1
|
Barth I, Conteduca D, Dong P, Wragg J, Sahoo PK, Arruda GS, Martins ER, Krauss TF. Phase noise matching in resonant metasurfaces for intrinsic sensing stability. OPTICA 2024; 11:354-361. [PMID: 38638165 PMCID: PMC11023067 DOI: 10.1364/optica.510524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 04/20/2024]
Abstract
Interferometry offers a precise means of interrogating resonances in dielectric and plasmonic metasurfaces, surpassing spectrometer-imposed resolution limits. However, interferometry implementations often face complexity or instability issues due to heightened sensitivity. Here, we address the necessity for noise compensation and tolerance by harnessing the inherent capabilities of photonic resonances. Our proposed solution, termed "resonant phase noise matching," employs optical referencing to align the phases of equally sensitive, orthogonal components of the same mode. This effectively mitigates drift and noise, facilitating the detection of subtle phase changes induced by a target analyte through spatially selective surface functionalization. Validation of this strategy using Fano resonances in a 2D photonic crystal slab showcases noteworthy phase stability (σ < 10 - 4 π ). With demonstrated label-free detection of low-molecular-weight proteins at clinically relevant concentrations, resonant phase noise matching presents itself as a potentially valuable strategy for advancing scalable, high-performance sensing technology beyond traditional laboratory settings.
Collapse
Affiliation(s)
- Isabel Barth
- School of Physics Engineering and Technology, University of York, Heslington, York YO10 5DD, UK
| | - Donato Conteduca
- School of Physics Engineering and Technology, University of York, Heslington, York YO10 5DD, UK
| | - Pin Dong
- School of Physics Engineering and Technology, University of York, Heslington, York YO10 5DD, UK
| | - Jasmine Wragg
- School of Physics Engineering and Technology, University of York, Heslington, York YO10 5DD, UK
| | - Pankaj K. Sahoo
- School of Physics Engineering and Technology, University of York, Heslington, York YO10 5DD, UK
| | - Guilherme S. Arruda
- Sao Carlos School of Engineering, Department of Electrical and Computer Engineering, University of Sao Paulo, Sao Carlos-SP 13566-590, Brazil
| | - Emiliano R. Martins
- Sao Carlos School of Engineering, Department of Electrical and Computer Engineering, University of Sao Paulo, Sao Carlos-SP 13566-590, Brazil
| | - Thomas F. Krauss
- School of Physics Engineering and Technology, University of York, Heslington, York YO10 5DD, UK
| |
Collapse
|
2
|
Ow SY, Kapp EA, Tomasetig V, Zalewski A, Simmonds J, Panousis C, Wilson MJ, Nash AD, Pelzing M. HDX-MS study on garadacimab binding to activated FXII reveals potential binding interfaces through differential solvent exposure. MAbs 2023; 15:2163459. [PMID: 36628468 PMCID: PMC9839371 DOI: 10.1080/19420862.2022.2163459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Hageman factor (FXII) is an essential component in the intrinsic coagulation cascade and a therapeutic target for the prophylactic treatment of hereditary angioedema (HAE). CSL312 (garadacimab) is a novel high-affinity human antibody capable of blocking activated FXII activity that is currently undergoing Phase 3 clinical trials in HAE. Structural studies using hydrogen/deuterium exchange coupled to mass spectrometry revealed evidence of interaction between the antibody and regions surrounding the S1 specificity pocket of FXII, including the 99-loop, 140-loop, 180-loop, and neighboring regions. We propose complementarity-determining regions (CDRs) in heavy-chain CDR2 and CDR3 as potential paratopes on garadacimab, and the 99-loop, 140-loop, 180-loop, and 220-loop as binding sites on the beta chain of activated FXII (β-FXIIa).
Collapse
Affiliation(s)
- Saw Yen Ow
- Research and Development, CSL Limited, Bio21 Molecular Science and Biotechnology Institute, Parkville, Australia
| | - Eugene A. Kapp
- Research and Development, CSL Limited, Bio21 Molecular Science and Biotechnology Institute, Parkville, Australia
| | - Vesna Tomasetig
- Research and Development, CSL Limited, Bio21 Molecular Science and Biotechnology Institute, Parkville, Australia
| | - Anton Zalewski
- Research and Development, CSL Limited, Bio21 Molecular Science and Biotechnology Institute, Parkville, Australia
| | - Jason Simmonds
- Research and Development, CSL Limited, Bio21 Molecular Science and Biotechnology Institute, Parkville, Australia
| | - Con Panousis
- Research and Development, CSL Limited, Bio21 Molecular Science and Biotechnology Institute, Parkville, Australia
| | - Michael J. Wilson
- Research and Development, CSL Limited, Bio21 Molecular Science and Biotechnology Institute, Parkville, Australia
| | - Andrew D. Nash
- Research and Development, CSL Limited, Bio21 Molecular Science and Biotechnology Institute, Parkville, Australia
| | - Matthias Pelzing
- Research and Development, CSL Limited, Bio21 Molecular Science and Biotechnology Institute, Parkville, Australia,CONTACT Matthias Pelzing CSL Limited, 30 Flemington Road, Parkville, Victoria3010, Australia
| |
Collapse
|
3
|
Puopolo T, Chang T, Liu C, Li H, Liu X, Wu X, Ma H, Seeram NP. Gram-Scale Preparation of Cannflavin A from Hemp ( Cannabis sativa L.) and Its Inhibitory Effect on Tryptophan Catabolism Enzyme Kynurenine-3-Monooxygenase. BIOLOGY 2022; 11:biology11101416. [PMID: 36290320 PMCID: PMC9598531 DOI: 10.3390/biology11101416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022]
Abstract
Inhibitors targeting kynurenine-3-monooxygenase (KMO), an enzyme in the neurotoxic kynurenine pathway (KP), are potential therapeutics for KP metabolites-mediated neuroinflammatory and neurodegenerative disorders. Although phytochemicals from Cannabis (C. sativa L.) have been reported to show modulating effects on enzymes involved in the KP metabolism, the inhibitory effects of C. sativa compounds, including phytocannabinoids and non-phytocannabinoids (i.e., cannflavin A; CFA), on KMO remain unknown. Herein, CFA (purified from hemp aerial material at a gram-scale) and a series of phytocannabinoids were evaluated for their anti-KMO activity. CFA showed the most active inhibitory effect on KMO, which was comparable to the positive control Ro 61-8048 (IC50 = 29.4 vs. 5.1 μM, respectively). Furthermore, a molecular docking study depicted the molecular interactions between CFA and the KMO protein and a biophysical binding assay with surface plasmon resonance (SPR) technique revealed that CFA bound to the protein with a binding affinity of 4.1×10−5 M. A competitive SPR binding analysis suggested that CFA and Ro 61-8048 bind to the KMO protein in a competitive manner. Our findings show that C. sativa derived phytochemicals, including CFA, are potential KMO inhibitors, which provides insight into the development of therapeutics targeting the KP and its related pathological conditions.
Collapse
Affiliation(s)
- Tess Puopolo
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
| | - Tanran Chang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chang Liu
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Huifang Li
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Xu Liu
- Yunnan Hempmon Pharmaceutical Co., Ltd., Kunming 650032, China
| | - Xian Wu
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, OH 45056, USA
| | - Hang Ma
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
- Correspondence: (H.M.); (N.P.S.)
| | - Navindra P. Seeram
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
- Correspondence: (H.M.); (N.P.S.)
| |
Collapse
|
4
|
Liu C, Cai A, Li H, Deng N, Cho BP, Seeram NP, Ma H. Characterization of molecular interactions between cannabidiol and human plasma proteins (serum albumin and γ-globulin) by surface plasmon resonance, microcalorimetry, and molecular docking. J Pharm Biomed Anal 2022; 214:114750. [DOI: 10.1016/j.jpba.2022.114750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 01/22/2023]
|
5
|
Ai Y, Hwang L, MacKerell AD, Melnick A, Xue F. Progress toward B-Cell Lymphoma 6 BTB Domain Inhibitors for the Treatment of Diffuse Large B-Cell Lymphoma and Beyond. J Med Chem 2021; 64:4333-4358. [PMID: 33844535 DOI: 10.1021/acs.jmedchem.0c01686] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
B-cell lymphoma 6 (BCL6) is a master regulator of germinal center formation that produce antibody-secreting plasma cells and memory B-cells for sustained immune responses. The BTB domain of BCL6 (BCL6BTB) forms a homodimer that mediates transcriptional repression by recruiting its corepressor proteins to form a biologically functional transcriptional complex. The protein-protein interaction (PPI) between the BCL6BTB and its corepressors has emerged as a therapeutic target for the treatment of DLBCL and a number of other human cancers. This Perspective provides an overview of recent advances in the development of BCL6BTB inhibitors from reversible inhibitors, irreversible inhibitors, to BCL6 degraders. Inhibitor design and medicinal chemistry strategies for the development of novel compounds will be provided. The binding mode of new inhibitors to BCL6BTB are highlighted. Also, the in vitro and in vivo assays used for the evaluation of new compounds will be discussed.
Collapse
Affiliation(s)
- Yong Ai
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United States
| | - Lucia Hwang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United States
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United States
| | - Ari Melnick
- Department of Hematology and Oncology, Weill Cornell Medical College, New York, New York 10021, United States.,Department of Pharmacology, Weill Cornell Medical College, New York, New York 10021, United States
| | - Fengtian Xue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United States
| |
Collapse
|
6
|
Biolayer interferometry provides a robust method for detecting DNA binding small molecules in microbial extracts. Anal Bioanal Chem 2020; 413:1159-1171. [PMID: 33236226 DOI: 10.1007/s00216-020-03079-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/24/2020] [Accepted: 11/17/2020] [Indexed: 10/22/2022]
Abstract
DNA replication is an exceptional point of therapeutic intervention for many cancer types and several small molecules targeting DNA have been developed into clinically used antitumor agents. Many of these molecules are naturally occurring metabolites from plants and microorganisms, such as the widely used chemotherapeutic doxorubicin. While natural product sources contain a vast number of DNA binding small molecules, isolating and identifying these molecules is challenging. Typical screening campaigns utilize time-consuming bioactivity-guided fractionation approaches, which use sequential rounds of cell-based assays to guide the isolation of active compounds. In this study, we explore the use of biolayer interferometry (BLI) as a tool for rapidly screening natural product sources for DNA targeting small molecules. We first verified that BLI robustly detected DNA binding using designed GC- and AT-rich DNA oligonucleotides with known DNA intercalating, groove binding, and covalent binding agents including actinomycin D (1), doxorubicin (2), ethidium bromide (3), propidium iodide (4), Hoechst 33342 (5), and netropsin (6). Although binding varied with the properties of the oligonucleotides, measured binding affinities agreed with previously reported values. We next utilized BLI to screen over 100 bacterial extracts from our microbial library for DNA binding activity and found three highly active extracts. Binding-guided isolation was used to isolate the active principle component from each extract, which were identified as echinomycin (8), actinomycin V (9), and chartreusin (10). This biosensor-based DNA binding screen is a novel, low-cost, easy to use, and sensitive approach for medium-throughput screening of complex chemical libraries. Graphical abstract.
Collapse
|
7
|
Keiffer S, Carneiro MG, Hollander J, Kobayashi M, Pogoryelev D, Ab E, Theisgen S, Müller G, Siegal G. NMR in target driven drug discovery: why not? JOURNAL OF BIOMOLECULAR NMR 2020; 74:521-529. [PMID: 32901320 PMCID: PMC7683447 DOI: 10.1007/s10858-020-00343-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/17/2020] [Indexed: 05/09/2023]
Abstract
No matter the source of compounds, drug discovery campaigns focused directly on the target are entirely dependent on a consistent stream of reliable data that reports on how a putative ligand interacts with the protein of interest. The data will derive from many sources including enzyme assays and many types of biophysical binding assays such as TR-FRET, SPR, thermophoresis and many others. Each method has its strengths and weaknesses, but none is as information rich and broadly applicable as NMR. Here we provide a number of examples of the utility of NMR for enabling and providing ongoing support for the early pre-clinical phase of small molecule drug discovery efforts. The examples have been selected for their usefulness in a commercial setting, with full understanding of the need for speed, cost-effectiveness and ease of implementation.
Collapse
Affiliation(s)
| | | | | | | | | | - Eiso Ab
- ZoBio, JH Oortweg 19, 2333CH, Leiden, Netherlands
| | | | - Gerhard Müller
- Gotham GmbH, Am Klopferspitz 19a, 82152, Martinsried, Germany
| | - Gregg Siegal
- ZoBio, JH Oortweg 19, 2333CH, Leiden, Netherlands.
- Amsterdam Institute of Molecular and Life Sciences, Free University Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Lowegard AU, Frenkel MS, Holt GT, Jou JD, Ojewole AA, Donald BR. Novel, provable algorithms for efficient ensemble-based computational protein design and their application to the redesign of the c-Raf-RBD:KRas protein-protein interface. PLoS Comput Biol 2020; 16:e1007447. [PMID: 32511232 PMCID: PMC7329130 DOI: 10.1371/journal.pcbi.1007447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 07/01/2020] [Accepted: 05/13/2020] [Indexed: 11/25/2022] Open
Abstract
The K* algorithm provably approximates partition functions for a set of states (e.g., protein, ligand, and protein-ligand complex) to a user-specified accuracy ε. Often, reaching an ε-approximation for a particular set of partition functions takes a prohibitive amount of time and space. To alleviate some of this cost, we introduce two new algorithms into the osprey suite for protein design: fries, a Fast Removal of Inadequately Energied Sequences, and EWAK*, an Energy Window Approximation to K*. fries pre-processes the sequence space to limit a design to only the most stable, energetically favorable sequence possibilities. EWAK* then takes this pruned sequence space as input and, using a user-specified energy window, calculates K* scores using the lowest energy conformations. We expect fries/EWAK* to be most useful in cases where there are many unstable sequences in the design sequence space and when users are satisfied with enumerating the low-energy ensemble of conformations. In combination, these algorithms provably retain calculational accuracy while limiting the input sequence space and the conformations included in each partition function calculation to only the most energetically favorable, effectively reducing runtime while still enriching for desirable sequences. This combined approach led to significant speed-ups compared to the previous state-of-the-art multi-sequence algorithm, BBK*, while maintaining its efficiency and accuracy, which we show across 40 different protein systems and a total of 2,826 protein design problems. Additionally, as a proof of concept, we used these new algorithms to redesign the protein-protein interface (PPI) of the c-Raf-RBD:KRas complex. The Ras-binding domain of the protein kinase c-Raf (c-Raf-RBD) is the tightest known binder of KRas, a protein implicated in difficult-to-treat cancers. fries/EWAK* accurately retrospectively predicted the effect of 41 different sets of mutations in the PPI of the c-Raf-RBD:KRas complex. Notably, these mutations include mutations whose effect had previously been incorrectly predicted using other computational methods. Next, we used fries/EWAK* for prospective design and discovered a novel point mutation that improves binding of c-Raf-RBD to KRas in its active, GTP-bound state (KRasGTP). We combined this new mutation with two previously reported mutations (which were highly-ranked by osprey) to create a new variant of c-Raf-RBD, c-Raf-RBD(RKY). fries/EWAK* in osprey computationally predicted that this new variant binds even more tightly than the previous best-binding variant, c-Raf-RBD(RK). We measured the binding affinity of c-Raf-RBD(RKY) using a bio-layer interferometry (BLI) assay, and found that this new variant exhibits single-digit nanomolar affinity for KRasGTP, confirming the computational predictions made with fries/EWAK*. This new variant binds roughly five times more tightly than the previous best known binder and roughly 36 times more tightly than the design starting point (wild-type c-Raf-RBD). This study steps through the advancement and development of computational protein design by presenting theory, new algorithms, accurate retrospective designs, new prospective designs, and biochemical validation. Computational structure-based protein design is an innovative tool for redesigning proteins to introduce a particular or novel function. One such function is improving the binding of one protein to another, which can increase our understanding of important protein systems. Herein we introduce two novel, provable algorithms, fries and EWAK*, for more efficient computational structure-based protein design as well as their application to the redesign of the c-Raf-RBD:KRas protein-protein interface. These new algorithms speed-up computational structure-based protein design while maintaining accurate calculations, allowing for larger, previously infeasible protein designs. Additionally, using fries and EWAK* within the osprey suite, we designed the tightest known binder of KRas, a heavily studied cancer target that interacts with a number of different proteins. This previously undiscovered variant of a KRas-binding domain, c-Raf-RBD, has potential to serve as a tool to further probe the protein-protein interface of KRas with its effectors and its discovery alone emphasizes the potential for more successful applications of computational structure-based protein design.
Collapse
Affiliation(s)
- Anna U. Lowegard
- Program in Computational Biology and Bioinformatics, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Computer Science, Duke University, Durham, North Carolina, United States of America
| | - Marcel S. Frenkel
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Graham T. Holt
- Program in Computational Biology and Bioinformatics, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Computer Science, Duke University, Durham, North Carolina, United States of America
| | - Jonathan D. Jou
- Department of Computer Science, Duke University, Durham, North Carolina, United States of America
| | - Adegoke A. Ojewole
- Program in Computational Biology and Bioinformatics, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Computer Science, Duke University, Durham, North Carolina, United States of America
| | - Bruce R. Donald
- Department of Computer Science, Duke University, Durham, North Carolina, United States of America
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
9
|
Hartman AM, Elgaher WAM, Hertrich N, Andrei SA, Ottmann C, Hirsch AKH. Discovery of Small-Molecule Stabilizers of 14-3-3 Protein-Protein Interactions via Dynamic Combinatorial Chemistry. ACS Med Chem Lett 2020; 11:1041-1046. [PMID: 32435423 DOI: 10.1021/acsmedchemlett.9b00541] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/28/2020] [Indexed: 12/18/2022] Open
Abstract
Protein-protein interactions (PPIs) play an important role in numerous biological processes such as cell-cycle regulation and multiple diseases. The family of 14-3-3 proteins is an attractive target as they serve as binding partner to various proteins and are therefore capable of regulating their biological activities. Discovering small-molecule modulators, in particular stabilizers, of such complexes via traditional screening approaches is a challenging task. Herein, we pioneered the first application of dynamic combinatorial chemistry (DCC) to a PPI target, to find modulators of 14-3-3 proteins. Evaluation of the amplified hits from the DCC experiments for their binding affinity via surface plasmon resonance (SPR), revealed that the low-micromolar (K D 15-16 μM) acylhydrazones are 14-3-3/synaptopodin PPI stabilizers. Thus, DCC appears to be ideally suited for the discovery of not only modulators but even the more elusive stabilizers of notoriously challenging PPIs.
Collapse
Affiliation(s)
- Alwin M. Hartman
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) − Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Walid A. M. Elgaher
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) − Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Nathalie Hertrich
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) − Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Sebastian A. Andrei
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Department of Chemistry, University of Duisburg-Essen, 47057 Essen, Germany
| | - Anna K. H. Hirsch
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) − Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| |
Collapse
|
10
|
Coyle J, Walser R. Applied Biophysical Methods in Fragment-Based Drug Discovery. SLAS DISCOVERY 2020; 25:471-490. [PMID: 32345095 DOI: 10.1177/2472555220916168] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Fragment-based drug discovery (FBDD) has come of age in the last decade with the FDA approval of four fragment-derived drugs. Biophysical methods are at the heart of hit discovery and validation in FBDD campaigns. The three most commonly used methods, thermal shift, surface plasmon resonance, and nuclear magnetic resonance, can be daunting for the novice user. We aim here to provide the nonexpert user of these methods with a summary of problems and challenges that might be faced, but also highlight the potential gains that each method can contribute to an FBDD project. While our view on FBDD is slightly biased toward enabling structure-guided drug discovery, most of the points we address in this review are also valid for non-structure-focused FBDD.
Collapse
Affiliation(s)
- Joe Coyle
- Astex Pharmaceuticals, Cambridge, UK
| | | |
Collapse
|
11
|
Structure-activity relationship study of hypoxia-activated prodrugs for proteoglycan-targeted chemotherapy in chondrosarcoma. Eur J Med Chem 2018; 158:51-67. [DOI: 10.1016/j.ejmech.2018.08.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/20/2018] [Accepted: 08/22/2018] [Indexed: 01/18/2023]
|
12
|
Identification of influenza polymerase inhibitors targeting C-terminal domain of PA through surface plasmon resonance screening. Sci Rep 2018; 8:2280. [PMID: 29396435 PMCID: PMC5797126 DOI: 10.1038/s41598-018-20772-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/24/2018] [Indexed: 12/02/2022] Open
Abstract
Currently, many strains of influenza A virus have developed resistance against anti-influenza drugs, and it is essential to find new chemicals to combat this virus. The influenza polymerase with three proteins, PA, PB1 and PB2, is a crucial component of the viral ribonucleoprotein (RNP) complex. Here, we report the identification of a hit compound 221 by surface plasmon resonance (SPR) direct binding screening on the C-terminal of PA (PAC). Compound 221 can subdue influenza RNP activities and attenuate influenza virus replication. Its analogs were subsequently investigated and twelve of them could attenuate RNP activities. One of the analogs, compound 312, impeded influenza A virus replication in Madin-Darby canine kidney cells with IC50 of 27.0 ± 16.8 μM. In vitro interaction assays showed that compound 312 bound directly to PAC with Kd of about 40 μM. Overall, the identification of novel PAC-targeting compounds provides new ground for drug design against influenza virus in the future.
Collapse
|
13
|
Monitoring drug–serum protein interactions for early ADME prediction through Surface Plasmon Resonance technology. J Pharm Biomed Anal 2017; 144:188-194. [DOI: 10.1016/j.jpba.2017.03.054] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/03/2017] [Accepted: 03/26/2017] [Indexed: 12/16/2022]
|
14
|
Identification of influenza polymerase inhibitors targeting polymerase PB2 cap-binding domain through virtual screening. Antiviral Res 2017. [DOI: 10.1016/j.antiviral.2017.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Guan Y, Dong J, Chen S, Liu M, Wang D, Zhang X, Wang H, Lin Z. Spectroscopic studies of the interaction mechanisms between mono-caffeoylquinic acids and transferrin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 181:82-90. [PMID: 28342427 DOI: 10.1016/j.saa.2017.03.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/21/2017] [Accepted: 03/06/2017] [Indexed: 06/06/2023]
Abstract
Transferrin (Tf) is an important protein responsible for circulating and transporting iron into cytoplasm. Tf can be taken into cells through endocytosis mediated by Tf receptor, which usually overexpresses in cancer cells. The Tf-Tf receptor pathway opens a possible avenue for novel targeted cancer therapy by utilizing Tf-binding active compounds. Among which, anti-cancer active caffeoylquinic acids (CQAs) were recently found to be promising Tf-binders by our group. For better understanding the anti-cancer activities of CQAs, it is important to unveil the binding mechanisms between CQAs and Tf. In this study, the fluorescence quenching, surface plasmon resonance (SPR), circular dichroism (CD) and molecular docking were used to investigate the interactions between CQA and Tf. The results showed that the calculated apparent association constants of interactions between 1-, 3-, 4- and 5-CQA and Tf at 298K were 7.97×105M-1, 4.36×107M-1, 6.58×105M-1 and 4.42×106M-1, respectively. The thermodynamic parameters indicated that the interaction between 1-, 3-, 5-CQA and Tf is due to H-bonding, and electrostatic interactions were likely involved in the binding of 4-CQA and Tf. The CD results indicated that bindings of 1-CQA, 4-CQA and 5-CQA with Tf resulted in more stretched β-turn and random coil translated from β-sheet. In contrast, 3-CQA led to more stable a-helix conformation. Molecular docking studies of CQAs with Tf further displayed that CQAs were able to interact with residues near Fe3+ binding site. The spectroscopic studies revealed the action mechanisms, thermodynamics and interacting forces between CQAs and Tf, and thus are helpful for future design and discovery of Tf-binders for targeted cancer therapy applying Tf-Tf receptor pathway.
Collapse
Affiliation(s)
- Yanqing Guan
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jing Dong
- Shimadzu International Trading (Shanghai) Co. Limited, Beijing 100020, China
| | - Shizhong Chen
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Meixian Liu
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Daidong Wang
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaotian Zhang
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hong Wang
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Zongtao Lin
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, United States.
| |
Collapse
|
16
|
Huber S, Casagrande F, Hug MN, Wang L, Heine P, Kummer L, Plückthun A, Hennig M. SPR-based fragment screening with neurotensin receptor 1 generates novel small molecule ligands. PLoS One 2017; 12:e0175842. [PMID: 28510609 PMCID: PMC5433701 DOI: 10.1371/journal.pone.0175842] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 04/01/2017] [Indexed: 12/22/2022] Open
Abstract
The neurotensin receptor 1 represents an important drug target involved in various diseases of the central nervous system. So far, the full exploitation of potential therapeutic activities has been compromised by the lack of compounds with favorable physicochemical and pharmacokinetic properties which efficiently penetrate the blood-brain barrier. Recent progress in the generation of stabilized variants of solubilized neurotensin receptor 1 and its subsequent purification and successful structure determination presents a solid starting point to apply the approach of fragment-based screening to extend the chemical space of known neurotensin receptor 1 ligands. In this report, surface plasmon resonance was used as primary method to screen 6369 compounds. Thereby 44 hits were identified and confirmed in competition as well as dose-response experiments. Furthermore, 4 out of 8 selected hits were validated using nuclear magnetic resonance spectroscopy as orthogonal biophysical method. Computational analysis of the compound structures, taking the known crystal structure of the endogenous peptide agonist into consideration, gave insight into the potential fragment-binding location and interactions and inspires chemistry efforts for further exploration of the fragments.
Collapse
Affiliation(s)
- Sylwia Huber
- Roche Innovation Center Basel, Pharmaceutical Research and Early Development, Basel, Switzerland
- * E-mail: (SH); (MH)
| | - Fabio Casagrande
- Roche Innovation Center Basel, Pharmaceutical Research and Early Development, Basel, Switzerland
| | - Melanie N. Hug
- Roche Innovation Center Basel, Pharmaceutical Research and Early Development, Basel, Switzerland
| | - Lisha Wang
- Roche Innovation Center Basel, Pharmaceutical Research and Early Development, Basel, Switzerland
| | - Philipp Heine
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Lutz Kummer
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Michael Hennig
- Roche Innovation Center Basel, Pharmaceutical Research and Early Development, Basel, Switzerland
- * E-mail: (SH); (MH)
| |
Collapse
|
17
|
Discovery of a B-Cell Lymphoma 6 Protein-Protein Interaction Inhibitor by a Biophysics-Driven Fragment-Based Approach. J Med Chem 2017; 60:4358-4368. [PMID: 28471657 DOI: 10.1021/acs.jmedchem.7b00313] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
B-cell lymphoma 6 (BCL6) is a transcriptional factor that expresses in lymphocytes and regulates the differentiation and proliferation of lymphocytes. Therefore, BCL6 is a therapeutic target for autoimmune diseases and cancer treatment. This report presents the discovery of BCL6-corepressor interaction inhibitors by using a biophysics-driven fragment-based approach. Using the surface plasmon resonance (SPR)-based fragment screening, we successfully identified fragment 1 (SPR KD = 1200 μM, ligand efficiency (LE) = 0.28), a competitive binder to the natural ligand BCoR peptide. Moreover, we elaborated 1 into the more potent compound 7 (SPR KD = 0.078 μM, LE = 0.37, cell-free protein-protein interaction (PPI) IC50 = 0.48 μM (ELISA), cellular PPI IC50 = 8.6 μM (M2H)) by a structure-based design and structural integration with a second high-throughput screening hit.
Collapse
|
18
|
K-Ras(G12D)-selective inhibitory peptides generated by random peptide T7 phage display technology. Biochem Biophys Res Commun 2017; 484:605-611. [PMID: 28153726 DOI: 10.1016/j.bbrc.2017.01.147] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 01/26/2017] [Indexed: 01/15/2023]
Abstract
Amino-acid mutations of Gly12 (e.g. G12D, G12V, G12C) of V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (K-Ras), the most promising drug target in cancer therapy, are major growth drivers in various cancers. Although over 30 years have passed since the discovery of these mutations in most cancer patients, effective mutated K-Ras inhibitors have not been marketed. Here, we report novel and selective inhibitory peptides to K-Ras(G12D). We screened random peptide libraries displayed on T7 phage against purified recombinant K-Ras(G12D), with thorough subtraction of phages bound to wild-type K-Ras, and obtained KRpep-2 (Ac-RRCPLYISYDPVCRR-NH2) as a consensus sequence. KRpep-2 showed more than 10-fold binding- and inhibition-selectivity to K-Ras(G12D), both in SPR analysis and GDP/GTP exchange enzyme assay. KD and IC50 values were 51 and 8.9 nM, respectively. After subsequent sequence optimization, we successfully generated KRpep-2d (Ac-RRRRCPLYISYDPVCRRRR-NH2) that inhibited enzyme activity of K-Ras(G12D) with IC50 = 1.6 nM and significantly suppressed ERK-phosphorylation, downstream of K-Ras(G12D), along with A427 cancer cell proliferation at 30 μM peptide concentration. To our knowledge, this is the first report of a K-Ras(G12D)-selective inhibitor, contributing to the development and study of K-Ras(G12D)-targeting drugs.
Collapse
|
19
|
|
20
|
Sakamoto K, Sogabe S, Kamada Y, Matsumoto SI, Kadotani A, Sakamoto JI, Tani A. Discovery of GPX4 inhibitory peptides from random peptide T7 phage display and subsequent structural analysis. Biochem Biophys Res Commun 2017; 482:195-201. [DOI: 10.1016/j.bbrc.2016.11.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/07/2016] [Indexed: 10/24/2022]
|
21
|
Miura T, Matsuo A, Muraoka T, Ide M, Morikami K, Kamikawa T, Nishihara M, Kashiwagi H. Identification of a selective inhibitor of transforming growth factor β-activated kinase 1 by biosensor-based screening of focused libraries. Bioorg Med Chem Lett 2016; 27:1031-1036. [PMID: 28109791 DOI: 10.1016/j.bmcl.2016.12.064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 12/20/2016] [Accepted: 12/27/2016] [Indexed: 01/07/2023]
Abstract
Transforming growth factor-β activated kinase 1 (TAK1), a member of the mitogen-activated protein kinase kinase kinase family, plays an essential role in mediating signals from various pro-inflammatory cytokines and therefore may be a good target for developing anti-inflammation agents. Herein, we report our efforts to identify TAK1 inhibitors with a good selectivity profile with which to initiate medicinal chemistry. Instead of resorting to a high-throughput screening campaign, we performed biosensor-based biophysical screening for a limited number of compounds by taking advantage of existing knowledge on kinase inhibitors. Rather than focusing on one specific inhibition mode, we searched for three different types, Type I (ATP-competitive, DFG-in), Type II (DFG-out), and Type III binders (non-ATP competitive) in parallel, and succeeded in identifying candidates in all three categories efficiently and rapidly. Finally, the biosensor-based binding kinetics for the active and inactive forms of TAK1 were measured to prioritize the Type I and Type II inhibitors. The effort resulted in the identification of a new TAK1-selective Type I compound with a thienopyrimidine scaffold that served as a good starting point for medicinal chemistry.
Collapse
Affiliation(s)
- Takaaki Miura
- Research Division, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa 247-8530, Japan.
| | - Atsushi Matsuo
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| | - Terushige Muraoka
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| | - Mitsuaki Ide
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| | - Kenji Morikami
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| | - Takayuki Kamikawa
- Research Division, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa 247-8530, Japan
| | - Masamichi Nishihara
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| | - Hirotaka Kashiwagi
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| |
Collapse
|
22
|
Radeva N, Schiebel J, Wang X, Krimmer SG, Fu K, Stieler M, Ehrmann FR, Metz A, Rickmeyer T, Betz M, Winquist J, Park AY, Huschmann FU, Weiss MS, Mueller U, Heine A, Klebe G. Active Site Mapping of an Aspartic Protease by Multiple Fragment Crystal Structures: Versatile Warheads To Address a Catalytic Dyad. J Med Chem 2016; 59:9743-9759. [PMID: 27726357 DOI: 10.1021/acs.jmedchem.6b01195] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Crystallography is frequently used as follow-up method to validate hits identified by biophysical screening cascades. The capacity of crystallography to directly screen fragment libraries is often underestimated, due to its supposed low-throughput and need for high-quality crystals. We applied crystallographic fragment screening to map the protein-binding site of the aspartic protease endothiapepsin by individual soaking experiments. Here, we report on 41 fragments binding to the catalytic dyad and adjacent specificity pockets. The analysis identifies already known warheads but also reveals hydrazide, pyrazole, or carboxylic acid fragments as novel functional groups binding to the dyad. A remarkable swapping of the S1 and S1' pocket between structurally related fragments is explained by either steric demand, required displacement of a well-bound water molecule, or changes of trigonal-planar to tetrahedral geometry of an oxygen functional group in a side chain. Some warheads simultaneously occupying both S1 and S1' are promising starting points for fragment-growing strategies.
Collapse
Affiliation(s)
- Nedyalka Radeva
- Department of Pharmaceutical Chemistry, Philipps University Marburg , Marbacher Weg 6, 35032 Marburg, Germany
| | - Johannes Schiebel
- Department of Pharmaceutical Chemistry, Philipps University Marburg , Marbacher Weg 6, 35032 Marburg, Germany
| | - Xiaojie Wang
- Department of Pharmaceutical Chemistry, Philipps University Marburg , Marbacher Weg 6, 35032 Marburg, Germany
| | - Stefan G Krimmer
- Department of Pharmaceutical Chemistry, Philipps University Marburg , Marbacher Weg 6, 35032 Marburg, Germany
| | - Kan Fu
- Department of Pharmaceutical Chemistry, Philipps University Marburg , Marbacher Weg 6, 35032 Marburg, Germany
| | - Martin Stieler
- Department of Pharmaceutical Chemistry, Philipps University Marburg , Marbacher Weg 6, 35032 Marburg, Germany
| | - Frederik R Ehrmann
- Department of Pharmaceutical Chemistry, Philipps University Marburg , Marbacher Weg 6, 35032 Marburg, Germany
| | - Alexander Metz
- Department of Pharmaceutical Chemistry, Philipps University Marburg , Marbacher Weg 6, 35032 Marburg, Germany
| | - Thomas Rickmeyer
- Department of Pharmaceutical Chemistry, Philipps University Marburg , Marbacher Weg 6, 35032 Marburg, Germany
| | - Michael Betz
- Department of Pharmaceutical Chemistry, Philipps University Marburg , Marbacher Weg 6, 35032 Marburg, Germany
| | - Johan Winquist
- Department of Pharmaceutical Chemistry, Philipps University Marburg , Marbacher Weg 6, 35032 Marburg, Germany
| | - Ah Young Park
- Department of Pharmaceutical Chemistry, Philipps University Marburg , Marbacher Weg 6, 35032 Marburg, Germany
| | - Franziska U Huschmann
- Department of Pharmaceutical Chemistry, Philipps University Marburg , Marbacher Weg 6, 35032 Marburg, Germany.,Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography (HZB-MX), Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - Manfred S Weiss
- Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography (HZB-MX), Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - Uwe Mueller
- Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography (HZB-MX), Albert-Einstein-Strasse 15, 12489 Berlin, Germany.,MAX IV Laboratory, Lund University , Fotongatan 2, 225 94 Lund, Sweden
| | - Andreas Heine
- Department of Pharmaceutical Chemistry, Philipps University Marburg , Marbacher Weg 6, 35032 Marburg, Germany
| | - Gerhard Klebe
- Department of Pharmaceutical Chemistry, Philipps University Marburg , Marbacher Weg 6, 35032 Marburg, Germany
| |
Collapse
|
23
|
Label-enhanced surface plasmon resonance applied to label-free interaction analysis of small molecules and fragments. Anal Biochem 2016; 510:79-87. [DOI: 10.1016/j.ab.2016.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/24/2016] [Accepted: 06/06/2016] [Indexed: 12/30/2022]
|
24
|
Abstract
INTRODUCTION Fragment-based approaches have played an increasing role alongside high-throughput screening in drug discovery for 15 years. The label-free biosensor technology based on surface plasmon resonance (SPR) is now sensitive and informative enough to serve during primary screens and validation steps. AREAS COVERED In this review, the authors discuss the role of SPR in fragment screening. After a brief description of the underlying principles of the technique and main device developments, they evaluate the advantages and adaptations of SPR for fragment-based drug discovery. SPR can also be applied to challenging targets such as membrane receptors and enzymes. EXPERT OPINION The high-level of immobilization of the protein target and its stability are key points for a relevant screening that can be optimized using oriented immobilized proteins and regenerable sensors. Furthermore, to decrease the rate of false negatives, a selectivity test may be performed in parallel on the main target bearing the binding site mutated or blocked with a low-off-rate ligand. Fragment-based drug design, integrated in a rational workflow led by SPR, will thus have a predominant role for the next wave of drug discovery which could be greatly enhanced by new improvements in SPR devices.
Collapse
Affiliation(s)
- Alain Chavanieu
- a Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 , Université de Montpellier, CNRS, ENSCM , Montpellier Cedex 5, France
| | - Martine Pugnière
- b IRCM , Institut de Recherche en Cancérologie de Montpellier , Montpellier , France.,c INSERM, U1194 , Université Montpellier , Montpellier , France.,d ICM , Institut Régional du Cancer , Montpellier , France
| |
Collapse
|
25
|
|
26
|
Alves MA, Nirma C, Moreira MM, Soares RO, Pascutti PG, Noël F, Costa PRR, Sant'Anna CMR, Barreiro EJ, Lima LM, Tinoco LW. Non-competitive inhibitor of nucleoside hydrolase from Leishmania donovani identified by fragment-based drug discovery. RSC Adv 2016. [DOI: 10.1039/c6ra15143d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
New non-competitive inhibitor of nucleoside hidrolase fromL. donovaniidentified by fragment-based drug discovery using STD NMR and molecular docking.
Collapse
|
27
|
Poda SB, Kobayashi M, Nachane R, Menon V, Gandhi AS, Budac DP, Li G, Campbell BM, Tagmose L. Development of a Surface Plasmon Resonance Assay for the Characterization of Small-Molecule Binding Kinetics and Mechanism of Binding to Kynurenine 3-Monooxygenase. Assay Drug Dev Technol 2015; 13:466-75. [DOI: 10.1089/adt.2015.649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Suresh B. Poda
- Neuroinflammation Biology DBU, Lundbeck Research USA, Inc., Paramus, New Jersey
| | | | - Ruta Nachane
- Structural Biology, ZoBio. BV, Leiden, The Netherlands
| | - Veena Menon
- Neuroinflammation Biology DBU, Lundbeck Research USA, Inc., Paramus, New Jersey
| | - Adarsh S. Gandhi
- Neuroinflammation Biology DBU, Lundbeck Research USA, Inc., Paramus, New Jersey
| | - David P. Budac
- Neuroinflammation Biology DBU, Lundbeck Research USA, Inc., Paramus, New Jersey
| | - Guiying Li
- Discovery Chemistry and DMPK, Lundbeck A/S, Copenhagen, Denmark
| | - Brian M. Campbell
- Neuroinflammation Biology DBU, Lundbeck Research USA, Inc., Paramus, New Jersey
| | - Lena Tagmose
- Discovery Chemistry and DMPK, Lundbeck A/S, Copenhagen, Denmark
| |
Collapse
|
28
|
Composing compound libraries for hit discovery--rationality-driven preselection or random choice by structural diversity? Future Med Chem 2015; 6:2057-72. [PMID: 25531968 DOI: 10.4155/fmc.14.142] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
AIMS In order to identify new scaffolds for drug discovery, surface plasmon resonance is frequently used to screen structurally diverse libraries. Usually, hit rates are low and identification processes are time consuming. Hence, approaches which improve hit rates and, thus, reduce the library size are required. METHODS In this work, we studied three often used strategies for their applicability to identify inhibitors of PqsD. In two of them, target-specific aspects like inhibition of a homologous protein or predicted binding determined by virtual screening were used for compound preselection. Finally, a fragment library, covering a large chemical space, was screened and served as comparison. RESULTS & CONCLUSION Indeed, higher hit rates were observed for methods employing preselected libraries indicating that target-oriented compound selection provides a time-effective alternative.
Collapse
|
29
|
Redhead M, Satchell R, Morkūnaitė V, Swift D, Petrauskas V, Golding E, Onions S, Matulis D, Unitt J. A combinatorial biophysical approach; FTSA and SPR for identifying small molecule ligands and PAINs. Anal Biochem 2015; 479:63-73. [PMID: 25837771 DOI: 10.1016/j.ab.2015.03.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 03/06/2015] [Accepted: 03/11/2015] [Indexed: 10/23/2022]
Abstract
Biophysical methods have emerged as attractive screening techniques in drug discovery both as primary hit finding methodologies, as in the case of weakly active compounds such as fragments, and as orthogonal methods for hit validation for compounds discovered through conventional biochemical or cellular assays. Here we describe a dual method employing fluorescent thermal shift assay (FTSA), also known as differential scanning fluorimetry (DSF) and surface plasmon resonance (SPR), to interrogate ligands of the kinase p38α as well as several known pan-assay interference compounds (PAINs) such as aggregators, redox cyclers, and fluorescence quenchers. This combinatorial approach allows for independent verification of several biophysical parameters such as KD, kon, koff, ΔG, ΔS, and ΔH, which may further guide chemical development of a ligand series. Affinity values obtained from FTSA curves allow for insight into compound binding compared with reporting shifts in melting temperature. Ligand-p38 interaction data were in good agreement with previous literature. Aggregators and fluorescence quenchers appeared to reduce fluorescence signal in the FTSAs, causing artificially high shifts in Tm values, whereas redox compounds caused either shifts in affinity that did not agree between FTSA and SPR or a depression of FTSA signal.
Collapse
Affiliation(s)
- M Redhead
- Bioscience Department, Sygnature Discovery, BioCity, Nottingham NG1 1GF, UK.
| | - R Satchell
- Bioscience Department, Sygnature Discovery, BioCity, Nottingham NG1 1GF, UK
| | - V Morkūnaitė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Vilnius LT-02241, Lithuania; Department of Neurobiology and Biophysics, Faculty of Natural Sciences, Vilnius University, Vilnius 03101, Lithuania
| | - D Swift
- Bioscience Department, Sygnature Discovery, BioCity, Nottingham NG1 1GF, UK
| | - V Petrauskas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Vilnius LT-02241, Lithuania
| | - E Golding
- Bioscience Department, Sygnature Discovery, BioCity, Nottingham NG1 1GF, UK
| | - S Onions
- Chemistry Department, Sygnature Discovery, BioCity, Nottingham NG1 1GF, UK
| | - D Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Vilnius LT-02241, Lithuania.
| | - J Unitt
- Bioscience Department, Sygnature Discovery, BioCity, Nottingham NG1 1GF, UK.
| |
Collapse
|
30
|
Huber W, Sinopoli A, Kohler J, Hug M, Ruf A, Huber S. Elucidation of direct competition and allosteric modulation of small-molecular-weight protein ligands using surface plasmon resonance methods. J Mol Recognit 2015; 28:480-91. [DOI: 10.1002/jmr.2465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 01/16/2015] [Accepted: 01/16/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Walter Huber
- Molecular Design and Chemical Biology (MDCB); F. Hoffmann La Roche, Roche Innovation Center Basel; Grenzacherstrasse 124 4070 Basel Switzerland
| | | | - Josiane Kohler
- Molecular Design and Chemical Biology (MDCB); F. Hoffmann La Roche, Roche Innovation Center Basel; Grenzacherstrasse 124 4070 Basel Switzerland
| | - Melanie Hug
- Molecular Design and Chemical Biology (MDCB); F. Hoffmann La Roche, Roche Innovation Center Basel; Grenzacherstrasse 124 4070 Basel Switzerland
| | - Armin Ruf
- Molecular Design and Chemical Biology (MDCB); F. Hoffmann La Roche, Roche Innovation Center Basel; Grenzacherstrasse 124 4070 Basel Switzerland
| | - Sylwia Huber
- Molecular Design and Chemical Biology (MDCB); F. Hoffmann La Roche, Roche Innovation Center Basel; Grenzacherstrasse 124 4070 Basel Switzerland
| |
Collapse
|
31
|
Szőllősi E, Bobok A, Kiss L, Vass M, Kurkó D, Kolok S, Visegrády A, Keserű GM. Cell-based and virtual fragment screening for adrenergic α2C receptor agonists. Bioorg Med Chem 2015; 23:3991-9. [PMID: 25648685 DOI: 10.1016/j.bmc.2015.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/21/2014] [Accepted: 01/07/2015] [Indexed: 12/21/2022]
Abstract
Fragment-based drug discovery has emerged as an alternative to conventional lead identification and optimization strategies generally supported by biophysical detection techniques. Membrane targets like G protein-coupled receptors (GPCRs), however, offer challenges in lack of generic immobilization or stabilization methods for the dynamic, membrane-bound supramolecular complexes. Also modeling of different functional states of GPCRs proved to be a challenging task. Here we report a functional cell-based high concentration screening campaign for the identification of adrenergic α2C receptor agonists compared with the virtual screening of the same ligand set against an active-like homology model of the α2C receptor. The conventional calcium mobilization-based assay identified active fragments with a similar incidence to several other reported fragment screens on GPCRs. 16 out of 3071 screened fragments turned out as specific ligands of α2C, two of which were identified by virtual screening as well and several of the hits possessed surprisingly high affinity and ligand efficiency. Our results indicate that in vitro biological assays can be utilized in the fragment hit identification process for GPCR targets.
Collapse
Affiliation(s)
- Edit Szőllősi
- Gedeon Richter Plc., Gyömrői út 19-21, Budapest H-1103, Hungary
| | - Amrita Bobok
- Gedeon Richter Plc., Gyömrői út 19-21, Budapest H-1103, Hungary
| | - László Kiss
- Gedeon Richter Plc., Gyömrői út 19-21, Budapest H-1103, Hungary
| | - Márton Vass
- Gedeon Richter Plc., Gyömrői út 19-21, Budapest H-1103, Hungary
| | - Dalma Kurkó
- Gedeon Richter Plc., Gyömrői út 19-21, Budapest H-1103, Hungary
| | - Sándor Kolok
- Gedeon Richter Plc., Gyömrői út 19-21, Budapest H-1103, Hungary
| | | | - György M Keserű
- Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
| |
Collapse
|
32
|
Surface plasmon resonance – more than a screening technology: insights in the binding mode of σ70:core RNAP inhibitors. Future Med Chem 2014; 6:1551-65. [DOI: 10.4155/fmc.14.105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: Antibiotic resistance has become a major health problem. The σ70:core interface of bacterial RNA polymerase is a promising drug target. Recently, the coiled-coil and lid-rudder-system of the β’ subunit has been identified as an inhibition hot spot. Materials & methods & Results: By using surface plasmon resonance-based assays, inhibitors of the protein–protein interaction were identified and competition with σ70 was shown. Effective inhibition was verified in an in vitro transcription and a σ70:core assembly assay. For one hit series, we found a correlation between activity and affinity. Mutant interaction studies suggest the inhibitors’ binding site. Conclusion: Surface plasmon resonance is a valuable technology in drug design, that has been used in this study to identify and evaluate σ70:core RNA polymerase inhibitors.
Collapse
|
33
|
Duan Y, Brenig B, Wu X, Ren J, Huang L. The G32E functional variant reduces activity of PPARD by nuclear export and post-translational modification in pigs. PLoS One 2013; 8:e75925. [PMID: 24058710 PMCID: PMC3776753 DOI: 10.1371/journal.pone.0075925] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/22/2013] [Indexed: 01/25/2023] Open
Abstract
Peroxisome proliferator-activated receptor beta/delta (PPARD) is a crucial and multifaceted determinant of diverse biological functions including lipid metabolism, embryonic development, inflammatory response, wound healing and cancer. Recently, we proposed a novel function of porcine PPARD (sPPARD) in external ear development. A missense mutation (G32E) in an evolutionary conservative domain of sPPARD remarkably increases external ear size in pigs. Here, we investigated the underlying molecular mechanism of the causal mutation at the cellular level. Using a luciferase reporter system, we showed that the G32E substitution reduced transcription activity of sPPARD in a ligand-dependent manner. By comparison of the subcellular localization of wild-type and mutated sPPARD in both PK-15 cells and pinna cartilage-derived primary chondrocytes, we found that the G32E substitution promoted CRM-1 mediated nuclear exportation of sPPARD. With the surface plasmon resonance technology, we further revealed that the G32E substitution had negligible effect on its ligand binding affinity. Finally, we used co-immunoprecipitation and luciferase reporter assays to show that the G32E substitution greatly reduced ubiquitination level by blocking ubiquitination of the crucial A/B domain and consequently decreased transcription activity of sPPARD. Taken together, our findings strongly support that G32E is a functional variant that plays a key role in biological activity of sPPARD, which advances our understanding of the underlying mechanism of sPPARD G32E for ear size in pigs.
Collapse
Affiliation(s)
- Yanyu Duan
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
- Institute of Veterinary Medicine, Georg-August-University of Göttingen, Göttingen, Germany
| | - Bertram Brenig
- Institute of Veterinary Medicine, Georg-August-University of Göttingen, Göttingen, Germany
| | - Xiaohui Wu
- Institute of Developmental Biology & Molecular Medicine, Fudan University, Shanghai, China
| | - Jun Ren
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
- * E-mail: (JR); (LH)
| | - Lusheng Huang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
- * E-mail: (JR); (LH)
| |
Collapse
|
34
|
Choulier L, Nominé Y, Zeder-Lutz G, Charbonnier S, Didier B, Jung ML, Altschuh D. Chemical Library Screening Using a SPR-Based Inhibition in Solution Assay: Simulations and Experimental Validation. Anal Chem 2013; 85:8787-95. [DOI: 10.1021/ac4019445] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Laurence Choulier
- Biotechnologie et Signalisation
Cellulaire, Université de Strasbourg, CNRS, ESBS, Boulevard Sébastien Brant BP10413, 67412 Illkirch,
France
| | - Yves Nominé
- Biotechnologie et Signalisation
Cellulaire, Université de Strasbourg, CNRS, ESBS, Boulevard Sébastien Brant BP10413, 67412 Illkirch,
France
| | - Gabrielle Zeder-Lutz
- Biotechnologie et Signalisation
Cellulaire, Université de Strasbourg, CNRS, ESBS, Boulevard Sébastien Brant BP10413, 67412 Illkirch,
France
| | - Sebastian Charbonnier
- Biotechnologie et Signalisation
Cellulaire, Université de Strasbourg, CNRS, ESBS, Boulevard Sébastien Brant BP10413, 67412 Illkirch,
France
| | - Bruno Didier
- Prestwick Chemical, Bd Gonthier d’Andernach, Parc d’Innovation,
67400
Illkirch, France
| | - Marie-Louise Jung
- Prestwick Chemical, Bd Gonthier d’Andernach, Parc d’Innovation,
67400
Illkirch, France
| | - Danièle Altschuh
- Biotechnologie et Signalisation
Cellulaire, Université de Strasbourg, CNRS, ESBS, Boulevard Sébastien Brant BP10413, 67412 Illkirch,
France
| |
Collapse
|
35
|
Zender M, Klein T, Henn C, Kirsch B, Maurer CK, Kail D, Ritter C, Dolezal O, Steinbach A, Hartmann RW. Discovery and Biophysical Characterization of 2-Amino-oxadiazoles as Novel Antagonists of PqsR, an Important Regulator of Pseudomonas aeruginosa Virulence. J Med Chem 2013; 56:6761-74. [DOI: 10.1021/jm400830r] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael Zender
- Department of Drug Design and
Optimization, Helmholtz-Institute for Pharmaceutical Research Saarland, Campus C2.3, 66123 Saarbrücken,
Germany
| | - Tobias Klein
- Department of Drug Design and
Optimization, Helmholtz-Institute for Pharmaceutical Research Saarland, Campus C2.3, 66123 Saarbrücken,
Germany
| | - Claudia Henn
- Department of Drug Design and
Optimization, Helmholtz-Institute for Pharmaceutical Research Saarland, Campus C2.3, 66123 Saarbrücken,
Germany
| | - Benjamin Kirsch
- Department of Drug Design and
Optimization, Helmholtz-Institute for Pharmaceutical Research Saarland, Campus C2.3, 66123 Saarbrücken,
Germany
| | - Christine K. Maurer
- Department of Drug Design and
Optimization, Helmholtz-Institute for Pharmaceutical Research Saarland, Campus C2.3, 66123 Saarbrücken,
Germany
| | - Dagmar Kail
- PharmBioTec GmbH, Campus C2.2, 66123 Saarbrücken, Germany
| | - Christiane Ritter
- Department of Macromolecular Interactions, Helmholtz Centre for Infection Research, Inhoffenstraße
7, 38124 Braunschweig, Germany
| | - Olan Dolezal
- Materials Science and Engineering, Commonwealth Scientific and Industrial Research Organization (CSIRO), 343 Royal
Parade, Parkville 3052, Victoria, Australia
| | - Anke Steinbach
- Department of Drug Design and
Optimization, Helmholtz-Institute for Pharmaceutical Research Saarland, Campus C2.3, 66123 Saarbrücken,
Germany
| | - Rolf W. Hartmann
- Department of Drug Design and
Optimization, Helmholtz-Institute for Pharmaceutical Research Saarland, Campus C2.3, 66123 Saarbrücken,
Germany
- Pharmaceutical and Medicinal
Chemistry, Saarland University, Campus
C2.3, 66123 Saarbrücken, Germany
| |
Collapse
|
36
|
Regnström K, Yan J, Nguyen L, Callaway K, Yang Y, Diep L, Xing W, Adhikari A, Beroza P, Hom RK, Riley B, Rudolph D, Jobling MF, Baker J, Johnston J, Konradi A, Bova MP, Artis DR. Label free fragment screening using surface plasmon resonance as a tool for fragment finding - analyzing parkin, a difficult CNS target. PLoS One 2013; 8:e66879. [PMID: 23861750 PMCID: PMC3702509 DOI: 10.1371/journal.pone.0066879] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 05/12/2013] [Indexed: 11/18/2022] Open
Abstract
Surface Plasmon Resonance (SPR) is rarely used as a primary High-throughput Screening (HTS) tool in fragment-based approaches. With SPR instruments becoming increasingly high-throughput it is now possible to use SPR as a primary tool for fragment finding. SPR becomes, therefore, a valuable tool in the screening of difficult targets such as the ubiquitin E3 ligase Parkin. As a prerequisite for the screen, a large number of SPR tests were performed to characterize and validate the active form of Parkin. A set of compounds was designed and used to define optimal SPR assay conditions for this fragment screen. Using these conditions, more than 5000 pre-selected fragments from our in-house library were screened for binding to Parkin. Additionally, all fragments were simultaneously screened for binding to two off target proteins to exclude promiscuous binding compounds. A low hit rate was observed that is in line with hit rates usually obtained by other HTS screening assays. All hits were further tested in dose responses on the target protein by SPR for confirmation before channeling the hits into Nuclear Magnetic Resonance (NMR) and other hit-confirmation assays.
Collapse
|
37
|
Banner DW, Gsell B, Benz J, Bertschinger J, Burger D, Brack S, Cuppuleri S, Debulpaep M, Gast A, Grabulovski D, Hennig M, Hilpert H, Huber W, Kuglstatter A, Kusznir E, Laeremans T, Matile H, Miscenic C, Rufer AC, Schlatter D, Steyaert J, Stihle M, Thoma R, Weber M, Ruf A. Mapping the conformational space accessible to BACE2 using surface mutants and cocrystals with Fab fragments, Fynomers and Xaperones. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1124-37. [DOI: 10.1107/s0907444913006574] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 03/07/2013] [Indexed: 01/11/2023]
|
38
|
Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:43-55. [PMID: 23665295 DOI: 10.1016/j.bbamem.2013.04.028] [Citation(s) in RCA: 257] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/25/2013] [Accepted: 04/29/2013] [Indexed: 11/22/2022]
Abstract
Surface plasmon resonance (SPR) spectroscopy is a rapidly developing technique for the study of ligand binding interactions with membrane proteins, which are the major molecular targets for validated drugs and for current and foreseeable drug discovery. SPR is label-free and capable of measuring real-time quantitative binding affinities and kinetics for membrane proteins interacting with ligand molecules using relatively small quantities of materials and has potential to be medium-throughput. The conventional SPR technique requires one binding component to be immobilised on a sensor chip whilst the other binding component in solution is flowed over the sensor surface; a binding interaction is detected using an optical method that measures small changes in refractive index at the sensor surface. This review first describes the basic SPR experiment and the challenges that have to be considered for performing SPR experiments that measure membrane protein-ligand binding interactions, most importantly having the membrane protein in a lipid or detergent environment that retains its native structure and activity. It then describes a wide-range of membrane protein systems for which ligand binding interactions have been characterised using SPR, including the major drug targets G protein-coupled receptors, and how challenges have been overcome for achieving this. Finally it describes some recent advances in SPR-based technology and future potential of the technique to screen ligand binding in the discovery of drugs. This article is part of a Special Issue entitled: Structural and biophysical characterisation of membrane protein-ligand binding.
Collapse
|
39
|
Visegrády A, Keserű GM. Fragment-based lead discovery on G-protein-coupled receptors. Expert Opin Drug Discov 2013; 8:811-20. [PMID: 23621346 DOI: 10.1517/17460441.2013.794135] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION G-protein-coupled receptors (GPCRs) form one of the largest groups of potential targets for novel medications. Low druggability of many GPCR targets and inefficient sampling of chemical space in high-throughput screening expertise however often hinder discovery of drug discovery leads for GPCRs. Fragment-based drug discovery is an alternative approach to the conventional strategy and has proven its efficiency on several enzyme targets. Based on developments in biophysical screening techniques, receptor stabilization and in vitro assays, virtual and experimental fragment screening and fragment-based lead discovery recently became applicable for GPCR targets. AREAS COVERED This article provides a review of the biophysical as well as biological detection techniques suitable to study GPCRs together with their applications to screen fragment libraries and identify fragment-size ligands of cell surface receptors. The article presents several recent examples including both virtual and experimental protocols for fragment hit discovery and early hit to lead progress. EXPERT OPINION With the recent progress in biophysical detection techniques, the advantages of fragment-based drug discovery could be exploited for GPCR targets. Structural information on GPCRs will be more abundantly available for early stages of drug discovery projects, providing information on the binding process and efficiently supporting the progression of fragment hit to lead. In silico approaches in combination with biological assays can be used to address structurally challenging GPCRs and confirm biological relevance of interaction early in the drug discovery project.
Collapse
|
40
|
Hoffer L, Renaud JP, Horvath D. In Silico Fragment-Based Drug Discovery: Setup and Validation of a Fragment-to-Lead Computational Protocol Using S4MPLE. J Chem Inf Model 2013; 53:836-51. [DOI: 10.1021/ci4000163] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Laurent Hoffer
- Université de Strasbourg,
1 rue B. Pascal, Strasbourg 67000, France
- NovAliX, BioParc, bld Sébastien
Brant, BP 30170, Illkirch 67405 Cedex, France
| | - Jean-Paul Renaud
- NovAliX, BioParc, bld Sébastien
Brant, BP 30170, Illkirch 67405 Cedex, France
| | - Dragos Horvath
- Université de Strasbourg,
1 rue B. Pascal, Strasbourg 67000, France
| |
Collapse
|
41
|
Kobe A, Caaveiro JMM, Tashiro S, Kajihara D, Kikkawa M, Mitani T, Tsumoto K. Incorporation of Rapid Thermodynamic Data in Fragment-Based Drug Discovery. J Med Chem 2013; 56:2155-9. [DOI: 10.1021/jm301603n] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Akihiro Kobe
- Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Department of Medical Genome
Science, School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Jose M. M. Caaveiro
- Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Department of Medical Genome
Science, School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Shinya Tashiro
- Department of Medical Genome
Science, School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Daisuke Kajihara
- Life Science Division, GE Healthcare Japan, 3-25-1 Hyakuninicho, Shinjuku,
Tokyo 169-0073, Japan
| | - Masato Kikkawa
- Life Science Division, GE Healthcare Japan, 3-25-1 Hyakuninicho, Shinjuku,
Tokyo 169-0073, Japan
| | - Tomoya Mitani
- Life Science Division, GE Healthcare Japan, 3-25-1 Hyakuninicho, Shinjuku,
Tokyo 169-0073, Japan
| | - Kouhei Tsumoto
- Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Department of Medical Genome
Science, School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
- Department
of Chemistry and
Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
42
|
Dolezal O, Doughty L, Hattarki MK, Fazio VJ, Caradoc-Davies TT, Newman J, Peat TS. Fragment Screening for the Modelling Community: SPR, ITC, and Crystallography. Aust J Chem 2013. [DOI: 10.1071/ch13302] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The SAMPL (Statistical Assessment of the Modelling of Proteins and Ligands) challenge brought together experimentalists and modellers in an effort to improve our understanding of chemical and biochemical systems so better modelling tools can be developed. The most recent challenge, SAMPL3, held at Stanford University in August 2011, was an attempt to improve the methods used to predict how small fragment compounds bind to proteins, and the protein chosen for this test was bovine trypsin. Surface plasmon resonance was used to screen 500 compounds from a Maybridge fragment library and these compounds were subsequently used to soak crystals of trypsin and the best hits were also characterised by isothermal titration calorimetry. We present methods used for the surface plasmon resonance and the isothermal titration calorimetry experiments, as well as the results for these methods and those compounds that were found in the crystal structures.
Collapse
|
43
|
Abstract
Surface plasmon resonance (SPR) biosensor technology has become an important tool for drug discovery and basic research. SPR instruments are used for a wide variety of applications including determining the binding kinetics and affinity of an interaction, specificity studies, screening, assay development as well as concentration measurements. The interacting molecules may be proteins, peptides, lipids, viruses, nucleic acids, or small organic molecules such as fragments or drug candidates. The ease with which real time information can be obtained has changed many customer workflows in both antibody and small molecule/fragment interaction analysis, from label based and affinity/IC50 based workflows towards a label free and kinetic based workflow. This chapter focuses on applications for drug discovery, and outlines the experimental design for screening and selection of small molecules from a focused library. Also, determination of kinetics and/or affinity constants of selected ligands, using established SPR methodology is described, together with potential issues during assay development, running of the assay, and results interpretation.
Collapse
|
44
|
Druggability predictions: methods, limitations, and applications. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2012. [DOI: 10.1002/wcms.1134] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
45
|
Duong-Thi MD, Bergström M, Fex T, Isaksson R, Ohlson S. High-Throughput Fragment Screening by Affinity LC-MS. ACTA ACUST UNITED AC 2012; 18:160-71. [DOI: 10.1177/1087057112459271] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fragment screening, an emerging approach for hit finding in drug discovery, has recently been proven effective by its first approved drug, vemurafenib, for cancer treatment. Techniques such as nuclear magnetic resonance, surface plasmon resonance, and isothemal titration calorimetry, with their own pros and cons, have been employed for screening fragment libraries. As an alternative approach, screening based on high-performance liquid chromatography separation has been developed. In this work, we present weak affinity LC/MS as a method to screen fragments under high-throughput conditions. Affinity-based capillary columns with immobilized thrombin were used to screen a collection of 590 compounds from a fragment library. The collection was divided into 11 mixtures (each containing 35 to 65 fragments) and screened by MS detection. The primary screening was performed in <4 h (corresponding to >3500 fragments per day). Thirty hits were defined, which subsequently entered a secondary screening using an active site-blocked thrombin column for confirmation of specificity. One hit showed selective binding to thrombin with an estimated dissociation constant ( KD) in the 0.1 mM range. This study shows that affinity LC/MS is characterized by high throughput, ease of operation, and low consumption of target and fragments, and therefore it promises to be a valuable method for fragment screening.
Collapse
Affiliation(s)
| | | | - Tomas Fex
- Astra&Zeneca R&D Mölndal, Mölndal, Sweden
| | | | | |
Collapse
|
46
|
Biophysical and computational fragment-based approaches to targeting protein-protein interactions: applications in structure-guided drug discovery. Q Rev Biophys 2012; 45:383-426. [PMID: 22971516 DOI: 10.1017/s0033583512000108] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Drug discovery has classically targeted the active sites of enzymes or ligand-binding sites of receptors and ion channels. In an attempt to improve selectivity of drug candidates, modulation of protein-protein interfaces (PPIs) of multiprotein complexes that mediate conformation or colocation of components of cell-regulatory pathways has become a focus of interest. However, PPIs in multiprotein systems continue to pose significant challenges, as they are generally large, flat and poor in distinguishing features, making the design of small molecule antagonists a difficult task. Nevertheless, encouragement has come from the recognition that a few amino acids - so-called hotspots - may contribute the majority of interaction-free energy. The challenges posed by protein-protein interactions have led to a wellspring of creative approaches, including proteomimetics, stapled α-helical peptides and a plethora of antibody inspired molecular designs. Here, we review a more generic approach: fragment-based drug discovery. Fragments allow novel areas of chemical space to be explored more efficiently, but the initial hits have low affinity. This means that they will not normally disrupt PPIs, unless they are tethered, an approach that has been pioneered by Wells and co-workers. An alternative fragment-based approach is to stabilise the uncomplexed components of the multiprotein system in solution and employ conventional fragment-based screening. Here, we describe the current knowledge of the structures and properties of protein-protein interactions and the small molecules that can modulate them. We then describe the use of sensitive biophysical methods - nuclear magnetic resonance, X-ray crystallography, surface plasmon resonance, differential scanning fluorimetry or isothermal calorimetry - to screen and validate fragment binding. Fragment hits can subsequently be evolved into larger molecules with higher affinity and potency. These may provide new leads for drug candidates that target protein-protein interactions and have therapeutic value.
Collapse
|
47
|
Schlatter D, Brack S, Banner DW, Batey S, Benz J, Bertschinger J, Huber W, Joseph C, Rufer A, van der Klooster A, Weber M, Grabulovski D, Hennig M. Generation, characterization and structural data of chymase binding proteins based on the human Fyn kinase SH3 domain. MAbs 2012; 4:497-508. [PMID: 22653218 PMCID: PMC3499344 DOI: 10.4161/mabs.20452] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The serine protease chymase (EC = 3.4.21.39) is expressed in the secretory granules of mast cells, which are important in allergic reactions. Fynomers, which are binding proteins derived from the Fyn SH3 domain, were generated against human chymase to produce binding partners to facilitate crystallization, structure determination and structure-based drug discovery, and to provide inhibitors of chymase for therapeutic applications. The best Fynomer was found to bind chymase with a KD of 0.9 nM and koff of 6.6x10 (-4) s (-1) , and to selectively inhibit chymase activity with an IC 50 value of 2 nM. Three different Fynomers were co-crystallized with chymase in 6 different crystal forms overall, with diffraction quality in the range of 2.25 to 1.4 Å resolution, which is suitable for drug design efforts. The X-ray structures show that all Fynomers bind to the active site of chymase. The conserved residues Arg15-Trp16-Thr17 in the RT-loop of the chymase binding Fynomers provide a tight interaction, with Trp16 pointing deep into the S1 pocket of chymase. These results confirm the suitability of Fynomers as research tools to facilitate protein crystallization, as well as for the development of assays to investigate the biological mechanism of targets. Finally, their highly specific inhibitory activity and favorable molecular properties support the use of Fynomers as potential therapeutic agents.
Collapse
Affiliation(s)
- Daniel Schlatter
- F. Hoffmann-La Roche Ltd, Pharma Research & Early Development, Discovery Technologies, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Boyd SM, Turnbull AP, Walse B. Fragment library design considerations. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2012. [DOI: 10.1002/wcms.1098] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
50
|
Santos-Sierra S, Kirchmair J, Perna AM, Reiss D, Kemter K, Röschinger W, Glossmann H, Gersting SW, Muntau AC, Wolber G, Lagler FB. Novel pharmacological chaperones that correct phenylketonuria in mice. Hum Mol Genet 2012; 21:1877-87. [PMID: 22246293 DOI: 10.1093/hmg/dds001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Phenylketonuria (PKU) is caused by inherited phenylalanine-hydroxylase (PAH) deficiency and, in many genotypes, it is associated with protein misfolding. The natural cofactor of PAH, tetrahydrobiopterin (BH(4)), can act as a pharmacological chaperone (PC) that rescues enzyme function. However, BH(4) shows limited efficacy in some PKU genotypes and its chemical synthesis is very costly. Taking an integrated drug discovery approach which has not been applied to this target before, we identified alternative PCs for the treatment of PKU. Shape-focused virtual screening of the National Cancer Institute's chemical library identified 84 candidate molecules with potential to bind to the active site of PAH. An in vitro evaluation of these yielded six compounds that restored the enzymatic activity of the unstable PAHV106A variant and increased its stability in cell-based assays against proteolytic degradation. During a 3-day treatment study, two compounds (benzylhydantoin and 6-amino-5-(benzylamino)-uracil) substantially improved the in vivo Phe oxidation and blood Phe concentrations of PKU mice (Pah(enu1)). Notably, benzylhydantoin was twice as effective as tetrahydrobiopterin. In conclusion, we identified two PCs with high in vivo efficacy that may be further developed into a more effective drug treatment of PKU.
Collapse
Affiliation(s)
- Sandra Santos-Sierra
- Sections of Biochemical and Clinical Pharmacology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|