1
|
Kozakura E, Ueno R, Yamashita T, Hashidate-Yoshida T, Shindou H, Jutanom M, Morimoto K, Yamada KI. Identification of novel oxidized phospholipids that activate platelet-activating factor receptor using HPLC fractionation and comprehensive LC-MS/MS analysis. Biochem Biophys Res Commun 2025; 765:151858. [PMID: 40279796 DOI: 10.1016/j.bbrc.2025.151858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025]
Abstract
Platelet-activating factor receptor (PAFR) is involved in various physiological processes, including the immune system and inflammatory responses. In addition to PAF, several oxidized phospholipids have been shown to act as ligands for PAFR. We have previously developed a comprehensive analysis method for oxidized phospholipids, and in this study, we employed this method to test whether additional oxidized phospholipids can activate PAFR. From an oxidized phosphatidylcholine mixture, we identified that 1-palmitoyl-2-(4'-oxo-butanoyl)-sn-glycero-3-phosphocholine (POBPC) functions as a novel PAFR activator, using preparative HPLC and comprehensive LC-MS/MS analysis of fractionated oxidized phospholipids. Next, multiple assays confirmed that POBPC acts as a bona fide PAFR agonist. The H248W mutation of PAFR attenuated the response to POBPC. Finally, POBPC induced phosphorylation of extracellular signal-regulated kinase in mouse peritoneal macrophages, which endogenously express PAFR. Our findings provide valuable insight into the biological functions of oxidized phospholipids, advancing our understanding of their roles in cellular processes.
Collapse
Affiliation(s)
- Eisho Kozakura
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ryoya Ueno
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tomohiro Yamashita
- Department of Drug Discovery Structural Biology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tomomi Hashidate-Yoshida
- Department of Lipid Life Science, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Hideo Shindou
- Department of Lipid Life Science, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan; Department of Medical Lipid Science, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Mirinthorn Jutanom
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kazushi Morimoto
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ken-Ichi Yamada
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
2
|
Salim E, Hori A, Matsubara K, Takano-Shimizu T, Pratomo AR, Marianne M, Syahputra A, Husori DI, Inoue A, Abdullah MA, Shamsudin NF, Rullah K, Kuraishi T. Detection of Human GPCR Activity in Drosophila S2 Cells Using the Tango System. Int J Mol Sci 2024; 26:202. [PMID: 39796060 PMCID: PMC11720185 DOI: 10.3390/ijms26010202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
G protein-coupled receptors (GPCRs) are essential cell surface proteins involved in transducing extracellular signals into intracellular responses, regulating various physiological processes. This study validated the use of the Tango assay, a sensitive method for detecting GPCR activation, in Drosophila Schneider 2 (S2) cells, focusing on the human Dopamine Receptor D4 (DRD4). Plasmids encoding the LexA-tagged human DRD4 receptor and a luciferase reporter were co-transfected into Drosophila S2 cells and stimulated with dopamine. Receptor activation was measured by quantifying the luciferase activity. The system showed high specificity for dopamine, with no activation in response to octopamine, a non-ligand for DRD4. Furthermore, the system effectively detects activation by a novel compound. These results demonstrate that Drosophila S2 cells, coupled with the Tango assay, provide a viable model for studying human GPCR function and ligand specificity. This system enables the rapid screening of potential GPCR ligands in a cost-effective cellular model.
Collapse
Affiliation(s)
- Emil Salim
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Osaka 920-1192, Japan; (A.H.); (A.R.P.)
- Department of Pharmacology and Clinical/Community Pharmacy, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia; (M.M.); (D.I.H.)
| | - Aki Hori
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Osaka 920-1192, Japan; (A.H.); (A.R.P.)
| | - Kohei Matsubara
- KYOTO Drosophila Stock Center, Kyoto Institute of Technology, Saga Ippongi-cho 1, Ukyo-ku, Kyoto 616-8354, Japan; (K.M.); (T.T.-S.)
| | - Toshiyuki Takano-Shimizu
- KYOTO Drosophila Stock Center, Kyoto Institute of Technology, Saga Ippongi-cho 1, Ukyo-ku, Kyoto 616-8354, Japan; (K.M.); (T.T.-S.)
| | - Andre Rizky Pratomo
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Osaka 920-1192, Japan; (A.H.); (A.R.P.)
| | - Marianne Marianne
- Department of Pharmacology and Clinical/Community Pharmacy, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia; (M.M.); (D.I.H.)
| | - Armia Syahputra
- Departement of Periodontology, Faculty of Dentistry, Universitas Sumatera Utara, Medan 20155, Indonesia;
| | - Dadang Irfan Husori
- Department of Pharmacology and Clinical/Community Pharmacy, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia; (M.M.); (D.I.H.)
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan;
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimo-Adachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Maryam Aisyah Abdullah
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia; (M.A.A.); (N.F.S.); (K.R.)
| | - Nur Farisya Shamsudin
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia; (M.A.A.); (N.F.S.); (K.R.)
| | - Kamal Rullah
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia; (M.A.A.); (N.F.S.); (K.R.)
| | - Takayuki Kuraishi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Osaka 920-1192, Japan; (A.H.); (A.R.P.)
| |
Collapse
|
3
|
Sencanski M, Glisic S, Kubale V, Cotman M, Mavri J, Vrecl M. Computational Modeling and Characterization of Peptides Derived from Nanobody Complementary-Determining Region 2 (CDR2) Targeting Active-State Conformation of the β 2-Adrenergic Receptor (β 2AR). Biomolecules 2024; 14:423. [PMID: 38672440 PMCID: PMC11048008 DOI: 10.3390/biom14040423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
This study assessed the suitability of the complementarity-determining region 2 (CDR2) of the nanobody (Nb) as a template for the derivation of nanobody-derived peptides (NDPs) targeting active-state β2-adrenergic receptor (β2AR) conformation. Sequences of conformationally selective Nbs favoring the agonist-occupied β2AR were initially analyzed by the informational spectrum method (ISM). The derived NDPs in complex with β2AR were subjected to protein-peptide docking, molecular dynamics (MD) simulations, and metadynamics-based free-energy binding calculations. Computational analyses identified a 25-amino-acid-long CDR2-NDP of Nb71, designated P4, which exhibited the following binding free-energy for the formation of the β2AR:P4 complex (ΔG = -6.8 ± 0.8 kcal/mol or a Ki = 16.5 μM at 310 K) and mapped the β2AR:P4 amino acid interaction network. In vitro characterization showed that P4 (i) can cross the plasma membrane, (ii) reduces the maximum isoproterenol-induced cAMP level by approximately 40% and the isoproterenol potency by up to 20-fold at micromolar concentration, (iii) has a very low affinity to interact with unstimulated β2AR in the cAMP assay, and (iv) cannot reduce the efficacy and potency of the isoproterenol-mediated β2AR/β-arrestin-2 interaction in the BRET2-based recruitment assay. In summary, the CDR2-NDP, P4, binds preferentially to agonist-activated β2AR and disrupts Gαs-mediated signaling.
Collapse
Affiliation(s)
- Milan Sencanski
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia
- Laboratory for Bioinformatics and Computational Chemistry, Institute of Nuclear Sciences VINCA, National Institute of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Sanja Glisic
- Laboratory for Bioinformatics and Computational Chemistry, Institute of Nuclear Sciences VINCA, National Institute of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Valentina Kubale
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (V.K.); (M.C.)
| | - Marko Cotman
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (V.K.); (M.C.)
| | - Janez Mavri
- Department of Computational Biochemistry and Drug Design, National Institute of Chemistry, 1000 Ljubljana, Slovenia;
| | - Milka Vrecl
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (V.K.); (M.C.)
| |
Collapse
|
4
|
Xia J, Li X, Zhu H, Zhou X, Chen J, Li Q, Li S, Chu H, Dong M. The μ-opioid receptor-mediated G i/o protein and β-arrestin2 signaling pathways both contribute to morphine-induced side effects. Eur J Pharmacol 2024; 966:176333. [PMID: 38278466 DOI: 10.1016/j.ejphar.2024.176333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/10/2023] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
The μ-opioid receptor-biased agonist theory holds that Gio protein signaling mediates the analgesic effect of opioids and the related side effects via the β-arrestin2 signaling pathway. A series of μ-opioid-biased agonists have been developed in accordance with this theory, and the FDA has approved TRV130 (as a representative of biased agonists) for marketing. However, several reports have raised the issue of opioid side effects associated with the use of agonists. In this study, five permeable peptides were designed to emulate 11 S/T phosphorylation sites at the μ-opioid receptor (MOR) carboxyl-terminal. In vitro experiments were performed to detect the activation level of G proteins from the cAMP inhibition assay and the β-arrestin2 recruitment by the BRET assay. Designed peptides might effectively interfere with the activation of the Gio and β-arrestin2 pathways when combined with morphine. The resulting morphine-induced tolerance, respiratory inhibition, and constipation in mice showed that the β-arrestin2 pathway was responsible for morphine tolerance while the Gio signaling pathway was involved with respiratory depression and constipation and that these side effects were significantly related to phosphorylation sites S363 and T370. This study may provide new directions for the development of safer and more effective opioid analgesics, and the designed peptides may be an effective tool for exploring the mechanism by which μ-opioid receptors function, with the potential of reducing the side effects that are associated with clinical opioid treatment.
Collapse
Affiliation(s)
- Jing Xia
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China; Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Xiaoyan Li
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China; Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Hongyu Zhu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China; Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Xiaohui Zhou
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China; Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Ji Chen
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Qihong Li
- Department of Stomatology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100071, China
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Haichen Chu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Mingxin Dong
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
5
|
Brown KA, Morris R, Eckhardt SJ, Ge Y, Gellman SH. Phosphorylation Sites of the Gastric Inhibitory Polypeptide Receptor (GIPR) Revealed by Trapped-Ion-Mobility Spectrometry Coupled to Time-of-Flight Mass Spectrometry (TIMS-TOF MS). J Am Chem Soc 2023; 145:28030-28037. [PMID: 38091482 PMCID: PMC10842860 DOI: 10.1021/jacs.3c09078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The gastric inhibitory polypeptide receptor (GIPR), a G protein-coupled receptor (GPCR) that regulates glucose metabolism and insulin secretion, is a target for the development of therapeutic agents to address type 2 diabetes and obesity. Signal transduction processes mediated by GPCR activation typically result in receptor phosphorylation, but very little is known about GIPR phosphorylation. Mass spectrometry (MS) is a powerful tool for detecting phosphorylation and other post-translational modifications of proteins and for identifying modification sites. However, applying MS methods to GPCRs is challenging because the native expression levels are low and the hydrophobicity of these proteins complicates isolation and enrichment. Here we use a widely available technique, trapped-ion-mobility spectrometry coupled to time-of-flight mass spectrometry (TIMS-TOF MS), to characterize the phosphorylation status of the GIPR. We identified eight serine residues that are phosphorylated, one in an intracellular loop and the remainder in the C-terminal domain. Stimulation with the native agonist GIP enhanced phosphorylation at four of these sites. For comparison, we evaluated tirzepatide (TZP), a dual agonist of the glucagon-like peptide-1 (GLP-1) receptor and the GIPR that has recently been approved for the treatment of type 2 diabetes. Stimulation with TZP enhanced phosphorylation at the same four sites that were enhanced with GIP; however, TZP also enhanced phosphorylation at a fifth site that is unique to this synthetic agonist. This work establishes an important and accessible tool for the characterization of signal transduction via the GIPR and reveals an unanticipated functional difference between GIP and TZP.
Collapse
Affiliation(s)
- Kyle A. Brown
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Rylie Morris
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Samantha J. Eckhardt
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| |
Collapse
|
6
|
Brown KA, Gellman SH. Effects of Replacing a Central Glycine Residue in GLP-1 on Receptor Affinity and Signaling Profile. Chembiochem 2023; 24:e202300504. [PMID: 37624685 PMCID: PMC10666649 DOI: 10.1002/cbic.202300504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 08/27/2023]
Abstract
Agonists of the glucagon-like peptide-1 receptor (GLP-1R) are used to treat diabetes and obesity. Cryo-EM structures indicate that GLP-1 is completely α-helical when bound to the GLP-1R. The mature form of this hormone, GLP-1(7-36), contains a glycine residue near the center (Gly22). Since glycine has the second-lowest α-helix propensity among the proteinogenic α-amino acid residues, and Gly22 does not appear to make direct contact with the receptor, we were motivated to explore the impact on agonist activity of altering the α-helix propensity at this position. We examined GLP-1 analogues in which Gly22 was replaced with L-Ala, D-Ala, or β-amino acid residues with varying helix propensities. The results suggest that the receptor is reasonably tolerant of variations in helix propensity, and that the functional receptor-agonist complex may comprise a conformational spectrum rather than a single fixed structure.
Collapse
Affiliation(s)
- Kyle A. Brown
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
7
|
Chen G, Obal D. Detecting and measuring of GPCR signaling - comparison of human induced pluripotent stem cells and immortal cell lines. Front Endocrinol (Lausanne) 2023; 14:1179600. [PMID: 37293485 PMCID: PMC10244570 DOI: 10.3389/fendo.2023.1179600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/12/2023] [Indexed: 06/10/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are a large family of transmembrane proteins that play a major role in many physiological processes, and thus GPCR-targeted drug development has been widely promoted. Although research findings generated in immortal cell lines have contributed to the advancement of the GPCR field, the homogenous genetic backgrounds, and the overexpression of GPCRs in these cell lines make it difficult to correlate the results with clinical patients. Human induced pluripotent stem cells (hiPSCs) have the potential to overcome these limitations, because they contain patient specific genetic information and can differentiate into numerous cell types. To detect GPCRs in hiPSCs, highly selective labeling and sensitive imaging techniques are required. This review summarizes existing resonance energy transfer and protein complementation assay technologies, as well as existing and new labeling methods. The difficulties of extending existing detection methods to hiPSCs are discussed, as well as the potential of hiPSCs to expand GPCR research towards personalized medicine.
Collapse
Affiliation(s)
- Gaoxian Chen
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Detlef Obal
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
| |
Collapse
|
8
|
Benkel T, Zimmermann M, Zeiner J, Bravo S, Merten N, Lim VJY, Matthees ESF, Drube J, Miess-Tanneberg E, Malan D, Szpakowska M, Monteleone S, Grimes J, Koszegi Z, Lanoiselée Y, O'Brien S, Pavlaki N, Dobberstein N, Inoue A, Nikolaev V, Calebiro D, Chevigné A, Sasse P, Schulz S, Hoffmann C, Kolb P, Waldhoer M, Simon K, Gomeza J, Kostenis E. How Carvedilol activates β 2-adrenoceptors. Nat Commun 2022; 13:7109. [PMID: 36402762 PMCID: PMC9675828 DOI: 10.1038/s41467-022-34765-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 11/05/2022] [Indexed: 11/21/2022] Open
Abstract
Carvedilol is among the most effective β-blockers for improving survival after myocardial infarction. Yet the mechanisms by which carvedilol achieves this superior clinical profile are still unclear. Beyond blockade of β1-adrenoceptors, arrestin-biased signalling via β2-adrenoceptors is a molecular mechanism proposed to explain the survival benefits. Here, we offer an alternative mechanism to rationalize carvedilol's cellular signalling. Using primary and immortalized cells genome-edited by CRISPR/Cas9 to lack either G proteins or arrestins; and combining biological, biochemical, and signalling assays with molecular dynamics simulations, we demonstrate that G proteins drive all detectable carvedilol signalling through β2ARs. Because a clear understanding of how drugs act is imperative to data interpretation in basic and clinical research, to the stratification of clinical trials or to the monitoring of drug effects on the target pathway, the mechanistic insight gained here provides a foundation for the rational development of signalling prototypes that target the β-adrenoceptor system.
Collapse
Affiliation(s)
- Tobias Benkel
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, 53115, Bonn, Germany
- Research Training Group 1873, University of Bonn, 53127, Bonn, Germany
| | | | - Julian Zeiner
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, 53115, Bonn, Germany
| | - Sergi Bravo
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, 53115, Bonn, Germany
| | - Nicole Merten
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, 53115, Bonn, Germany
| | - Victor Jun Yu Lim
- Department of Pharmaceutical Chemistry, Philipps-University of Marburg, 35032, Marburg, Germany
| | - Edda Sofie Fabienne Matthees
- Institute for Molecular Cell Biology, CMB-Center for Molecular Biomedicine, Jena University Hospital, Friedrich Schiller University of Jena, 07745, Jena, Germany
| | - Julia Drube
- Institute for Molecular Cell Biology, CMB-Center for Molecular Biomedicine, Jena University Hospital, Friedrich Schiller University of Jena, 07745, Jena, Germany
| | - Elke Miess-Tanneberg
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University of Jena, 07747, Jena, Germany
| | - Daniela Malan
- Institute of Physiology I, Medical Faculty, University of Bonn, 53115, Bonn, Germany
| | - Martyna Szpakowska
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), L-4354, Esch-sur-Alzette, Luxembourg
| | - Stefania Monteleone
- Department of Pharmaceutical Chemistry, Philipps-University of Marburg, 35032, Marburg, Germany
| | - Jak Grimes
- Institute of Metabolism and Systems Research and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, B15 2TT, UK
| | - Zsombor Koszegi
- Institute of Metabolism and Systems Research and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, B15 2TT, UK
| | - Yann Lanoiselée
- Institute of Metabolism and Systems Research and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, B15 2TT, UK
| | - Shannon O'Brien
- Institute of Metabolism and Systems Research and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, B15 2TT, UK
| | - Nikoleta Pavlaki
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | | | - Asuka Inoue
- Graduate School of Pharmaceutical Science, Tohoku University, Sendai, 980-8578, Japan
| | - Viacheslav Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Davide Calebiro
- Institute of Metabolism and Systems Research and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, B15 2TT, UK
| | - Andy Chevigné
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), L-4354, Esch-sur-Alzette, Luxembourg
| | - Philipp Sasse
- Institute of Physiology I, Medical Faculty, University of Bonn, 53115, Bonn, Germany
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University of Jena, 07747, Jena, Germany
- 7TM Antibodies GmbH, 07745, Jena, Germany
| | - Carsten Hoffmann
- Institute for Molecular Cell Biology, CMB-Center for Molecular Biomedicine, Jena University Hospital, Friedrich Schiller University of Jena, 07745, Jena, Germany
| | - Peter Kolb
- Department of Pharmaceutical Chemistry, Philipps-University of Marburg, 35032, Marburg, Germany
| | - Maria Waldhoer
- InterAx Biotech AG, 5234, Villigen, Switzerland
- Ikherma Consulting Ltd, Hitchin, SG4 0TY, UK
| | - Katharina Simon
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, 53115, Bonn, Germany
| | - Jesus Gomeza
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, 53115, Bonn, Germany
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, 53115, Bonn, Germany.
| |
Collapse
|
9
|
Kanemitsu E, Zhao X, Iwaisako K, Inoue A, Takeuchi A, Yagi S, Masumoto H, Ohara H, Hosokawa M, Awaya T, Aoki J, Hatano E, Uemoto S, Hagiwara M. Antagonist of sphingosine 1-phosphate receptor 3 reduces cold injury of rat donor hearts for transplantation. Transl Res 2022; 255:26-36. [PMID: 36347491 DOI: 10.1016/j.trsl.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/14/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022]
Abstract
Cold storage is widely used to preserve an organ for transplantation; however, a long duration of cold storage negatively impacts graft function. Unfortunately, the mechanisms underlying cold exposure remain unclear. Based on the sphingosine-1-phosphate (S1P) signal involved in cold tolerance in hibernating mammals, we hypothesized that S1P signal blockage reduces damage from cold storage. We used an in vitro cold storage and rewarming model to evaluate cold injury and investigated the relationship between cold injury and S1P signal. Compounds affecting S1P receptors (S1PR) were screened for their protective effect in this model and its inhibitory effect on S1PRs was measured using the NanoLuc Binary Technology (NanoBiT)-β-arrestin recruitment assays. The effects of a potent antagonist were examined via heterotopic abdominal rat heart transplantation. The heart grafts were transplanted after 24-hour preservation and evaluated on day 7 after transplantation. Cold injury increased depending on the cold storage time and was induced by S1P. The most potent antagonist strongly suppressed cold injury consistent with the effect of S1P deprivation in vitro. In vivo, this antagonist enabled 24-hour preservation, and drastically improved the beating score, cardiac size, and serological markers. Pathological analysis revealed that it suppressed the interstitial edema, inflammatory cell infiltration, myocyte lesion, TUNEL-positive cell death, and fibrosis. In conclusion, S1PR3 antagonist reduced cold injury, extended the cold preservation time, and improved graft viability. Cold preservation strategies via S1P signaling may have clinical applications in organ preservation for transplantation and contribute to an increase in the donor pool.
Collapse
Affiliation(s)
- Eisho Kanemitsu
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Xiangdong Zhao
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keiko Iwaisako
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Asuka Inoue
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Akihide Takeuchi
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Developmental Biology and Functional Genomics, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Shintaro Yagi
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hidetoshi Masumoto
- Clinical Translational Research Program, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Hiroaki Ohara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Motoyasu Hosokawa
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomonari Awaya
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Junken Aoki
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Etsuro Hatano
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinji Uemoto
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
10
|
Lotz-Havla AS, Woidy M, Guder P, Friedel CC, Klingbeil JM, Bulau AM, Schultze A, Dahmen I, Noll-Puchta H, Kemp S, Erdmann R, Zimmer R, Muntau AC, Gersting SW. iBRET Screen of the ABCD1 Peroxisomal Network and Mutation-Induced Network Perturbations. J Proteome Res 2021; 20:4366-4380. [PMID: 34383492 DOI: 10.1021/acs.jproteome.1c00330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mapping the network of proteins provides a powerful means to investigate the function of disease genes and to unravel the molecular basis of phenotypes. We present an automated informatics-aided and bioluminescence resonance energy transfer-based approach (iBRET) enabling high-confidence detection of protein-protein interactions in living mammalian cells. A screen of the ABCD1 protein, which is affected in X-linked adrenoleukodystrophy (X-ALD), against an organelle library of peroxisomal proteins demonstrated applicability of iBRET for large-scale experiments. We identified novel protein-protein interactions for ABCD1 (with ALDH3A2, DAO, ECI2, FAR1, PEX10, PEX13, PEX5, PXMP2, and PIPOX), mapped its position within the peroxisomal protein-protein interaction network, and determined that pathogenic missense variants in ABCD1 alter the interaction with selected binding partners. These findings provide mechanistic insights into pathophysiology of X-ALD and may foster the identification of new disease modifiers.
Collapse
Affiliation(s)
- Amelie S Lotz-Havla
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, 80337 Munich, Germany
| | - Mathias Woidy
- University Children's Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Philipp Guder
- University Children's Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Caroline C Friedel
- Institute of Informatics, Ludwig-Maximilians-Universität München, 80538 Munich, Germany
| | - Julian M Klingbeil
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, 80337 Munich, Germany
| | - Ana-Maria Bulau
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, 80337 Munich, Germany
| | - Anja Schultze
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, 80337 Munich, Germany
| | - Ilona Dahmen
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, 80337 Munich, Germany
| | - Heidi Noll-Puchta
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, 80337 Munich, Germany
| | - Stephan Kemp
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, University of Amsterdam, 1105 WX Amsterdam, The Netherlands
| | - Ralf Erdmann
- Systems Biochemistry, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Ralf Zimmer
- Institute of Informatics, Ludwig-Maximilians-Universität München, 80538 Munich, Germany
| | - Ania C Muntau
- University Children's Hospital, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Søren W Gersting
- University Children's Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
11
|
Toyomoto M, Inoue A, Iida K, Denawa M, Kii I, Ngako Kadji FM, Kishi T, Im D, Shimamura T, Onogi H, Yoshida S, Iwata S, Aoki J, Hosoya T, Hagiwara M. S1PR3-G 12-biased agonist ALESIA targets cancer metabolism and promotes glucose starvation. Cell Chem Biol 2021; 28:1132-1144.e9. [PMID: 33561428 DOI: 10.1016/j.chembiol.2021.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 12/07/2020] [Accepted: 01/06/2021] [Indexed: 02/08/2023]
Abstract
Metabolic activities are altered in cancer cells compared with those in normal cells, and the cancer-specific pathway becomes a potential therapeutic target. Higher cellular glucose consumption, which leads to lower glucose levels, is a hallmark of cancer cells. In an objective screening for chemicals that induce cell death under low-glucose conditions, we discovered a compound, denoted as ALESIA (Anticancer Ligand Enhancing Starvation-induced Apoptosis). By our shedding assay of transforming growth factor α in HEK293A cells, ALESIA was determined to act as a sphingosine-1-phosphate receptor 3-G12-biased agonist that promotes nitric oxide production and oxidative stress. The oxidative stress triggered by ALESIA resulted in the exhaustion of glucose, cellular NADPH deficiency, and then cancer cell death. Intraperitoneal administration of ALESIA improved the survival of mice with peritoneally disseminated rhabdomyosarcoma, indicating its potential as a new type of anticancer drug for glucose starvation therapy.
Collapse
Affiliation(s)
- Masayasu Toyomoto
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Asuka Inoue
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi 980-8578, Japan
| | - Kei Iida
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Masatsugu Denawa
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Isao Kii
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Laboratory for Drug Target Research, Integrated Bioscience Division, Institute of Agriculture, Shinshu University, Nagano 399-4598, Japan
| | - Francois Marie Ngako Kadji
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi 980-8578, Japan
| | - Takayuki Kishi
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi 980-8578, Japan
| | - Dohyun Im
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Tatsuro Shimamura
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Hiroshi Onogi
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; KinoPharma, Inc., Tokyo 103-0023, Japan
| | - Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - So Iwata
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Junken Aoki
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi 980-8578, Japan; Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
12
|
Avsar SY, Kapinos LE, Schoenenberger CA, Schertler GFX, Mühle J, Meger B, Lim RYH, Ostermaier MK, Lesca E, Palivan CG. Immobilization of arrestin-3 on different biosensor platforms for evaluating GPCR binding. Phys Chem Chem Phys 2020; 22:24086-24096. [PMID: 33079118 DOI: 10.1039/d0cp01464h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
G protein-coupled receptors (GPCRs) are a large and ubiquitous family of membrane receptors of great pharmacological interest. Cell-based assays are the primary tool for assessing GPCR interactions and activation but their design and intrinsic complexity limit their application. Biosensor-based assays that directly and specifically report GPCR-protein binding (e.g. arrestin or G protein) could provide a good alternative. We present an approach based on the stable immobilization of different arrestin-3 proteins (wild type, and two mutants, mutant X (arrestin-3 I386A) and mutant Y (arrestin-3 R393E)) via histidine tags on NTA(Ni2+)-coated sensors in a defined orientation. Using biolayer interferometry (BLI), surface plasmon resonance (SPR), and quartz crystal microbalance with dissipation (QCM-D), we were able to follow the interaction between the different arrestin-3 proteins and a representative GPCR, jumping spider rhodopsin-1 (JSR1), in a label-free manner in real-time. The interactions were quantified as binding affinity, association and dissociation rate constants. The combination of surface-based biosensing methods indicated that JSR1 showed the strongest binding to arrestin mutant Y. Taken together, this work introduces direct label-free, biosensor-based screening approaches that can be easily adapted for testing interactions of proteins and other compounds with different GPCRs.
Collapse
Affiliation(s)
- Saziye Yorulmaz Avsar
- Department of Chemistry and the Swiss Nanoscience Institute, University of Basel, 4002 Basel, Switzerland.
| | - Larisa E Kapinos
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland
| | - Cora-Ann Schoenenberger
- Department of Chemistry and the Swiss Nanoscience Institute, University of Basel, 4002 Basel, Switzerland.
| | - Gebhard F X Schertler
- Department of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute, 5303 Villigen-PSI, Switzerland. and Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Jonas Mühle
- Department of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute, 5303 Villigen-PSI, Switzerland.
| | - Benoit Meger
- Department of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute, 5303 Villigen-PSI, Switzerland.
| | - Roderick Y H Lim
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland
| | | | - Elena Lesca
- Department of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute, 5303 Villigen-PSI, Switzerland. and Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry and the Swiss Nanoscience Institute, University of Basel, 4002 Basel, Switzerland.
| |
Collapse
|
13
|
Møller TC, Pedersen MF, van Senten JR, Seiersen SD, Mathiesen JM, Bouvier M, Bräuner-Osborne H. Dissecting the roles of GRK2 and GRK3 in μ-opioid receptor internalization and β-arrestin2 recruitment using CRISPR/Cas9-edited HEK293 cells. Sci Rep 2020; 10:17395. [PMID: 33060647 PMCID: PMC7567791 DOI: 10.1038/s41598-020-73674-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 09/18/2020] [Indexed: 01/14/2023] Open
Abstract
Most G protein-coupled receptors (GPCRs) recruit β-arrestins and internalize upon agonist stimulation. For the μ-opioid receptor (μ-OR), this process has been linked to development of opioid tolerance. GPCR kinases (GRKs), particularly GRK2 and GRK3, have been shown to be important for μ-OR recruitment of β-arrestin and internalization. However, the contribution of GRK2 and GRK3 to β-arrestin recruitment and receptor internalization, remain to be determined in their complete absence. Using CRISPR/Cas9-mediated genome editing we established HEK293 cells with knockout of GRK2, GRK3 or both to dissect their individual contributions in β-arrestin2 recruitment and μ-OR internalization upon stimulation with four different agonists. We showed that GRK2/3 removal reduced agonist-induced μ-OR internalization and β-arrestin2 recruitment substantially and we found GRK2 to be more important for these processes than GRK3. Furthermore, we observed a sustained and GRK2/3 independent component of β-arrestin2 recruitment to the plasma membrane upon μ-OR activation. Rescue expression experiments restored GRK2/3 functions. Inhibition of GRK2/3 using the small molecule inhibitor CMPD101 showed a high similarity between the genetic and pharmacological approaches, cross-validating the specificity of both. However, off-target effects were observed at high CMPD101 concentrations. These GRK2/3 KO cell lines should prove useful for a wide range of studies on GPCR function.
Collapse
Affiliation(s)
- Thor C Møller
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100, Copenhagen, Denmark.
| | - Mie F Pedersen
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Jeffrey R van Senten
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Sofie D Seiersen
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Jesper M Mathiesen
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, Canada
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100, Copenhagen, Denmark.
| |
Collapse
|
14
|
Cary BP, Hager MV, Gellman SH. Impact of Substitution Registry on the Receptor-Activation Profiles of Backbone-Modified Glucagon-like Peptide-1 Analogues. Chembiochem 2019; 20:2834-2840. [PMID: 31172641 PMCID: PMC6861653 DOI: 10.1002/cbic.201900300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Indexed: 12/20/2022]
Abstract
Family B G protein-coupled receptors play important physiological roles and possess large extracellular domains (ECDs) that aid in binding the long polypeptide hormones that are their natural agonists. We have previously shown that agonist analogues in which subsets of native α-amino acid residues are replaced with β-amino acid residues can retain activity while avoiding proteolytic degradation. This study focuses on eight new α/β analogues of glucagon-like peptide 1 (GLP-1) that each contain five α-to-β replacements in the C-terminal half of the peptide. This portion of GLP-1 is known to adopt an α-helical conformation and contact the ECD. All four registries of the αααβ backbone pattern were evaluated; previous work has shown that the αααβ pattern supports adoption of an α-helix-like conformation. Two α-to-β replacement formats were employed, one involving β3 homologues of the native residues replaced and the other involving a cyclic β residue. GLP-1R response was characterized in terms of stimulation of cAMP production and β-arrestin recruitment. Some of the backbone-modified GLP-1 analogues display biased agonism of the GLP-1R. This study helps to establish the scope of the α→β backbone modification strategy.
Collapse
Affiliation(s)
- Brian P. Cary
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706 United States
| | - Marlies V. Hager
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706 United States
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706 United States
| |
Collapse
|
15
|
Sencanski M, Glisic S, Šnajder M, Veljkovic N, Poklar Ulrih N, Mavri J, Vrecl M. Computational design and characterization of nanobody-derived peptides that stabilize the active conformation of the β 2-adrenergic receptor (β 2-AR). Sci Rep 2019; 9:16555. [PMID: 31719570 PMCID: PMC6851183 DOI: 10.1038/s41598-019-52934-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 10/26/2019] [Indexed: 12/15/2022] Open
Abstract
This study aimed to design and functionally characterize peptide mimetics of the nanobody (Nb) related to the β2-adrenergic receptor (β2-AR) (nanobody-derived peptide, NDP). We postulated that the computationally derived and optimized complementarity-determining region 3 (CDR3) of Nb is sufficient for its interaction with receptor. Sequence-related Nb-families preferring the agonist-bound active conformation of β2-AR were analysed using the informational spectrum method (ISM) and β2-AR:NDP complexes studied using protein-peptide docking and molecular dynamics (MD) simulations in conjunction with metadynamics calculations of free energy binding. The selected NDP of Nb71, designated P3, was 17 amino acids long and included CDR3. Metadynamics calculations yielded a binding free energy for the β2-AR:P3 complex of ΔG = (-7.23 ± 0.04) kcal/mol, or a Kd of (7.9 ± 0.5) μM, for T = 310 K. In vitro circular dichroism (CD) spectropolarimetry and microscale thermophoresis (MST) data provided additional evidence for P3 interaction with agonist-activated β2-AR, which displayed ~10-fold higher affinity for P3 than the unstimulated receptor (MST-derived EC50 of 3.57 µM vs. 58.22 µM), while its ability to inhibit the agonist-induced interaction of β2-AR with β-arrestin 2 was less evident. In summary, theoretical and experimental evidence indicated that P3 preferentially binds agonist-activated β2-AR.
Collapse
Affiliation(s)
- Milan Sencanski
- Center for Multidisciplinary Research, Institute of Nuclear Sciences VINCA, University of Belgrade, Belgrade, Serbia
| | - Sanja Glisic
- Center for Multidisciplinary Research, Institute of Nuclear Sciences VINCA, University of Belgrade, Belgrade, Serbia
| | - Marko Šnajder
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nevena Veljkovic
- Center for Multidisciplinary Research, Institute of Nuclear Sciences VINCA, University of Belgrade, Belgrade, Serbia
| | | | - Janez Mavri
- Laboratory of Computational Biochemistry and Drug Design, National Institute of Chemistry, Ljubljana, Slovenia
| | - Milka Vrecl
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
16
|
Susec M, Sencanski M, Glisic S, Veljkovic N, Pedersen C, Drinovec L, Stojan J, Nøhr J, Vrecl M. Functional characterization of β 2-adrenergic and insulin receptor heteromers. Neuropharmacology 2019; 152:78-89. [PMID: 30707913 DOI: 10.1016/j.neuropharm.2019.01.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/01/2019] [Accepted: 01/23/2019] [Indexed: 01/06/2023]
Abstract
This study aimed to functionally characterize β2-adrenergic (β2AR) and insulin receptor (IR) heteromers in regard to β-arrestin 2 (βarr2) recruitment and cAMP signaling and to examine the involvement of the cytoplasmic portion of the IR β chain in heteromerization with β2AR. Evidence for β2AR:IR:βarr2 complex formation and the specificity of the IR:βarr2 interaction was first provided by bioinfomatics analysis. Receptor-heteromer investigation technology (HIT) then provided functional evidence of β2AR:IR heterodimerization by showing isoproterenol-induced but not insulin-induced GFP2-βarr2 recruitment to the β2AR:IR complex; the IR:βarr2 interaction was found to only be constitutive. The constitutive IR:βarr2 BRET signal (BRETconst) was significantly smaller in cells coexpressing IR-RLuc8 and a GFP2-βarr2 1-185 mutant lacking the proposed IR binding domain. β2AR:IR heteromerization also influenced the pharmacological phenotype of β2AR, i.e., its efficacy in recruiting βarr2 and activating cAMP signaling. Evidence suggesting involvement of the cytoplasmic portion of the IR β chain in the interaction with β2AR was provided by BRET2 saturation and HIT assays using an IR 1-1271 stop mutant lacking the IR C-terminal tail region. For the complex consisting of IR 1-1271-RLuc8:β2AR-GFP2, saturation was not reached, most likely reflecting random collisions between IR 1-1271 and β2AR. Furthermore, in the HIT assay, no substantial agonist-induced increase in the BRET2 signal was detected that would be indicative of βarr2 recruitment to the IR 1-1271:β2AR heteromer. Complementary 3D visualization of β2AR:IR provided supporting evidence for stability of the heterotetramer complex and identified amino acid residues involved in β2AR:IR heteromerization. This article is part of the Special Issue entitled 'Receptor heteromers and their allosteric receptor-receptor interactions'.
Collapse
Affiliation(s)
- Maja Susec
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Slovenia
| | - Milan Sencanski
- Center for Multidisciplinary Research, Institute of Nuclear Sciences VINCA, University of Belgrade, Belgrade, Serbia
| | - Sanja Glisic
- Center for Multidisciplinary Research, Institute of Nuclear Sciences VINCA, University of Belgrade, Belgrade, Serbia
| | - Nevena Veljkovic
- Center for Multidisciplinary Research, Institute of Nuclear Sciences VINCA, University of Belgrade, Belgrade, Serbia
| | - Christina Pedersen
- Department of Incretin & Islet Biology, Novo Nordisk A/S, Måløv, Denmark
| | - Luka Drinovec
- Department of Condensed Matter Physics, Jožef Stefan Institute, Slovenia
| | - Jurij Stojan
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jane Nøhr
- Department of Incretin & Islet Biology, Novo Nordisk A/S, Måløv, Denmark
| | - Milka Vrecl
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Slovenia.
| |
Collapse
|
17
|
Shihoya W, Izume T, Inoue A, Yamashita K, Kadji FMN, Hirata K, Aoki J, Nishizawa T, Nureki O. Crystal structures of human ET B receptor provide mechanistic insight into receptor activation and partial activation. Nat Commun 2018; 9:4711. [PMID: 30413709 PMCID: PMC6226434 DOI: 10.1038/s41467-018-07094-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 10/14/2018] [Indexed: 12/16/2022] Open
Abstract
Endothelin receptors (ETA and ETB) are class A GPCRs activated by vasoactive peptide endothelins, and are involved in blood pressure regulation. ETB-selective signalling induces vasorelaxation, and thus selective ETB agonists are expected to be utilized for improved anti-tumour drug delivery and neuroprotection. Here, we report the crystal structures of human ETB receptor in complex with ETB-selective agonist, endothelin-3 and an ETB-selective endothelin analogue IRL1620. The structure of the endothelin-3-bound receptor reveals that the disruption of water-mediated interactions between W6.48 and D2.50 is critical for receptor activation, while these hydrogen-bonding interactions are partially preserved in the IRL1620-bound structure. Consistently, functional analysis reveals the partial agonistic effect of IRL1620. The current findings clarify the detailed molecular mechanism for the coupling between the orthosteric pocket and the G-protein binding, and the partial agonistic effect of IRL1620, thus paving the way for the design of improved agonistic drugs targeting ETB.
Collapse
Affiliation(s)
- Wataru Shihoya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Tamaki Izume
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Keitaro Yamashita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan.,RIKEN SPring-8 Center, Hyogo, 679-5148, Japan
| | - Francois Marie Ngako Kadji
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | | | - Junken Aoki
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan.,Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, 100-0004, Japan
| | - Tomohiro Nishizawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan.
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
18
|
Characterizing Dynamic Protein-Protein Interactions Using the Genetically Encoded Split Biosensor Assay Technique Split TEV. Methods Mol Biol 2017; 1596:219-238. [PMID: 28293890 DOI: 10.1007/978-1-4939-6940-1_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dynamic protein-protein interactions (PPIs) are fundamental building blocks of cellular signaling and monitoring their regulation promotes the understanding of signaling in health and disease. Genetically encoded split protein biosensor assays, such as the split TEV method, have proved to be highly valuable when studying regulated PPIs in living cells. Split TEV is based on the functional complementation of two previously inactive TEV protease fragments fused to interacting proteins and provides a robust, sensitive and flexible readout to monitor PPIs both at the membrane and in the cytosol. Thus, split TEV can be used to analyze interactomes of receptors, membrane-associated proteins, and cytosolic proteins. In particular, split TEV is useful to assay activities of relevant drug targets, such as receptor tyrosine kinases and G protein-coupled receptors, in compound screens. As split TEV uses genetically encoded readouts, including standard reporters based on fluorescence and luminescence, the technique can also be combined with scalable molecular barcode reporter systems, allowing the integration into multiplexed high-throughput assay approaches. Split TEV can be used in standard heterologous cell lines and primary cell types, including neurons, either in a transient or stably integrated format. When using cell lines, the basic protocol takes 30-96 h to complete, depending on the complexity of the experimental question addressed.
Collapse
|
19
|
The Conserved Arginine Cluster in the Insert of the Third Cytoplasmic Loop of the Long Form of the D₂ Dopamine Receptor (D2L-R) Acts as an Intracellular Retention Signal. Int J Mol Sci 2016; 17:ijms17071152. [PMID: 27447620 PMCID: PMC4964525 DOI: 10.3390/ijms17071152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/05/2016] [Accepted: 07/09/2016] [Indexed: 12/20/2022] Open
Abstract
This study examined whether the conserved arginine cluster present within the 29-amino acid insert of the long form of the D2 dopamine receptor (D2L-R) confers its predominant intracellular localization. We hypothesized that the conserved arginine cluster (RRR) located within the insert could act as an RXR-type endoplasmic reticulum (ER) retention signal. Arginine residues (R) within the cluster at positions 267, 268, and 269 were charge-reserved to glutamic acids (E), either individually or in clusters, thus generating single, double, and triple D2L-R mutants. Through analyses of cellular localization by confocal microscopy and enzyme-linked immunosorbent assay (ELISA), radioligand binding assay, bioluminescence resonance energy transfer (BRET2) β-arrestin 2 (βarr2) recruitment assay, and cAMP signaling, it was revealed that charge reversal of the R residues at all three positions within the motif impaired their colocalization with ER marker calnexin and led to significantly improved cell surface expression. Additionally, these data demonstrate that an R to glutamic acid (E) substitution at position 2 within the RXR motif is not functionally permissible. Furthermore, all generated D2L-R mutants preserved their functional integrity regarding ligand binding, agonist-induced βarr2 recruitment and Gαi-mediated signaling. In summary, our results show that the conserved arginine cluster within the 29-amino acid insert of third cytoplasmic loop (IC3) of the D2L-R appears to be the ER retention signal.
Collapse
|
20
|
Lu B, Chen L, Zhang Y, Shi Y, Zhou N. Quantitative analysis of G-protein-coupled receptor internalization using DnaE intein-based assay. Methods Cell Biol 2016; 132:293-318. [PMID: 26928549 DOI: 10.1016/bs.mcb.2015.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
G-protein-coupled receptors (GPCRs), the largest family of cell surface receptors, are involved in many physiological processes. They represent highly important therapeutic targets for drug discovery. Currently, there are numerous cell-based assays developed for the pharmacological profiling of GPCRs and the identification of novel agonists and antagonists. However, the development of new, faster, easier, and more cost-effective approaches to detect GPCR activity remains highly desirable. β-arrestin-dependent internalization has been demonstrated to be a common mechanism for most GPCRs. Here we describe a novel assay for quantitative analysis of GPCR internalization based on DnaE intein-mediated reconstitution of fragmented Renilla luciferase or Firefly luciferase when activated GPCRs interact with β-arrestin2 or Rab5. Further validation, using functionally divergent GPCRs, showed that EC50 values obtained for the known agonists and antagonists were in close agreement with the results of previous reports. This suggests that this assay is sensitive enough to permit quantification of GPCR internalization. Compared with conventional assays, this novel assay system is cost-effective, rapid, and easy to manipulate. These advantages may allow this assay to be used universally as a functional cell-based system for GPCR characterization and in the screening process of drug discovery.
Collapse
Affiliation(s)
- Bin Lu
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, China
| | - Linjie Chen
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yaping Zhang
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying Shi
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, China
| | - Naiming Zhou
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
21
|
Abstract
Since their discovery, G protein-coupled receptors (GPCRs) constitute one of the most studied proteins leading to important discoveries and perspectives in terms of their biology and implication in physiology and pathophysiology. This is mostly linked to the remarkable advances in the development and application of the biophysical resonance energy transfer (RET)-based approaches, including bioluminescence and fluorescence resonance energy transfer (BRET and FRET, respectively). Indeed, BRET and FRET have been extensively applied to study different aspects of GPCR functioning such as their activation and regulation either statically or dynamically, in real-time and intact cells. Consequently, our view on GPCRs has considerably changed opening new challenges for the study of GPCRs in their native tissues in the aim to get more knowledge on how these receptors control the biological responses. Moreover, the technological aspect of this field of research promises further developments for robust and reliable new RET-based assays that may be compatible with high-throughput screening as well as drug discovery programs.
Collapse
Affiliation(s)
- Mohammed Akli Ayoub
- Biologie et Bioinformatique des Systèmes de Signalisation, Institut National de la Recherche Agronomique, UMR85, Unité Physiologie de la Reproduction et des Comportements; CNRS, UMR7247, Nouzilly, France; LE STUDIUM(®) Loire Valley Institute for Advanced Studies, Orléans, France.
| |
Collapse
|
22
|
Mo XL, Luo Y, Ivanov AA, Su R, Havel JJ, Li Z, Khuri FR, Du Y, Fu H. Enabling systematic interrogation of protein-protein interactions in live cells with a versatile ultra-high-throughput biosensor platform. J Mol Cell Biol 2015; 8:271-81. [PMID: 26578655 DOI: 10.1093/jmcb/mjv064] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/09/2015] [Indexed: 01/07/2023] Open
Abstract
Large-scale genomics studies have generated vast resources for in-depth understanding of vital biological and pathological processes. A rising challenge is to leverage such enormous information to rapidly decipher the intricate protein-protein interactions (PPIs) for functional characterization and therapeutic interventions. While a number of powerful technologies have been employed to detect PPIs, a singular PPI biosensor platform with both high sensitivity and robustness in a mammalian cell environment remains to be established. Here we describe the development and integration of a highly sensitive NanoLuc luciferase-based bioluminescence resonance energy transfer technology, termed BRET(n), which enables ultra-high-throughput (uHTS) PPI detection in live cells with streamlined co-expression of biosensors in a miniaturized format. We further demonstrate the application of BRET(n) in uHTS format in chemical biology research, including the discovery of chemical probes that disrupt PRAS40 dimerization and pathway connectivity profiling among core members of the Hippo signaling pathway. Such hippo pathway profiling not only confirmed previously reported PPIs, but also revealed two novel interactions, suggesting new mechanisms for regulation of Hippo signaling. Our BRET(n) biosensor platform with uHTS capability is expected to accelerate systematic PPI network mapping and PPI modulator-based drug discovery.
Collapse
Affiliation(s)
- Xiu-Lei Mo
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yin Luo
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Andrei A Ivanov
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rina Su
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA Department of Dermatology, XiangYa Hospital, Central South University, Changsha 410008, China
| | - Jonathan J Havel
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zenggang Li
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Fadlo R Khuri
- Department of Hematology and Medical Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Yuhong Du
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Haian Fu
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA Department of Hematology and Medical Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
23
|
Wehr MC, Galinski S, Rossner MJ. Monitoring G protein-coupled receptor activation using the protein fragment complementation technique split TEV. Methods Mol Biol 2015; 1272:107-18. [PMID: 25563180 DOI: 10.1007/978-1-4939-2336-6_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
G protein-coupled receptors (GPCRs) modulate cellular signaling, often in a ligand-specific manner. Cellular effects regulated include differentiation, proliferation, hormonal regulation, and neuronal activity. Further, they are involved in many disease-relevant processes, such as cancer and neurodevelopmental diseases, and represent the largest class of drug targets. Therefore, monitoring how GPCRs are regulated in their activity is crucial to understand their role in physiological processes and implications for drug development. Split TEV, a method based on TEV protease fragment complementation, can be used to sensitively assay GPCR activities in living cells. The activity of a given GPCR is monitored through its binding to β-arrestin. Split TEV reporters provide at minimum a two-step amplification process facilitating a flexible format and a robust readout. For the initial setup, a GPCR of interest and β-arrestin are fused to the N- and C-terminal fragments of the TEV protease, and occurred interactions are indicated by increased fluorescence or luminescence of TEV cleavage-dependent reporters. The experimental procedure takes 24-72 h to complete, depending on the cell type and complexity of the experimental setup applied.
Collapse
Affiliation(s)
- Michael C Wehr
- Molecular Neurobiology, Department of Psychiatry, Ludwig Maximilian University, Nußbaumstr. 7, 80336, Munich, Germany,
| | | | | |
Collapse
|
24
|
Demonstration of a direct interaction between β2-adrenergic receptor and insulin receptor by BRET and bioinformatics. PLoS One 2014; 9:e112664. [PMID: 25401701 PMCID: PMC4234468 DOI: 10.1371/journal.pone.0112664] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 10/06/2014] [Indexed: 12/23/2022] Open
Abstract
Glucose metabolism is under the cooperative regulation of both insulin receptor (IR) and β2-adrenergic receptor (β2AR), which represent the receptor tyrosine kinases (RTKs) and seven transmembrane receptors (7TMRs), respectively. Studies demonstrating cross-talk between these two receptors and their endogenous coexpression have suggested their possible interactions. To evaluate the effect of IR and prospective heteromerization on β2AR properties, we showed that IR coexpression had no effect on the ligand binding properties of β2AR; however, IR reduced β2AR surface expression and accelerated its internalization. Additionally, both receptors displayed a similar distribution pattern with a high degree of colocalization. To test the possible direct interaction between β2AR and IR, we employed quantitative BRET2 saturation and competition assays. Saturation assay data suggested constitutive β2AR and IR homo- and heteromerization. Calculated acceptor/donor (AD50) values as a measure of the relative affinity for homo- and heteromer formation differed among the heteromers that could not be explained by a simple dimer model. In heterologous competition assays, a transient increase in the BRET2 signal with a subsequent hyperbolical decrease was observed, suggesting higher-order heteromer formation. To complement the BRET2 data, we employed the informational spectrum method (ISM), a virtual spectroscopy method to investigate protein-protein interactions. Computational peptide scanning of β2AR and IR identified intracellular domains encompassing residues at the end of the 7th TM domain and C-terminal tail of β2AR and a cytoplasmic part of the IR β chain as prospective interaction domains. ISM further suggested a high probability of heteromer formation and homodimers as basic units engaged in heteromerization. In summary, our data suggest direct interaction and higher-order β2AR:IR oligomer formation, likely comprising heteromers of homodimers.
Collapse
|
25
|
Evidence for aggregation of protein kinase CK2 in the cell: a novel strategy for studying CK2 holoenzyme interaction by BRET(2). Mol Cell Biochem 2014; 397:285-93. [PMID: 25148873 DOI: 10.1007/s11010-014-2196-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/13/2014] [Indexed: 10/24/2022]
Abstract
Protein kinase CK2 is a ubiquitous pro-survival kinase whose substrate targets are involved in various cellular processes. Crystal structure analysis confirmed constitutive activity of the kinase, yet CK2 activity regulation in the cell is still obscure. In-vitro studies suggest autoinhibitory aggregation of the hetero-tetrameric CK2 holoenzyme as a basis for CK2 regulation. In this study, we applied bioluminescent resonance energy transfer (BRET) technology to investigate CK2 holoenzyme aggregation in living cells. We designed a BRET(2) pair consisting of the fusion proteins CK2α-Rluc8 and CK2α-GFP(2). This BRET(2) sensor reported specific interaction of CK2 holoenzyme complexes. Furthermore, the BRET(2) sensor was applied to study modulators of CK2 aggregation. We found that CK2 aggregation is not static and can be influenced by the CK2-binding protein alpha subunit of the heterotrimeric G-protein that stimulates adenylyl cyclase (Gαs) and the polycationic compound polylysine. Gαs, but not the CK2 substrate β-arrestin2, decreased the BRET(2) signal by up to 50%. Likewise polylysine, but not the CK2 inhibitor DRB, decreased the signal in a dose-dependent manner up to 50%. For the first time, we present direct experimental evidence for CK2 holoenzyme aggregates in the cell. Our data suggest that CK2 activity may be controlled by holoenzyme aggregation, to our knowledge a novel mechanism for protein kinase regulation. Moreover, the BRET(2) sensor used in our study is a novel tool for studying CK2 regulation by aggregation and pharmacological screening for novel allosteric CK2 effectors.
Collapse
|
26
|
Konya V, Blättermann S, Jandl K, Platzer W, Ottersbach PA, Marsche G, Gütschow M, Kostenis E, Heinemann A. A Biased Non-Gαi OXE-R Antagonist Demonstrates That Gαi Protein Subunit Is Not Directly Involved in Neutrophil, Eosinophil, and Monocyte Activation by 5-Oxo-ETE. THE JOURNAL OF IMMUNOLOGY 2014; 192:4774-82. [DOI: 10.4049/jimmunol.1302013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Abstract
G-protein-coupled receptors (GPCRs) are the primary interaction partners for arrestins. The visual arrestins, arrestin1 and arrestin4, physiologically bind to only very few receptors, i.e., rhodopsin and the color opsins, respectively. In contrast, the ubiquitously expressed nonvisual variants β-arrestin1 and 2 bind to a large number of receptors in a fairly nonspecific manner. This binding requires two triggers, agonist activation and receptor phosphorylation by a G-protein-coupled receptor kinase (GRK). These two triggers are mediated by two different regions of the arrestins, the "phosphorylation sensor" in the core of the protein and a less well-defined "activation sensor." Binding appears to occur mostly in a 1:1 stoichiometry, involving the N-terminal domain of GPCRs, but in addition a second GPCR may loosely bind to the C-terminal domain when active receptors are abundant.Arrestin binding initially uncouples GPCRs from their G-proteins. It stabilizes receptors in an active conformation and also induces a conformational change in the arrestins that involves a rotation of the two domains relative to each other plus changes in the polar core. This conformational change appears to permit the interaction with further downstream proteins. The latter interaction, demonstrated mostly for β-arrestins, triggers receptor internalization as well as a number of nonclassical signaling pathways.Open questions concern the exact stoichiometry of the interaction, possible specificity with regard to the type of agonist and of GRK involved, selective regulation of downstream signaling (=biased signaling), and the options to use these mechanisms as therapeutic targets.
Collapse
Affiliation(s)
- Martin J Lohse
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Straße 9, 97078, Würzburg, Germany,
| | | |
Collapse
|
28
|
Valentin-Hansen L, Groenen M, Nygaard R, Frimurer TM, Holliday ND, Schwartz TW. The arginine of the DRY motif in transmembrane segment III functions as a balancing micro-switch in the activation of the β2-adrenergic receptor. J Biol Chem 2012; 287:31973-82. [PMID: 22843684 DOI: 10.1074/jbc.m112.348565] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Recent high resolution x-ray structures of the β2-adrenergic receptor confirmed a close salt-bridge interaction between the suspected micro-switch residue ArgIII:26 (Arg3.50) and the neighboring AspIII:25 (Asp3.49). However, neither the expected "ionic lock" interactions between ArgIII:26 and GluVI:-06 (Glu6.30) in the inactive conformation nor the interaction with TyrV:24 (Tyr5.58) in the active conformation were observed in the x-ray structures. Here we find through molecular dynamics simulations, after removal of the stabilizing T4 lysozyme, that the expected salt bridge between ArgIII:26 and GluVI:-06 does form relatively easily in the inactive receptor conformation. Moreover, mutational analysis of GluVI:-06 in TM-VI and the neighboring AspIII:25 in TM-III demonstrated that these two residues do function as locks for the inactive receptor conformation as we observed increased G(s) signaling, arrestin mobilization, and internalization upon alanine substitutions. Conversely, TyrV:24 appears to play a role in stabilizing the active receptor conformation as loss of function of G(s) signaling, arrestin mobilization, and receptor internalization was observed upon alanine substitution of TyrV:24. The loss of function of the TyrV:24 mutant could partly be rescued by alanine substitution of either AspIII:25 or GluVI:-06 in the double mutants. Surprisingly, removal of the side chain of the ArgIII:26 micro-switch itself had no effect on G(s) signaling and internalization and only reduced arrestin mobilization slightly. It is suggested that ArgIII:26 is equally important for stabilizing the inactive and the active conformation through interaction with key residues in TM-III, -V, and -VI, but that the ArgIII:26 micro-switch residue itself apparently is not essential for the actual G protein activation.
Collapse
Affiliation(s)
- Louise Valentin-Hansen
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, the Panum Institute, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
29
|
Chen L, Jin L, Zhou N. An update of novel screening methods for GPCR in drug discovery. Expert Opin Drug Discov 2012; 7:791-806. [DOI: 10.1517/17460441.2012.699036] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
30
|
Kulahin N, Sanni SJ, Slaaby R, Nøhr J, Gammeltoft S, Hansen JL, Jorgensen R. A BRET assay for monitoring insulin receptor interactions and ligand pharmacology. J Recept Signal Transduct Res 2012; 32:57-64. [PMID: 22272819 DOI: 10.3109/10799893.2011.647351] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The insulin receptor (IR) belongs to the receptor tyrosine kinase super family and plays an important role in glucose homeostasis. The receptor interacts with several large docking proteins that mediate signaling from the receptor, including the insulin receptor substrate (IRS) family and Src homology-2-containing proteins (Src). Here, we applied the bioluminescence resonance energy transfer 2 (BRET2) technique to study the IR signaling pathways. The interaction between the IR and the substrates IRS1, IRS4 and Shc was examined in response to ligands with different signaling properties. The association between IR and the interacting partners could successfully be monitored when co-expressing green fluorescent protein 2 (GFP2) tagged substrates with Renilla reniformis luciferase 8 (Rluc8) tagged IR. Through additional optimization steps, we developed a stable and flexible BRET2 assay for monitoring the interactions between the IR and its substrates. Furthermore, the insulin analogue X10 was characterized in the BRET2 assay and was found to be 10 times more potent with respect to IRS1, IRS4 and Shc recruitment compared to human insulin. This study demonstrates that the BRET2 technique can be applied to study IR signaling pathways, and that this assay can be used as a platform for screening and characterization of IR ligands.
Collapse
Affiliation(s)
- Nikolaj Kulahin
- Incretin Biology, Hagedorn Research Institute, Gentofte, Denmark
| | | | | | | | | | | | | |
Collapse
|
31
|
Drinovec L, Kubale V, Nøhr Larsen J, Vrecl M. Mathematical models for quantitative assessment of bioluminescence resonance energy transfer: application to seven transmembrane receptors oligomerization. Front Endocrinol (Lausanne) 2012; 3:104. [PMID: 22973259 PMCID: PMC3428587 DOI: 10.3389/fendo.2012.00104] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 08/08/2012] [Indexed: 11/24/2022] Open
Abstract
The idea that seven transmembrane receptors (7TMRs; also designated G-protein coupled receptors, GPCRs) might form dimers or higher order oligomeric complexes was formulated more than 20 years ago and has been intensively studied since then. In the last decade, bioluminescence resonance energy transfer (BRET) has been one of the most frequently used biophysical methods for studying 7TMRs oligomerization. This technique enables monitoring physical interactions between protein partners in living cells fused to donor and acceptor moieties. It relies on non-radiative transfer of energy between donor and acceptor, depending on their intermolecular distance (1-10 nm) and relative orientation. Results derived from BRET-based techniques are very persuasive; however, they need appropriate controls and critical interpretation. To overcome concerns about the specificity of BRET-derived results, a set of experiments has been proposed, including negative control with a non-interacting receptor or protein, BRET dilution, saturation, and competition assays. This article presents the theoretical background behind BRET assays, then outlines mathematical models for quantitative interpretation of BRET saturation and competition assay results, gives examples of their utilization and discusses the possibilities of quantitative analysis of data generated with other RET-based techniques.
Collapse
|
32
|
Couturier C, Deprez B. Setting Up a Bioluminescence Resonance Energy Transfer High throughput Screening Assay to Search for Protein/Protein Interaction Inhibitors in Mammalian Cells. Front Endocrinol (Lausanne) 2012; 3:100. [PMID: 22973258 PMCID: PMC3438444 DOI: 10.3389/fendo.2012.00100] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 07/31/2012] [Indexed: 12/14/2022] Open
Abstract
Each step of the cell life and its response or adaptation to its environment are mediated by a network of protein/protein interactions termed "interactome." Our knowledge of this network keeps growing due to the development of sensitive techniques devoted to study these interactions. The bioluminescence resonance energy transfer (BRET) technique was primarily developed to allow the dynamic monitoring of protein/protein interactions (PPI) in living cells, and has widely been used to study receptor activation by intra- or extra-molecular conformational changes within receptors and activated complexes in mammal cells. Some interactions are described as crucial in human pathological processes, and a new class of drugs targeting them has recently emerged. The BRET method is well suited to identify inhibitors of PPI and here is described why and how to set up and optimize a high throughput screening assay based on BRET to search for such inhibitory compounds. The different parameters to take into account when developing such BRET assays in mammal cells are reviewed to give general guidelines: considerations on the targeted interaction, choice of BRET version, inducibility of the interaction, kinetic of the monitored interaction, and of the BRET reading, influence of substrate concentration, number of cells and medium composition used on the Z' factor, and expected interferences from colored or fluorescent compounds.
Collapse
Affiliation(s)
- Cyril Couturier
- Univ Lille Nord de FranceLille, France
- INSERM U761, Biostructures and Drug DiscoveryLille, France
- Université du Droit et de la Santé de LilleLille, France
- Institut Pasteur LilleLille, France
- Pôle de Recherche Interdisciplinaire sur le MédicamentLille, France
- *Correspondence: Cyril Couturier, UMR 761, Biostructure and Drug Discovery, Institut Pasteur de Lille, Université Lille 2, 1 rue du Pr Calmette, 59000 Lille, France. e-mail:
| | - Benoit Deprez
- Univ Lille Nord de FranceLille, France
- INSERM U761, Biostructures and Drug DiscoveryLille, France
- Université du Droit et de la Santé de LilleLille, France
- Institut Pasteur LilleLille, France
- Pôle de Recherche Interdisciplinaire sur le MédicamentLille, France
| |
Collapse
|
33
|
Jorgensen R, Norklit Roed S, Heding A, Elling CE. Beta-Arrestin2 as a Competitor for GRK2 Interaction with the GLP-1 Receptor upon Receptor Activation. Pharmacology 2011; 88:174-81. [DOI: 10.1159/000330742] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 07/06/2011] [Indexed: 01/28/2023]
|
34
|
Corbel C, Wang Q, Bousserouel H, Hamdi A, Zhang B, Lozach O, Ferandin Y, Tan VBC, Guéritte F, Colas P, Couturier C, Bach S. First BRET-based screening assay performed in budding yeast leads to the discovery of CDK5/p25 interaction inhibitors. Biotechnol J 2011; 6:860-70. [PMID: 21681968 DOI: 10.1002/biot.201100138] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/07/2011] [Accepted: 04/29/2011] [Indexed: 11/06/2022]
Abstract
The protein kinase CDK5 (cyclin-dependent kinase 5) is activated through its association with a cyclin-like protein p35 or p39. In pathological conditions (such as Alzheimer's disease and various other neuropathies), truncation of p35 leads to the appearance of the p25 protein. The interaction of p25 with CDK5 up-regulates the kinase activity and modifies the substrate specificity. ATP-mimetic inhibitors of CDK5 have already been developed. However, the lack of selectivity of such inhibitors is often a matter of concern. An alternative approach can be used to identify highly specific inhibitors that disrupt protein interactions involving protein kinases. We have developed a bioluminescence resonance energy transfer (BRET)-based screening assay in yeast to discover protein-protein interaction inhibitors (P2I2). Here, we present the first use of BRET in yeast for the screening of small molecule libraries. This screening campaign led to the discovery of one molecule that prevents the interaction between CDK5 and p25, thus inhibiting the protein kinase activity. This molecule may give rise to high-specificity drug candidates.
Collapse
Affiliation(s)
- Caroline Corbel
- CNRS USR 3151, Protein Phosphorylation and Disease Laboratory, Protein-Protein Interaction Inhibition P2I2 Group, Station Biologique, Roscoff, Bretagne, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Zhang Y, Yang W, Chen L, Shi Y, Li G, Zhou N. Development of a novel DnaE intein-based assay for quantitative analysis of G-protein-coupled receptor internalization. Anal Biochem 2011; 417:65-72. [PMID: 21726524 DOI: 10.1016/j.ab.2011.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 06/01/2011] [Accepted: 06/03/2011] [Indexed: 01/12/2023]
Abstract
G-protein-coupled receptor (GPCR) internalization provides a G-protein-subtype-independent method for assaying agonist-stimulated activation of receptors. We have developed a novel assay that allows quantitative analysis of GPCR internalization based on the interaction between activated GPCRs and β-arrestin2 and on Nostoc punctiforme DnaE intein-mediated reconstitution of Renilla luciferase fragments. This assay system was validated using four functionally divergent GPCRs treated with agonists and antagonists. The EC(50) values obtained for the known agonists and antagonists are in close agreement with the results of previous reports, indicating that this assay system is sensitive enough to permit quantification of GPCR internalization. This rapid and quantitative assay, therefore, could be used universally as a functional cell-based assay for GPCR high-throughput screening during drug discovery.
Collapse
Affiliation(s)
- Yaping Zhang
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | | | | | | | | | | |
Collapse
|
36
|
Djannatian MS, Galinski S, Fischer TM, Rossner MJ. Studying G protein-coupled receptor activation using split-tobacco etch virus assays. Anal Biochem 2011; 412:141-52. [PMID: 21295005 DOI: 10.1016/j.ab.2011.01.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 01/21/2011] [Accepted: 01/28/2011] [Indexed: 11/26/2022]
Abstract
G protein-coupled receptors (GPCRs) constitute the largest receptor family in mammals and represent important drug targets. Signaling through GPCRs mediates physiological effects that are strongly dependent on the cellular context. Therefore, the availability of assays monitoring GPCR activation applicable in different cell types could help to better understand GPCR functions and to realize the potential of known substances as well as novel ones. Here we introduce a split-TEV (tobacco etch virus) assay to monitor GPCR activation through the stimulation-dependent recruitment of β-arrestin 2. Inactive N- and C-terminal fragments of the TEV protease are coupled to a GPCR and β-arrestin 2, respectively. Ligand-dependent interaction of the two fusion proteins leads to functional complementation of the TEV protease, followed by the cleavage of an artificial transcription factor and successive reporter gene activation. The presented split-TEV assay system is highly sensitive and was successfully applied in heterologous cell lines as well as in primary cultured neuronal and glial cells. We show that assay performance strongly depends on the endogenous properties of different cell types. The sensitivity and flexibility make split-TEV assays a valuable tool to analyze GPCR activation in different cell types in a rapid and cost-effective way.
Collapse
|
37
|
A high-throughput screening system for G-protein-coupled receptors using β-lactamase enzyme complementation technology. Acta Pharmacol Sin 2010; 31:1618-24. [PMID: 21102483 PMCID: PMC4002942 DOI: 10.1038/aps.2010.154] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Aim: To establish a system for monitoring the activation of G-protein-coupled receptors (GPCRs) using β-lactamase enzyme fragment complementation (EFC) technology. Methods: Two inactive β-lactamase deletion fragments, bla(a) and bla(b), were fused to β-arrestin and GPCR, respectively. A stable cell line named HEK/293-β2a2, which expressed two fusion proteins, GPCR/bla(b) and β-arrestin2/bla(a), was generated under antibiotic selection. A natural compound library of high performance liquid chromatography (HPLC)-fractionated samples from the ethanol extracts of Chinese medicinal herbs was used for high-throughput screening (HTS) of β2-adrenoceptor (β2AR) agonists against the cell line HEK/293-β2a2. The interested hits were validated by the measurement of second-messenger cyclic adenosine monophosphate (cAMP) production. Results: The stable cell line HEK/293-β2a2 responded to β2AR agonist/antagonist in a dose-dependent manner. The EC50 value obtained for isoproterenol was 15.5 nmol/L, and the IC50 value obtained for propranolol was 51.9 nmol/L. Furthermore, HTS was performed to identify β2AR agonists from the natural compound library we established. The Z′ factor value was determined to be 0.68. Three hits were identified from primary screening and found to be as potent as isoproterenol in a cAMP assay. Conclusion: A cell-based high-throughput functional assay was established to directly monitor the activation of GPCRs based on the interaction between agonist-activated GPCR and β-arrestin using β-lactamase EFC technology, which can be used to search for leads in the natural compound library.
Collapse
|
38
|
Breton B, Lagacé M, Bouvier M. Combining resonance energy transfer methods reveals a complex between the α 2A‐adrenergic receptor, Gα i1β 1γ 2, and GRK2. FASEB J 2010. [DOI: 10.1096/fj.10.164061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Billy Breton
- Department of BiochemistryInstitute for Research in Immunology and CancerGroupe de Recherche Universitaire sur le MédicamentUniversité de Montréal Montréal Québec Canada
| | - Monique Lagacé
- Department of BiochemistryInstitute for Research in Immunology and CancerGroupe de Recherche Universitaire sur le MédicamentUniversité de Montréal Montréal Québec Canada
| | - Michel Bouvier
- Department of BiochemistryInstitute for Research in Immunology and CancerGroupe de Recherche Universitaire sur le MédicamentUniversité de Montréal Montréal Québec Canada
| |
Collapse
|
39
|
Kulahin N, Grunnet LG, Lundh M, Christensen DP, Jorgensen R, Heding A, Billestrup N, Berezin V, Bock E, Mandrup-Poulsen T. Direct demonstration of NCAMcis-dimerization and inhibitory effect of palmitoylation using the BRET2technique. FEBS Lett 2010; 585:58-64. [DOI: 10.1016/j.febslet.2010.11.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 11/17/2010] [Accepted: 11/19/2010] [Indexed: 10/18/2022]
|
40
|
Breton B, Lagacé M, Bouvier M. Combining resonance energy transfer methods reveals a complex between the alpha2A-adrenergic receptor, Galphai1beta1gamma2, and GRK2. FASEB J 2010; 24:4733-43. [PMID: 20696855 DOI: 10.1096/fj.10-164061] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Traditionally, G-protein-coupled receptor (GPCR) interactions with their G proteins and regulatory proteins, GPCR kinases (GRKs) and arrestins, are described as sequential events involving rapid assemblies/disassemblies. To directly monitor the dynamics of these interactions in living cells, we combined two spectrally resolved bioluminescence and one fluorescence resonance energy transfer (RET) methods. The RET combination analysis revealed that stimulation of the α(2A)-adrenergic receptor (α(2A)AR) leads to the recruitment of GRK2 at a receptor still associated with the Gα(i1)β(1)γ(2) complex. The interaction kinetics of GRKs with Gγ(2) (2.8 ± 0.4 s) and α(2A)AR (5.2 ± 0.5 s) were similar to that of the receptor-promoted change in RET between Gα(i1) and Gγ(2) (5.2 ± 1.2 s), and persisted until the translocation of βarrestin2 to the receptor, indicating that GRK2 remains associated to the receptor/G-protein complex for longer periods than anticipated. Moreover, GRK2 or a kinase-deficient GRK2 mutant, but not GRK5, potentiated the receptor-promoted changes in RET between Gα(i1) and Gγ(2) and abrogated the α(2A)AR-stimulated calcium response, suggesting that the recruitment of GRK2 to the complex contributes to the structural rearrangement and functional regulation of the signaling unit, independently of the kinase activity. RET combination analysis revealed unanticipated dynamics in GPCR signaling and will be applicable to many biological systems.
Collapse
Affiliation(s)
- Billy Breton
- Department of Biochemistry, Institute for Research in Immunology and Cancer, and Groupe de Recherche Universitaire sur le Médicament, Université de Montréal, Montréal, Québec, Canada
| | | | | |
Collapse
|
41
|
Grimstrup M, Receveur JM, Rist Ø, Frimurer TM, Nielsen PA, Mathiesen JM, Högberg T. Exploration of SAR features by modifications of thiazoleacetic acids as CRTH2 antagonists. Bioorg Med Chem Lett 2010; 20:1638-41. [DOI: 10.1016/j.bmcl.2010.01.092] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 01/10/2010] [Accepted: 01/12/2010] [Indexed: 11/29/2022]
|
42
|
Novel selective thiazoleacetic acids as CRTH2 antagonists developed from in silico derived hits. Part 1. Bioorg Med Chem Lett 2010; 20:1177-80. [DOI: 10.1016/j.bmcl.2009.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Accepted: 12/01/2009] [Indexed: 11/20/2022]
|
43
|
Grimstrup M, Rist Ø, Receveur JM, Frimurer TM, Ulven T, Mathiesen JM, Kostenis E, Högberg T. Novel selective thiazoleacetic acids as CRTH2 antagonists developed from in silico derived hits. Part 2. Bioorg Med Chem Lett 2010; 20:1181-5. [DOI: 10.1016/j.bmcl.2009.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Revised: 12/02/2009] [Accepted: 12/02/2009] [Indexed: 01/28/2023]
|
44
|
Vrecl M, Nørregaard PK, Almholt DLC, Elster L, Pogacnik A, Heding A. Beta-arrestin-based Bret2 screening assay for the "non"-beta-arrestin binding CB1 receptor. ACTA ACUST UNITED AC 2009; 14:371-80. [PMID: 19403920 DOI: 10.1177/1087057109333101] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
CB1 receptor (CB1R) antagonists have been demonstrated to be effective in treating obesity and related disorders. This study has been focused on establishing a beta-arrestin 2-based screening assay for the CB1R using BRET2 technology. When the existing BRET2 screening platform was applied to the CB1R, the authors discovered that the receptor interacted weakly with beta-arrestin 2, resulting in unsatisfactory assay performance. To enhance the beta-arrestin binding capacity, they replaced the C-terminal tail of the CB1R with tails from either the V2 or BRS3 receptors, both of which interact strongly with beta-arrestin 2. Using this chimeric approach, the authors screened a small compound library and identified 21 antagonist and inverse agonist hits with IC50 and EC50 values ranging from 0.3 nM to 7.5 microM. Both primary and secondary screening were performed with Z'>0.5, suggesting that the assay is a robust and cost-effective alternative to existing cell-based assays.
Collapse
Affiliation(s)
- Milka Vrecl
- Institute of Anatomy, Histology & Embryology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia.
| | | | | | | | | | | |
Collapse
|
45
|
Gottschalk M, Bach A, Hansen JL, Krogsgaard-Larsen P, Kristensen AS, Strømgaard K. Detecting Protein–Protein Interactions in Living Cells: Development of a Bioluminescence Resonance Energy Transfer Assay to Evaluate the PSD-95/NMDA Receptor Interaction. Neurochem Res 2009; 34:1729-37. [DOI: 10.1007/s11064-009-9998-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 05/12/2009] [Indexed: 01/10/2023]
|
46
|
Chung C, Kim I, Jung Y. Considering cell‐based assays and factors for genome‐wide high‐content functional screening. Anim Cells Syst (Seoul) 2009. [DOI: 10.1080/19768354.2009.9647199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
47
|
Abstract
G protein-coupled receptors (GPCRs) are a large family of proteins that represent targets for approximately 40% of all approved drugs. They possess unique structural motifs that allow them to interact with a diverse series of extracellular ligands, as well as intracellular signaling proteins, such as G proteins, RAMPs, arrestins, and indeed other receptors. Extensive efforts are under way to discover new generations of drugs against GPCRs with unique targeted therapeutic uses, including "designer" drugs such as allosteric regulators, inverse agonists, and drugs targeting hetero-oligomeric complexes. This has been facilitated by the development of new screening technologies to identify novel drugs against both known and orphan GPCRs.
Collapse
|
48
|
Svendsen AM, Zalesko A, Kønig J, Vrecl M, Heding A, Kristensen JB, Wade JD, Bathgate RAD, De Meyts P, Nøhr J. Negative cooperativity in H2 relaxin binding to a dimeric relaxin family peptide receptor 1. Mol Cell Endocrinol 2008; 296:10-7. [PMID: 18723073 DOI: 10.1016/j.mce.2008.07.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 07/16/2008] [Accepted: 07/22/2008] [Indexed: 11/26/2022]
Abstract
H2 relaxin, a member of the insulin superfamily, binds to the G-protein-coupled receptor RXFP1 (relaxin family peptide 1), a receptor that belongs to the leucine-rich repeat (LRR)-containing subgroup (LGRs) of class A GPCRs. We recently demonstrated negative cooperativity in INSL3 binding to RXFP2 and showed that this subgroup of GPCRs functions as constitutive dimers. In this work, we investigated whether the binding of H2 relaxin to RXFP1 also shows negative cooperativity, and whether this receptor functions as a dimer using BRET(2). Both binding and dissociation were temperature dependent, and the pH optimum for binding was pH 7.0. Our results showed that RXFP1 is a constitutive dimer with negative cooperativity in ligand binding, that dimerization occurs through the 7TM domain, and that the ectodomain has a stabilizing effect on this interaction. Dimerization and negative cooperativity appear to be general properties of LGRs involved in reproduction as well as other GPCRs.
Collapse
|
49
|
Kocan M, See HB, Seeber RM, Eidne KA, Pfleger KDG. Demonstration of improvements to the bioluminescence resonance energy transfer (BRET) technology for the monitoring of G protein-coupled receptors in live cells. ACTA ACUST UNITED AC 2008; 13:888-98. [PMID: 18812574 DOI: 10.1177/1087057108324032] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The bioluminescence resonance energy transfer (BRET) technique has become extremely popular for studying protein-protein interactions in living cells and real time. Of particular interest is the ability to monitor interactions between G protein-coupled receptors, such as the thyrotropin-releasing hormone receptor (TRHR), and proteins critical for regulating their function, such as beta-arrestin. Using TRHR/beta-arrestin interactions, we have demonstrated improvements to all 3 generations of BRET (BRET(1), BRET(2), and eBRET) by using the novel forms of luciferase, Rluc2 and Rluc8, developed by the Gambhir laboratory. Furthermore, for the 1st time it was possible to use the BRET2 system to detect ligand-induced G protein-coupled receptor/beta-arrestin interactions over prolonged periods (on the scale of hours rather than seconds) with a very stable signal. As demonstrated by our Z'-factor data, these luciferases increase the sensitivity of BRET to such an extent that they substantially increase the potential applicability of this technology for effective drug discovery high-throughput screening.
Collapse
Affiliation(s)
- Martina Kocan
- Laboratory for Molecular Endocrinology-GPCRs, Western Australian Institute for Medical Research (WAIMR), Centre for Medical Research, University of Western Australia, Perth, Western Australia, Australia
| | | | | | | | | |
Collapse
|
50
|
Hamdan FF, Percherancier Y, Breton B, Bouvier M. Monitoring protein-protein interactions in living cells by bioluminescence resonance energy transfer (BRET). ACTA ACUST UNITED AC 2008; Chapter 5:Unit 5.23. [PMID: 18428639 DOI: 10.1002/0471142301.ns0523s34] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Bioluminescence resonance energy transfer (BRET) allows monitoring of protein-protein interactions in real time in living cells. One candidate interacting protein is fused to a luminescent energy donor, such as Renilla luciferase, and the other to a fluorescent energy acceptor, such the green fluorescent protein (GFP), and the two are then coexpressed in the same cells. If the two proteins interact, their close proximity allows nonradiative energy transfer (BRET) between the luciferase and the GFP. BRET does not occur if the two proteins are separated by more than 100 A, making the technique ideal for monitoring protein-protein interactions in biological systems. This unit describes the use of BRET to study constitutive and agonist-promoted interactions among signaling molecules, as illustrated by the homodimerization of the CXCR4 receptor and the recruitment of beta-arrestin2 to agonist-activated G-protein-coupled receptors. This noninvasive and homogeneous assay provides a robust and sensitive proteomic platform with applications for basic science research and drug discovery.
Collapse
|