022] Open
Abstract
CD154, an inflammatory mediator also known as CD40 ligand, has been identified as a novel binding partner for some members of the integrin family. The αIIbβ3, specifically expressed on platelets, was the first integrin to be described as a receptor for CD154 after CD40. Its interaction with soluble CD154 (sCD154) highly contributes to thrombus formation and stability. Identifying αIIbβ3 opened the door for investigating other integrins as partners of CD154. The αMβ2 expressed on myeloid cells was shown capable of binding CD154 and contributing as such to cell activation, adhesion, and release of proinflammatory mediators. In parallel, α5β1 communicates with sCD154, inducing pro-inflammatory responses. Additional pathogenic effects involving apoptosis-preventing functions were exhibited by the CD154–α5β1 dyad in T cells, conferring a role for such interaction in the survival of malignant cells, as well as the persistence of autoreactive T cells. More recently, CD154 receptors integrated two new integrin members, αvβ3 and α4β1, with little known as to their biological significance in this context. This article provides an overview of the novel role of integrins as receptors of CD154 and as critical players in pro-inflammatory and apoptotic responses.
Collapse
|
5
|
Bosmans LA, Bosch L, Kusters PJH, Lutgens E, Seijkens TTP. The CD40-CD40L Dyad as Immunotherapeutic Target in Cardiovascular Disease. J Cardiovasc Transl Res 2020; 14:13-22. [PMID: 32222950 PMCID: PMC7892683 DOI: 10.1007/s12265-020-09994-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/18/2020] [Indexed: 12/14/2022]
Abstract
Chronic inflammation drives the development of atherosclerosis. Despite optimal treatment of classical cardiovascular risk factors, a substantial portion of the population has elevated inflammatory biomarkers and develops atherosclerosis-related complications, indicating that a residual inflammatory risk drives atherosclerotic cardiovascular disease in these patients. Additional anti-inflammatory therapeutic strategies are therefore required. The co-stimulatory molecule CD40 and its ligand CD40L (CD154) have a central role in the regulation of the inflammatory response during the development of atherosclerosis by modulating the interaction between immune cells and between immune cells and non-immune cells. In this review, we discuss the role of the CD40-CD40L dyad in atherosclerosis, and we discuss recent studies on the therapeutic potential of novel CD40-CD40L targeting strategies in cardiovascular medicine.
Collapse
Affiliation(s)
- Laura A Bosmans
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Lena Bosch
- Experimental Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pascal J H Kusters
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands.,Department of Pathology, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Esther Lutgens
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands.,Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian's University, Munich, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Tom T P Seijkens
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Gligorijevic N, Robajac D, Nedic O. Enhanced Platelet Sensitivity to IGF-1 in Patients with Type 2 Diabetes Mellitus. BIOCHEMISTRY (MOSCOW) 2019; 84:1213-1219. [PMID: 31694517 DOI: 10.1134/s0006297919100109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Diabetes mellitus is characterized by increased platelet activation which is determined by many factors including changes in the expression of membrane proteins. The aim of this study was to investigate the sensitivity of human platelets to the insulin-like growth factor (IGF) system in patients with poorly controlled type 2 diabetes mellitus (DM2). Ligand binding was analyzed using 125I-labelled IGF-1 and insulin, and relative expression of insulin-like growth factor 1 receptor (IGF-1R) and insulin receptor (IR) was evaluated by Western blotting. Platelet aggregation in the presence of IGF-1 was studied by the plate aggregometry assay. We found that platelets from DM2 patients exhibited significantly higher IGF-1 binding and upregulation of IGF-1R expression in comparison with healthy individuals. Both insulin binding and IR expression were lower in the DM2 group, but the differences with the healthy control were statistically insignificant. The potentiating effect of IGF-1 on the thrombin-induced activation of platelets was detected in both groups but was significantly more pronounced in the DM2 patients. The initial rate of platelet activation in the presence of IGF-1 positively correlated with the concentration of glycated hemoglobin. Platelets isolated from DM2 patients displayed elevated expression of the IGF-1R subunits, which might have contributed to the higher sensitivity of these cells to IGF-1 in thrombin-initiated aggregation by increasing the rate of platelet activation. However, further experiments are needed to investigate the role of IGF-1 in thrombotic complications that usually accompany diabetes.
Collapse
Affiliation(s)
- N Gligorijevic
- Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Belgrade, 11080, Serbia.
| | - D Robajac
- Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Belgrade, 11080, Serbia.
| | - O Nedic
- Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Belgrade, 11080, Serbia.
| |
Collapse
|
7
|
Kojok K, Akoum SE, Mohsen M, Mourad W, Merhi Y. CD40L Priming of Platelets via NF-κB Activation is CD40- and TAK1-Dependent. J Am Heart Assoc 2019; 7:e03677. [PMID: 30571597 PMCID: PMC6405550 DOI: 10.1161/jaha.118.009636] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background CD40 ligand (CD40L) is a thromboinflammatory molecule that predicts cardiovascular events. CD40L is a strong activator of nuclear factor kappa B (NF‐κB) in platelets that primes and enhances platelet activation in response to thrombotic stimuli. In addition to its classical receptor CD40, CD40L binds αIIbβ3, α5β1, and αMβ2 in various cell types. However, the function of the different CD40L receptors on platelets remains unexplored. The present study aims to identify the receptors of CD40L, involved in platelet NF‐κB activation, their downstream signaling and their implication in platelet aggregation. Methods and Results We showed that platelets express CD40, αIIbβ3, and α5β1 and release CD40L in response to sCD40L stimulation. sCD40L alone dose‐dependently induced platelet NF‐κB activation; this effect was absent in CD40−/− mouse platelets and inhibited by the CD40 blockade, but was unaffected by the αIIbβ3 or α5β1 blockade in human platelets. sCD40L/CD40 axis activates transforming growth factor‐β‐activated kinase 1 upstream of NF‐κB. In functional studies, sCD40L alone did not affect platelet aggregation but potentiated the aggregation response in the presence of suboptimal doses of thrombin; this effect was abolished by CD40, transforming growth factor‐β‐activated kinase 1, and NF‐κB inhibitors. Conclusions CD40L primes platelets via signaling pathways involving CD40/transforming growth factor‐β‐activated kinase 1/NF‐κB, which predisposes platelets to enhanced activation and aggregation in response to thrombotic stimuli.
Collapse
Affiliation(s)
- Kevin Kojok
- 1 Laboratory of Thrombosis and Hemostasis Montreal Heart Institute, Research Centre Montreal QC Canada.,2 Faculty of Medicine Université de Montréal QC Canada
| | - Souhad El Akoum
- 1 Laboratory of Thrombosis and Hemostasis Montreal Heart Institute, Research Centre Montreal QC Canada.,2 Faculty of Medicine Université de Montréal QC Canada
| | - Mira Mohsen
- 1 Laboratory of Thrombosis and Hemostasis Montreal Heart Institute, Research Centre Montreal QC Canada.,2 Faculty of Medicine Université de Montréal QC Canada
| | - Walid Mourad
- 2 Faculty of Medicine Université de Montréal QC Canada.,3 Research Centre Centre Hospitalier de l'Université de Montréal QC Canada
| | - Yahye Merhi
- 1 Laboratory of Thrombosis and Hemostasis Montreal Heart Institute, Research Centre Montreal QC Canada.,2 Faculty of Medicine Université de Montréal QC Canada
| |
Collapse
|
8
|
Morshed A, Abbas AB, Hu J, Xu H. Shedding New Light on The Role of ανβ3 and α5β1 Integrins in Rheumatoid Arthritis. Molecules 2019; 24:E1537. [PMID: 31003546 PMCID: PMC6515208 DOI: 10.3390/molecules24081537] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/14/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022] Open
Abstract
ανβ3 and α5β1 are essential glycoproteins involved in the pathogenesis of rheumatoid arthritis (RA). Understanding of the role these integrins play in disease have been analyzed via description of cells-expressing ανβ3 and α5β1 and their mediators to trigger inflammation. ανβ3 and α5β1 facilitate cells-ECM and cell-cell communication, producing pro-inflammatory factors. Pro-inflammatory factors are essential for the building of undesirable new blood vessels termed angiogenesis which can further lead to destruction of bones and joints. Despite many attempts to target these glycoproteins, there are still some problems, therefore, there is still interest in understanding the synergistic role these integrins play in the pathogenesis of RA. The purpose of this review is to gain insights into the biological effects of ανβ3 and α5β1 in synovial tissues that are relevant to pathogenesis and therapy of RA.
Collapse
Affiliation(s)
- Arwa Morshed
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing 210009, China.
| | - Abdul Baset Abbas
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing 210009, China.
| | - Jialiang Hu
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing 210009, China.
| | - Hanmei Xu
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing 210009, China.
- Nanjing Anji Biotechnology Co. Ltd., Nanjing 210046, China.
| |
Collapse
|
9
|
|
10
|
Barrile R, van der Meer AD, Park H, Fraser JP, Simic D, Teng F, Conegliano D, Nguyen J, Jain A, Zhou M, Karalis K, Ingber DE, Hamilton GA, Otieno MA. Organ-on-Chip Recapitulates Thrombosis Induced by an anti-CD154 Monoclonal Antibody: Translational Potential of Advanced Microengineered Systems. Clin Pharmacol Ther 2018; 104:1240-1248. [PMID: 29484632 DOI: 10.1002/cpt.1054] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/24/2018] [Accepted: 02/14/2018] [Indexed: 12/18/2022]
Abstract
Clinical development of Hu5c8, a monoclonal antibody against CD40L intended for treatment of autoimmune disorders, was terminated due to unexpected thrombotic complications. These life-threatening side effects were not discovered during preclinical testing due to the lack of predictive models. In the present study, we describe the development of a microengineered system lined by human endothelium perfused with human whole blood, a "Vessel-Chip." The Vessel-Chip allowed us to evaluate key parameters in thrombosis, such as endothelial activation, platelet adhesion, platelet aggregation, fibrin clot formation, and thrombin anti-thrombin complexes in the Chip-effluent in response to Hu5c8 in the presence of soluble CD40L. Importantly, the observed prothrombotic effects were not observed with Hu5c8-IgG2σ designed with an Fc domain that does not bind the FcγRIIa receptor, suggesting that this approach may have a low potential risk for thrombosis. Our results demonstrate the translational potential of Organs-on-Chips, as advanced microengineered systems to better predict human response.
Collapse
Affiliation(s)
| | | | | | | | - Damir Simic
- Janssen Pharmaceutical Research and Development, Discovery & Manufacturing Sciences, Spring House, Pennsylvania, USA
| | - Fang Teng
- Janssen Pharmaceutical Research and Development, Discovery & Manufacturing Sciences, Spring House, Pennsylvania, USA
| | | | | | - Abhishek Jain
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, USA
| | - Mimi Zhou
- Janssen Pharmaceutical Research and Development, Discovery & Manufacturing Sciences, Spring House, Pennsylvania, USA
| | | | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, USA
| | | | - Monicah A Otieno
- Janssen Pharmaceutical Research and Development, Discovery & Manufacturing Sciences, Spring House, Pennsylvania, USA
| |
Collapse
|
11
|
Michel NA, Zirlik A, Wolf D. CD40L and Its Receptors in Atherothrombosis-An Update. Front Cardiovasc Med 2017; 4:40. [PMID: 28676852 PMCID: PMC5477003 DOI: 10.3389/fcvm.2017.00040] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/29/2017] [Indexed: 12/30/2022] Open
Abstract
CD40L (CD154), a member of the tumor necrosis factor superfamily, is a co-stimulatory molecule that was first discovered on activated T cells. Beyond its fundamental role in adaptive immunity-ligation of CD40L to its receptor CD40 is a prerequisite for B cell activation and antibody production-evidence from more than two decades has expanded our understanding of CD40L as a powerful modulator of inflammatory pathways. Although inhibition of CD40L with neutralizing antibodies has induced life-threatening side effects in clinical trials, the discovery of cell-specific effects and novel receptors with distinct functional consequences has opened a new path for therapies that specifically target detrimental properties of CD40L. Here, we carefully evaluate the signaling network of CD40L by gene enrichment analysis and its cell-specific expression, and thoroughly discuss its role in cardiovascular pathologies with a specific emphasis on atherosclerotic and thrombotic disease.
Collapse
Affiliation(s)
- Nathaly Anto Michel
- Faculty of Medicine, Department of Cardiology and Angiology I, Heart Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Andreas Zirlik
- Faculty of Medicine, Department of Cardiology and Angiology I, Heart Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Dennis Wolf
- Faculty of Medicine, Department of Cardiology and Angiology I, Heart Center Freiburg, University of Freiburg, Freiburg, Germany
| |
Collapse
|
12
|
Integrin signaling in atherosclerosis. Cell Mol Life Sci 2017; 74:2263-2282. [PMID: 28246700 DOI: 10.1007/s00018-017-2490-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/24/2017] [Accepted: 02/15/2017] [Indexed: 02/07/2023]
Abstract
Atherosclerosis, a chronic lipid-driven inflammatory disease affecting large arteries, represents the primary cause of cardiovascular disease in the world. The local remodeling of the vessel intima during atherosclerosis involves the modulation of vascular cell phenotype, alteration of cell migration and proliferation, and propagation of local extracellular matrix remodeling. All of these responses represent targets of the integrin family of cell adhesion receptors. As such, alterations in integrin signaling affect multiple aspects of atherosclerosis, from the earliest induction of inflammation to the development of advanced fibrotic plaques. Integrin signaling has been shown to regulate endothelial phenotype, facilitate leukocyte homing, affect leukocyte function, and drive smooth muscle fibroproliferative remodeling. In addition, integrin signaling in platelets contributes to the thrombotic complications that typically drive the clinical manifestation of cardiovascular disease. In this review, we examine the current literature on integrin regulation of atherosclerotic plaque development and the suitability of integrins as potential therapeutic targets to limit cardiovascular disease and its complications.
Collapse
|