1
|
Seven D, Tecimel D, Özbey U, Kızılilsoley N, Nikerel E, Dalan AB, Türe U, Bayrak ÖF. Silencing superoxide dismutases (SOD1&SOD2) potentiates ROS-induced apoptosis in chordoma cells. Mol Biol Rep 2025; 52:157. [PMID: 39853601 DOI: 10.1007/s11033-025-10239-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 01/08/2025] [Indexed: 01/26/2025]
Abstract
BACKGROUND Chordoma, characterized as a slow growing yet locally invasive and destructive bone tumor mainly emerging in the sacrum and clivus, presents a unique challenge due to its rarity, hampering the development of effective treatment strategies. Comprehensive understanding of tumor biology is crucial to suggest novel treatment modalities. Reactive oxygen species (ROS), a family of chemically reactive and unstable oxygen derivatives, are controlled by an intracellular antioxidant system to maintain homeostasis. Higher doses of ROS levels have been associated with the oxidative stress-induced tumor cell death, highlighting the potential of fine-tuning ROS regulation as a target for cancer therapies. The association of ROS mechanism and chordoma remains to be elucidated. In this study, we investigated the effect of targeting the ROS mechanism in chordoma, focusing on superoxide dismutase 1 and superoxide dismutase 2. METHODS Two different chordoma datasets were used to assess oxidative stress-related genes. ROS levels and mitochondrial membrane potential (mtMP) in chordoma cells were measured. The gene expression levels of SOD1 and SOD2 in chordoma patients were also evaluated. SOD2 and SOD1 targeted siRNAs were used to silence gene expression in chordoma cells, and quantitative real-time PCR (qRT-PCR) was used to compare gene expression levels. Apoptotic cell populations were determined using flow cytometry. RESULTS The levels of ROS and mtMP were increased in chordoma cell lines compared to healthy nucleus pulposus cells. The chordoma omics data showed induced levels of SOD2. Chordoma tissues also showed high levels of the SOD2 gene. Silencing SOD2 and combined silencing of SOD2 and SOD1 expression increased ROS levels or mtMP, and both induced apoptosis in chordoma cells. ROS imbalance plays a role in chordoma pathogenesis. CONCLUSION SOD2 and SOD1 might be key enzymes in chordoma to modulate ROS levels, and inhibiting the SOD2 and SOD1 activity might be a potential therapeutic target for chordoma treatment.
Collapse
Affiliation(s)
- Didem Seven
- Department of Medical Genetics, School of Medicine, Yeditepe University, İstanbul, 34755, Turkey
| | - Didem Tecimel
- Department of Medical Genetics, School of Medicine, Yeditepe University, İstanbul, 34755, Turkey
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, 34755, Turkey
| | - Utku Özbey
- Department of Medical Genetics, School of Medicine, Yeditepe University, İstanbul, 34755, Turkey
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, 34755, Turkey
| | - Nehir Kızılilsoley
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, 34755, Turkey
| | - Emrah Nikerel
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, 34755, Turkey
| | - Altay Burak Dalan
- Department of Medical Genetics, School of Medicine, Yeditepe University, İstanbul, 34755, Turkey
| | - Uğur Türe
- Department of Neurosurgery, Yeditepe University Medical School, Yeditepe University, Istanbul, 34755, Turkey
| | - Ömer Faruk Bayrak
- Department of Medical Genetics, School of Medicine, Yeditepe University, İstanbul, 34755, Turkey.
| |
Collapse
|
2
|
Panda B, Tripathy A, Patra S, Kullu B, Tabrez S, Jena M. Imperative connotation of SODs in cancer: Emerging targets and multifactorial role of action. IUBMB Life 2024; 76:592-613. [PMID: 38600696 DOI: 10.1002/iub.2821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024]
Abstract
Superoxide dismutase (SOD) is a crucial enzyme responsible for the redox homeostasis inside the cell. As a part of the antioxidant defense system, it plays a pivotal role in the dismutation of the superoxide radicals (O 2 - ) generated mainly by the oxidative phosphorylation, which would otherwise bring out the redox dysregulation, leading to higher reactive oxygen species (ROS) generation and, ultimately, cell transformation, and malignancy. Several studies have shown the involvement of ROS in a wide range of human cancers. As SOD is the key enzyme in regulating ROS, any change, such as a transcriptional change, epigenetic remodeling, functional alteration, and so forth, either activates the proto-oncogenes or aberrant signaling cascades, which results in cancer. Interestingly, in some cases, SODs act as tumor promoters instead of suppressors. Furthermore, SODs have also been known to switch their role during tumor progression. In this review, we have tried to give a comprehensive account of SODs multifactorial role in various human cancers so that SODs-based therapeutic strategies could be made to thwart cancers.
Collapse
Affiliation(s)
- Biswajit Panda
- Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Ankita Tripathy
- Post Graduate Department of Botany, Utkal University, Bhubaneswar, India
| | - Srimanta Patra
- Post Graduate Department of Botany, Berhampur University, Berhampur, India
| | - Bandana Kullu
- Post Graduate Department of Botany, Utkal University, Bhubaneswar, India
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mrutyunjay Jena
- Post Graduate Department of Botany, Berhampur University, Berhampur, India
| |
Collapse
|
3
|
Olson KR, Takata T, Clear KJ, Gao Y, Ma Z, Pfaff E, Mouli K, Kent TA, Jones P, Fukuto J, Wu G, Straub KD. The SOD1 Inhibitor, LCS-1, Oxidizes H2S to Reactive Sulfur Species, Directly and Indirectly, through Conversion of SOD1 to an Oxidase. Antioxidants (Basel) 2024; 13:991. [PMID: 39199236 PMCID: PMC11351665 DOI: 10.3390/antiox13080991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
LCS-1, a putative selective inhibitor of SOD1, is a substituted pyridazinone with rudimentary similarity to quinones and naphthoquinones. As quinones catalytically oxidize H2S to biologically active reactive sulfur species (RSS), we hypothesized LCS-1 might have similar attributes. Here, we examine LCS-1 reactions with H2S and SOD1 using thiol-specific fluorophores, liquid chromatography-mass spectrometry, electron paramagnetic resonance (EPR), UV-vis spectrometry, and oxygen consumption. We show that LCS-1 catalytically oxidizes H2S in buffer solutions to form RSS, namely per- and polyhydrosulfides (H2Sn, n = 2-6). These reactions consume oxygen and produce hydrogen peroxide, but they do not have an EPR signature, nor do they affect the UV-vis spectrum. Surprisingly, LCS-1 synergizes with SOD1, but not SOD2, to oxidize H2S to H2S3-6. LCS-1 forms monothiol adducts with H2S, glutathione (GSH), and cysteine (Cys), but not with oxidized glutathione or cystine; both thiol adducts inhibit LCS-1-SOD1 synergism. We propose that LCS-1 forms an adduct with SOD1 that disrupts the intramolecular Cys57-Cys146 disulfide bond and transforms SOD1 from a dismutase to an oxidase. This would increase cellular ROS and polysulfides, the latter potentially affecting cellular signaling and/or cytoprotection.
Collapse
Affiliation(s)
- Kenneth R. Olson
- Department of Physiology, Indiana University School of Medicine South Bend, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Tsuyoshi Takata
- Department of Physiology, Indiana University School of Medicine South Bend, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.)
| | - Kasey J. Clear
- Department of Chemistry and Biochemistry, Indiana University South Bend, South Bend, IN 46615, USA;
| | - Yan Gao
- Department of Physiology, Indiana University School of Medicine South Bend, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.)
| | - Zhilin Ma
- Department of Physiology, Indiana University School of Medicine South Bend, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ella Pfaff
- Department of Physiology, Indiana University School of Medicine South Bend, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Karthik Mouli
- Institute of Biosciences and Technology, Texas A&M Health Sciences Center-Houston Campus, Houston, TX 77030, USA; (K.M.); (T.A.K.)
| | - Thomas A. Kent
- Institute of Biosciences and Technology, Texas A&M Health Sciences Center-Houston Campus, Houston, TX 77030, USA; (K.M.); (T.A.K.)
| | - Prentiss Jones
- Toxicology Department, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49007, USA;
| | - Jon Fukuto
- Department of Chemistry, Sonoma State University, Rohnert Park, CA 94928, USA;
| | - Gang Wu
- Department of Internal Medicine, McGovern Medical School, University of Texas, Houston, TX 77030, USA;
| | - Karl D. Straub
- Central Arkansas Veteran’s Healthcare System, Little Rock, AR 72205, USA;
- Departments of Medicine and Biochemistry, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| |
Collapse
|
4
|
Shi W, Sun S, Liu H, Meng Y, Ren K, Wang G, Liu M, Wu J, Zhang Y, Huang H, Shi M, Xu W, Ma Q, Sun B, Xu J. Guiding bar motif of thioredoxin reductase 1 modulates enzymatic activity and inhibitor binding by communicating with the co-factor FAD and regulating the flexible C-terminal redox motif. Redox Biol 2024; 70:103050. [PMID: 38277963 PMCID: PMC10840350 DOI: 10.1016/j.redox.2024.103050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/05/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
Thioredoxin reductase (TXNRD) is a selenoprotein that plays a crucial role in cellular antioxidant defense. Previously, a distinctive guiding bar motif was identified in TXNRD1, which influences the transfer of electrons. In this study, utilizing single amino acid substitution and Excitation-Emission Matrix (EEM) fluorescence spectrum analysis, we discovered that the guiding bar communicates with the FAD and modulates the electron flow of the enzyme. Differential Scanning Fluorimetry (DSF) analysis demonstrated that the aromatic amino acid in guiding bar is a stabilizer for TXNRD1. Kinetic analysis revealed that the guiding bar is vital for the disulfide reductase activity but hinders the selenocysteine-independent reduction activity of TXNRD1. Meanwhile, the guiding bar shields the selenocysteine residue of TXNRD1 from the attack of electrophilic reagents. We also found that the inhibition of TXNRD1 by caveolin-1 scaffolding domain (CSD) peptides and compound LCS3 did not bind to the guiding bar motif. In summary, the obtained results highlight new aspects of the guiding bar that restrict the flexibility of the C-terminal redox motif and govern the transition from antioxidant to pro-oxidant.
Collapse
Affiliation(s)
- Wuyang Shi
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Shibo Sun
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Haowen Liu
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Yao Meng
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Kangshuai Ren
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Guoying Wang
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Minghui Liu
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Jiaqi Wu
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Yue Zhang
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Huang Huang
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Meiyun Shi
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Weiping Xu
- School of Ocean Science and Technology (OST) & Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Panjin, 124221, China
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Bingbing Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering (CE), Dalian University of Technology, Dalian, 116023, China
| | - Jianqiang Xu
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China.
| |
Collapse
|
5
|
Miyazaki I, Odintsov I, Ishida K, Lui AJW, Kato M, Suzuki T, Zhang T, Wakayama K, Kurth RI, Cheng R, Fujita H, Delasos L, Vojnic M, Khodos I, Yamada Y, Ishizawa K, Mattar MS, Funabashi K, Chang Q, Ohkubo S, Yano W, Terada R, Giuliano C, Lu YC, Bonifacio A, Kunte S, Davare MA, Cheng EH, de Stanchina E, Lovati E, Iwasawa Y, Ladanyi M, Somwar R. Vepafestinib is a pharmacologically advanced RET-selective inhibitor with high CNS penetration and inhibitory activity against RET solvent front mutations. NATURE CANCER 2023; 4:1345-1361. [PMID: 37743366 PMCID: PMC10518257 DOI: 10.1038/s43018-023-00630-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/08/2023] [Indexed: 09/26/2023]
Abstract
RET receptor tyrosine kinase is activated in various cancers (lung, thyroid, colon and pancreatic, among others) through oncogenic fusions or gain-of-function single-nucleotide variants. Small-molecule RET kinase inhibitors became standard-of-care therapy for advanced malignancies driven by RET. The therapeutic benefit of RET inhibitors is limited, however, by acquired mutations in the drug target as well as brain metastasis, presumably due to inadequate brain penetration. Here, we perform preclinical characterization of vepafestinib (TAS0953/HM06), a next-generation RET inhibitor with a unique binding mode. We demonstrate that vepafestinib has best-in-class selectivity against RET, while exerting activity against commonly reported on-target resistance mutations (variants in RETL730, RETV804 and RETG810), and shows superior pharmacokinetic properties in the brain when compared to currently approved RET drugs. We further show that these properties translate into improved tumor control in an intracranial model of RET-driven cancer. Our results underscore the clinical potential of vepafestinib in treating RET-driven cancers.
Collapse
Affiliation(s)
| | - Igor Odintsov
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Allan J W Lui
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | | | - Tom Zhang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Renate I Kurth
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ryan Cheng
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Lukas Delasos
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Hematology and Medical Oncology, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA
| | - Morana Vojnic
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Northwell Health Cancer Institute, Lenox Hill Hospital, New York, NY, USA
| | - Inna Khodos
- Antitumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Kota Ishizawa
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai, Japan
| | - Marissa S Mattar
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Qing Chang
- Antitumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Wakako Yano
- Taiho Pharmaceutical Co. Ltd., Tsukuba, Japan
| | | | | | - Yue Christine Lu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Siddharth Kunte
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Dana Cancer Center, Toledo, OH, USA
| | - Monika A Davare
- Department of Pediatrics, Oregon Health Sciences University, Portland, OR, USA
| | - Emily H Cheng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Romel Somwar
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
6
|
Nizami ZN, Aburawi HE, Semlali A, Muhammad K, Iratni R. Oxidative Stress Inducers in Cancer Therapy: Preclinical and Clinical Evidence. Antioxidants (Basel) 2023; 12:1159. [PMID: 37371889 DOI: 10.3390/antiox12061159] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Reactive oxygen species (ROS) are metabolic byproducts that regulate various cellular processes. However, at high levels, ROS induce oxidative stress, which in turn can trigger cell death. Cancer cells alter the redox homeostasis to facilitate protumorigenic processes; however, this leaves them vulnerable to further increases in ROS levels. This paradox has been exploited as a cancer therapeutic strategy with the use of pro-oxidative drugs. Many chemotherapeutic drugs presently in clinical use, such as cisplatin and doxorubicin, induce ROS as one of their mechanisms of action. Further, various drugs, including phytochemicals and small molecules, that are presently being investigated in preclinical and clinical studies attribute their anticancer activity to ROS induction. Consistently, this review aims to highlight selected pro-oxidative drugs whose anticancer potential has been characterized with specific focus on phytochemicals, mechanisms of ROS induction, and anticancer effects downstream of ROS induction.
Collapse
Affiliation(s)
- Zohra Nausheen Nizami
- Department of Biology, College of Science, United Arab Emirates University, Al Ain PO Box 15551, United Arab Emirates
| | - Hanan E Aburawi
- Department of Biology, College of Science, United Arab Emirates University, Al Ain PO Box 15551, United Arab Emirates
| | - Abdelhabib Semlali
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire-Université Laval, Quebec, QC G1V 0A6, Canada
| | - Khalid Muhammad
- Department of Biology, College of Science, United Arab Emirates University, Al Ain PO Box 15551, United Arab Emirates
| | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, Al Ain PO Box 15551, United Arab Emirates
| |
Collapse
|
7
|
Valenzuela-Molina F, Bura FI, Vázquez-Borrego MC, Granados-Rodríguez M, Rufián-Andujar B, Rufián-Peña S, Casado-Adam Á, Sánchez-Hidalgo JM, Rodríguez-Ortiz L, Ortega-Salas R, Martínez-López A, Michán C, Alhama J, Arjona-Sánchez Á, Romero-Ruiz A. Intraoperative oxygen tension and redox homeostasis in Pseudomyxoma peritonei: A short case series. Front Oncol 2023; 13:1076500. [PMID: 36776312 PMCID: PMC9909963 DOI: 10.3389/fonc.2023.1076500] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/11/2023] [Indexed: 01/28/2023] Open
Abstract
Introduction Pseudomyxoma peritonei (PMP) is a rare malignant disease characterized by a massive multifocal accumulation of mucin within the peritoneal cavity. The current treatment option is based on complete cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy. However, the recurrence is frequent with subsequent progression and death. To date, most of the studies published in PMP are related to histological and genomic analyses. Thus, the need for further studies unveiling the underlying PMP molecular mechanisms is urgent. In this regard, hypoxia and oxidative stress have been extensively related to tumoral pathologies, although their contribution to PMP has not been elucidated. Methods In this manuscript, we have evaluated, for the first time, the intratumoral real-time oxygen microtension (pO2mt) in the tumor (soft and hard mucin) and surrounding healthy tissue from five PMP patients during surgery. In addition, we measured hypoxia (Hypoxia Inducible Factor-1a; HIF-1α) and oxidative stress (catalase; CAT) markers in soft and hard mucin from the same five PMP patient samples and in five control samples. Results The results showed low intratumoral oxygen levels, which were associated with increased HIF-1α protein levels, suggesting the presence of a hypoxic environment in these tumors. We also found a significant reduction in CAT activity levels in soft and hard mucin compared with healthy tissue samples. Discussion In conclusion, our study provides the first evidence of low intratumoral oxygen levels in PMP patients associated with hypoxia and oxidative stress markers. However, further investigation is required to understand the potential role of oxidative stress in PMP in order to find new therapeutic strategies.
Collapse
Affiliation(s)
- Francisca Valenzuela-Molina
- Surgical Oncology Unit, Department of Surgery, Reina Sofia University Hospital, Cordoba, Spain,GE09 Research in peritoneal and retroperitoneal oncological surgery, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Florina I. Bura
- GE09 Research in peritoneal and retroperitoneal oncological surgery, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Mari C. Vázquez-Borrego
- GE09 Research in peritoneal and retroperitoneal oncological surgery, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain,*Correspondence: Álvaro Arjona Sánchez, ; Mari C. Vázquez Borrego,
| | - Melissa Granados-Rodríguez
- GE09 Research in peritoneal and retroperitoneal oncological surgery, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Blanca Rufián-Andujar
- Surgical Oncology Unit, Department of Surgery, Reina Sofia University Hospital, Cordoba, Spain,GE09 Research in peritoneal and retroperitoneal oncological surgery, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Sebastián Rufián-Peña
- Surgical Oncology Unit, Department of Surgery, Reina Sofia University Hospital, Cordoba, Spain,GE09 Research in peritoneal and retroperitoneal oncological surgery, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Ángela Casado-Adam
- Surgical Oncology Unit, Department of Surgery, Reina Sofia University Hospital, Cordoba, Spain,GE09 Research in peritoneal and retroperitoneal oncological surgery, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Juan Manuel Sánchez-Hidalgo
- Surgical Oncology Unit, Department of Surgery, Reina Sofia University Hospital, Cordoba, Spain,GE09 Research in peritoneal and retroperitoneal oncological surgery, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Lidia Rodríguez-Ortiz
- Surgical Oncology Unit, Department of Surgery, Reina Sofia University Hospital, Cordoba, Spain,GE09 Research in peritoneal and retroperitoneal oncological surgery, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Rosa Ortega-Salas
- GE09 Research in peritoneal and retroperitoneal oncological surgery, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain,Pathology Unit, Reina Sofia University Hospital, Cordoba, Spain
| | - Ana Martínez-López
- GE09 Research in peritoneal and retroperitoneal oncological surgery, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain,Pathology Unit, Reina Sofia University Hospital, Cordoba, Spain
| | - Carmen Michán
- GE09 Research in peritoneal and retroperitoneal oncological surgery, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - José Alhama
- GE09 Research in peritoneal and retroperitoneal oncological surgery, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Álvaro Arjona-Sánchez
- Surgical Oncology Unit, Department of Surgery, Reina Sofia University Hospital, Cordoba, Spain,GE09 Research in peritoneal and retroperitoneal oncological surgery, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain,*Correspondence: Álvaro Arjona Sánchez, ; Mari C. Vázquez Borrego,
| | - Antonio Romero-Ruiz
- GE09 Research in peritoneal and retroperitoneal oncological surgery, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| |
Collapse
|
8
|
Abd Al Moaty M, El Ashry ESH, Awad LF, Mostafa A, Abu-Serie MM, Teleb M. Harnessing ROS-Induced Oxidative Stress for Halting Colorectal Cancer via Thiazolidinedione-Based SOD Inhibitors. ACS OMEGA 2022; 7:21267-21279. [PMID: 35755340 PMCID: PMC9219103 DOI: 10.1021/acsomega.2c02410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Based on the "canonical" view of reactive oxygen species' (ROS) contribution to carcinogenesis, ROS induce oxidative stress and promote various tumor progression events. However, tumor cells also need to defend themselves against oxidative damage. This "heresy" was supported by several recent studies underlining the role of cellular antioxidant capacity in promoting metastasis and resistance to chemotherapy. Accordingly, harnessing the ROS-induced oxidative stress via selective suppression of the cancer antioxidant defense machinery has been launched as an innovative anticancer strategy. Within this approach, pharmacological inhibition of superoxide dismutases (SODs), the first-line defense antioxidant enzymes for cancer cells, selectively kills tumor cells and circumvents their acquired resistance. Various SOD inhibitors have been introduced, of which some were tolerated in clinical trials. However, the hit SOD inhibitors belong to diverse chemical classes and lack comprehensive structure-activity relationships (SAR). Herein, we probe the potential of newly synthesized benzylidene thiazolidinedione derivatives to inhibit SOD in colorectal cancer with special emphasis on their effects on correlated antioxidant enzymes aldehyde dehydrogenase 1 (ALDH1) and glutathione peroxidase (GPx). This may possibly bring a new dawn for utilizing thiazolidinediones (TZDs) in cancer therapy through SOD inhibition mechanisms. The preliminary 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that all of the evaluated TZDs exhibited excellent safety profiles on normal human cells, recording an EC100 of up to 47.5-folds higher than that of doxorubicin. Compounds 3c, 6a, and 6e (IC50 = 4.4-4.7 μM) were superior to doxorubicin and other derivatives against Caco-2 colorectal cancer cells within their safe doses. The hit anticancer agents inhibited SOD (IC50 = 97.2-228.8 μM). Then, they were selected for further in-depth evaluation on the cellular level. The anticancer IC50 doses of 3c, 6a, and 6e diminished the antioxidant activities of SOD (by 29.7, 70.1, and 33.3%, respectively), ALDH1A (by 85.92, 95.84, and 86.48%, respectively), and GPX (by 50.17, 87.03, and 53.28%, respectively) in the treated Caco-2 cells, elevating the Caco-2 cellular content of ROS by 21.42, 7.863, and 8.986-folds, respectively. Docking simulations were conducted to display their possible binding modes and essential structural features. Also, their physicochemical parameters and pharmacokinetic profiles formulating drug-likeness were computed.
Collapse
Affiliation(s)
| | - El Sayed H. El Ashry
- Chemistry
Department, Faculty of Science, Alexandria
University, Alexandria 21321, Egypt
| | - Laila Fathy Awad
- Chemistry
Department, Faculty of Science, Alexandria
University, Alexandria 21321, Egypt
| | - Asmaa Mostafa
- Chemistry
Department, Faculty of Science, Alexandria
University, Alexandria 21321, Egypt
| | - Marwa M. Abu-Serie
- Medical
Biotechnology Department, Genetic Engineering and Biotechnology Research
Institute, City of Scientific Research and
Technological Applications (SRTA-City), Alexandria 21934, Egypt
| | - Mohamed Teleb
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
9
|
Characterization of a small molecule inhibitor of disulfide reductases that induces oxidative stress and lethality in lung cancer cells. Cell Rep 2022; 38:110343. [PMID: 35139387 DOI: 10.1016/j.celrep.2022.110343] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/04/2021] [Accepted: 01/14/2022] [Indexed: 12/13/2022] Open
Abstract
Phenotype-based screening can identify small molecules that elicit a desired cellular response, but additional approaches are required to characterize their targets and mechanisms of action. Here, we show that a compound termed LCS3, which selectively impairs the growth of human lung adenocarcinoma (LUAD) cells, induces oxidative stress. To identify the target that mediates this effect, we use thermal proteome profiling (TPP) and uncover the disulfide reductases GSR and TXNRD1 as targets. We confirm through enzymatic assays that LCS3 inhibits disulfide reductase activity through a reversible, uncompetitive mechanism. Further, we demonstrate that LCS3-sensitive LUAD cells are sensitive to the synergistic inhibition of glutathione and thioredoxin pathways. Lastly, a genome-wide CRISPR knockout screen identifies NQO1 loss as a mechanism of LCS3 resistance. This work highlights the ability of TPP to uncover targets of small molecules identified by high-throughput screens and demonstrates the potential therapeutic utility of inhibiting disulfide reductases in LUAD.
Collapse
|
10
|
CIC-mediated modulation of MAPK signaling opposes receptor tyrosine kinase inhibitor response in kinase-addicted sarcoma. Cancer Res 2022; 82:1110-1127. [DOI: 10.1158/0008-5472.can-21-1397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/15/2021] [Accepted: 01/20/2022] [Indexed: 11/16/2022]
|
11
|
Smith RS, Odintsov I, Liu Z, Lui AJW, Hayashi T, Vojnic M, Suehara Y, Delasos L, Mattar MS, Hmeljak J, Ramirez HA, Shaw M, Bui G, Hartono AB, Gladstone E, Kunte S, Magnan H, Khodos I, De Stanchina E, La Quaglia MP, Yao J, Laé M, Lee SB, Spraggon L, Pratilas CA, Ladanyi M, Somwar R. Novel patient-derived models of DSRCT enable validation of ERBB signaling as a potential therapeutic vulnerability. Dis Model Mech 2021; 15:273569. [PMID: 34841430 PMCID: PMC8807576 DOI: 10.1242/dmm.047621] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/12/2021] [Indexed: 11/20/2022] Open
Abstract
Desmoplastic small round cell tumor (DSRCT) is characterized by the t(11;22)(p13;q12) translocation, which fuses the transcriptional regulatory domain of EWSR1 with the DNA-binding domain of WT1, resulting in the oncogenic EWSR1-WT1 fusion protein. The paucity of DSRCT disease models has hampered preclinical therapeutic studies on this aggressive cancer. Here, we developed preclinical disease models and mined DSRCT expression profiles to identify genetic vulnerabilities that could be leveraged for new therapies. We describe four DSRCT cell lines and one patient-derived xenograft model. Transcriptomic, proteomic and biochemical profiling showed evidence of activation of the ERBB pathway. Ectopic expression of EWSR1-WT1 resulted in upregulation of ERRB family ligands. Treatment of DSRCT cell lines with ERBB ligands resulted in activation of EGFR, ERBB2, ERK1/2 and AKT, and stimulation of cell growth. Antagonizing EGFR function with shRNAs, small-molecule inhibitors (afatinib, neratinib) or an anti-EGFR antibody (cetuximab) inhibited proliferation of DSRCT cells. Finally, treatment of mice bearing DSRCT xenografts with a combination of cetuximab and afatinib significantly reduced tumor growth. These data provide a rationale for evaluating EGFR antagonists in patients with DSRCT. This article has an associated First Person interview with the joint first authors of the paper. Summary: Novel models of desmoplastic small round cell tumor (DSRCT) reveal a role for the ERBB pathway in regulating growth of this sarcoma and provide a rationale for evaluating EGFR antagonists in patients with DSRCT.
Collapse
Affiliation(s)
- Roger S Smith
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Igor Odintsov
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zebing Liu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Allan Jo-Weng Lui
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Takuo Hayashi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Morana Vojnic
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yoshiyuki Suehara
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lukas Delasos
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marissa S Mattar
- Anti-tumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Julija Hmeljak
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hillary A Ramirez
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Melissa Shaw
- Gerstner School of Graduate Studies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gabrielle Bui
- Gerstner School of Graduate Studies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Eric Gladstone
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Siddharth Kunte
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Heather Magnan
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Inna Khodos
- Anti-tumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa De Stanchina
- Anti-tumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael P La Quaglia
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jinjuan Yao
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marick Laé
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sean B Lee
- Tulane University School of Medicine, New Orleans, LA, USA
| | - Lee Spraggon
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christine A Pratilas
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Romel Somwar
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
12
|
Novel Preclinical Patient-Derived Lung Cancer Models Reveal Inhibition of HER3 and MTOR Signaling as Therapeutic Strategies for NRG1 Fusion-Positive Cancers. J Thorac Oncol 2021; 16:1149-1165. [PMID: 33839363 DOI: 10.1016/j.jtho.2021.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/22/2021] [Accepted: 03/08/2021] [Indexed: 12/24/2022]
Abstract
INTRODUCTION NRG1 rearrangements produce chimeric ligands that subvert the ERBB pathway to drive tumorigenesis. A better understanding of the signaling networks that mediate transformation by NRG1 fusions is needed to inform effective therapeutic strategies. Unfortunately, this has been hampered by a paucity of patient-derived disease models that faithfully recapitulate this molecularly defined cancer subset. METHODS Patient-derived xenograft (PDX) and cell line models were established from NRG1-rearranged lung adenocarcinoma samples. Transcriptomic, proteomic, and biochemical analyses were performed to identify activated pathways. Efficacy studies were conducted to evaluate HER3- and MTOR-directed therapies. RESULTS We established a pair of PDX and cell line models of invasive mucinous lung adenocarcinoma (LUAD) (LUAD-0061AS3, SLC3A2-NRG1), representing the first reported paired in vitro and in vivo model of NRG1-driven tumors. Growth of LUAD-0061AS3 models was reduced by the anti-HER3 antibody GSK2849330. Transcriptomic profiling revealed activation of the MTOR pathway in lung tumor samples with NRG1 fusions. Phosphorylation of several MTOR effectors (S6 and 4EBP1) was higher in LUAD-0061AS3 cells compared with human bronchial epithelial cells and the breast cancer cell line MDA-MB-175-VII (DOC4-NRG1 fusion). Accordingly, LUAD-0061AS3 cells were more sensitive to MTOR inhibitors than MDA-MB-175-VII cells and targeting the MTOR pathway with rapamycin blocked growth of LUAD-0061AS3 PDX tumors in vivo. In contrast, MDA-MB-175-VII breast cancer cells had higher MAPK pathway activation and were more sensitive to MEK inhibition. CONCLUSIONS We identify the MTOR pathway as a candidate vulnerability in NRG1 fusion-positive lung adenocarcinoma that may warrant further preclinical evaluation, with the eventual goal of finding additional therapeutic options for patients in whom ERBB-directed therapy fails. Moreover, our results uncover heterogeneity in downstream oncogenic signaling among NRG1-rearranged cancers, possibly tumor type-dependent, the therapeutic significance of which requires additional investigation.
Collapse
|
13
|
Odintsov I, Lui AJW, Sisso WJ, Gladstone E, Liu Z, Delasos L, Kurth RI, Sisso EM, Vojnic M, Khodos I, Mattar MS, de Stanchina E, Leland SM, Ladanyi M, Somwar R. The Anti-HER3 mAb Seribantumab Effectively Inhibits Growth of Patient-Derived and Isogenic Cell Line and Xenograft Models with Oncogenic NRG1 Fusions. Clin Cancer Res 2021; 27:3154-3166. [PMID: 33824166 DOI: 10.1158/1078-0432.ccr-20-3605] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/02/2021] [Accepted: 03/19/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE Oncogenic fusions involving the neuregulin 1 (NRG1) gene are found in approximately 0.2% of cancers of diverse histologies. The resulting chimeric NRG1 proteins bind predominantly to HER3, leading to HER3-HER2 dimerization and activation of downstream growth and survival pathways. HER3 is, therefore, a rational target for therapy in NRG1 fusion-driven cancers. EXPERIMENTAL DESIGN We developed novel patient-derived and isogenic models of NRG1-rearranged cancers and examined the effect of the anti-HER3 antibody, seribantumab, on growth and activation of signaling networks in vitro and in vivo. RESULTS Seribantumab inhibited NRG1-stimulated growth of MCF-7 cells and growth of patient-derived breast (MDA-MB-175-VII, DOC4-NRG1 fusion) and lung (LUAD-0061AS3, SLC3A2-NRG1 fusion) cancer cells harboring NRG1 fusions or NRG1 amplification (HCC-95). In addition, seribantumab inhibited growth of isogenic HBEC cells expressing a CD74-NRG1 fusion (HBECp53-CD74-NRG1) and induced apoptosis in MDA-MB-175-VII and LUAD-0061AS3 cells. Induction of proapoptotic proteins and reduced expression of the cell-cycle regulator, cyclin D1, were observed in seribantumab-treated cells. Treatment of MDA-MB-175-VII, LUAD-0061AS3, and HBECp53-CD74-NRG1 cells with seribantumab reduced phosphorylation of EGFR, HER2, HER3, HER4, and known downstream signaling molecules, such as AKT and ERK1/2. Significantly, administration of seribantumab to mice bearing LUAD-0061AS3 patient-derived xenograft (PDX) and OV-10-0050 (ovarian cancer with CLU-NRG1 fusion) PDX tumors induced regression of tumors by 50%-100%. Afatinib was much less effective at blocking tumor growth. CONCLUSIONS Seribantumab treatment blocked activation of the four ERBB family members and of downstream signaling, leading to inhibition of NRG1 fusion-dependent tumorigenesis in vitro and in vivo in breast, lung, and ovarian patient-derived cancer models.
Collapse
Affiliation(s)
- Igor Odintsov
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Allan J W Lui
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Whitney J Sisso
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eric Gladstone
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Zebing Liu
- Department of Pathology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Lukas Delasos
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Renate I Kurth
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Exequiel M Sisso
- Development Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Morana Vojnic
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Inna Khodos
- Anti-tumor Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marissa S Mattar
- Anti-tumor Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elisa de Stanchina
- Anti-tumor Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York. .,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Romel Somwar
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York. .,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
14
|
Hashemi SA, Karami M, Bathaie SZ. Saffron carotenoids change the superoxide dismutase activity in breast cancer: In vitro, in vivo and in silico studies. Int J Biol Macromol 2020; 158:845-853. [PMID: 32360463 DOI: 10.1016/j.ijbiomac.2020.04.063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/27/2020] [Accepted: 04/07/2020] [Indexed: 01/26/2023]
Abstract
Superoxide dismutase (SOD) is an important member of the antioxidant defense system and is proposed as a therapeutic agent against the ROS-mediated diseases, and a therapeutic target for cancer treatment. Saffron carotenoids, crocin (Cro) and crocetin (Crt), are antioxidants with anticancer activity. In the present study, we investigated the effects of Cro/Crt on the SOD activity in both in vivo and in vitro models of breast cancer. Both Cro and Crt showed strong radical scavenging activity and SOD inhibition in the MCF-7 breast cancer cell line. The UVVis, circular dichroism and fluorometry studies proposed the binding of both Cro and Crt with SOD; the ΔG° of binding at 310 °K was -8.6 and -4.4 kcal/mol, respectively. The docking analysis predicted the Cro/Crt binding near the active site channel, but in different sites. According to the obtained data, Cro inhibits SOD activity by scavenging superoxide radical (O2), while Crt inhibits SOD by affecting the copper-binding site. In contrast to the in vitro data, both Cro and Crt effectively increased SOD activity in breast tumors of BALB/c mice, after one month of treatment. The mechanism that is important to compensate for the SOD decreased activity in cancer.
Collapse
Affiliation(s)
- S Ali Hashemi
- Department of Biochemistry, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Masoumeh Karami
- Department of Biochemistry, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - S Zahra Bathaie
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
15
|
Kenny TC, Gomez ML, Germain D. Mitohormesis, UPR mt, and the Complexity of Mitochondrial DNA Landscapes in Cancer. Cancer Res 2019; 79:6057-6066. [PMID: 31484668 DOI: 10.1158/0008-5472.can-19-1395] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/25/2019] [Accepted: 08/21/2019] [Indexed: 12/20/2022]
Abstract
The discovery of the Warburg effect, the preference of cancer cells to generate ATP via glycolysis rather than oxidative phosphorylation, has fostered the misconception that cancer cells become independent of the electron transport chain (ETC) for survival. This is inconsistent with the need of ETC function for the generation of pyrimidines. Along with this misconception, a large body of literature has reported numerous mutations in mitochondrial DNA (mtDNA), further fueling the notion of nonfunctional ETC in cancer cells. More recent findings, however, suggest that cancers maintain oxidative phosphorylation capacity and that the role of mtDNA mutations in cancer is likely far more nuanced in light of the remarkable complexity of mitochondrial genetics. This review aims at describing the various model systems that were developed to dissect the role of mtDNA in cancer, including cybrids, and more recently mitochondrial-nuclear exchange and conplastic mice. Furthermore, we put forward the notion of mtDNA landscapes, where the surrounding nonsynonymous mutations and variants can enhance or repress the biological effect of specific mtDNA mutations. Notably, we review recent studies describing the ability of some mtDNA landscapes to activate the mitochondrial unfolded protein response (UPRmt) but not others. Furthermore, the role of the UPRmt in maintaining cancer cells in the mitohormetic zone to provide selective adaptation to stress is discussed. Among the genes activated by the UPRmt, we suggest that the dismutases SOD2 and SOD1 may play key roles in the establishment of the mitohormetic zone. Finally, we propose that using a UPRmt nuclear gene expression signature may be a more reliable readout than mtDNA landscapes, given their diversity and complexity.
Collapse
Affiliation(s)
- Timothy C Kenny
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Maria L Gomez
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Doris Germain
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
16
|
Gomez ML, Shah N, Kenny TC, Jenkins EC, Germain D. SOD1 is essential for oncogene-driven mammary tumor formation but dispensable for normal development and proliferation. Oncogene 2019; 38:5751-5765. [PMID: 31222103 PMCID: PMC6639133 DOI: 10.1038/s41388-019-0839-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/19/2018] [Accepted: 03/23/2019] [Indexed: 12/11/2022]
Abstract
We previously reported that the dismutase SOD1 is overexpressed in breast cancer. However, whether SOD1 plays an active role in tumor formation in vivo has never been demonstrated. Further, as luminal cells of normal breast epithelial cells are enriched in SOD1, whether SOD1 is essential for normal mammary gland development has never been determined. We initiated this study to investigate the role of SOD1 in mammary gland tumorigenesis as well as in normal mammary gland development. We crossed the inducible erbB2 (MMTV-iErbB2) and Wnt (MMTV-Wnt) transgenic mice to the SOD1 heterozygote or knockout mice. Our results show that SOD1 is essential for oncogene-driven proliferation, but not normal proliferation of the mammary gland associated with pregnancy or other normal proliferative tissues such as skin and intestines. We show that activation of the oncogene ErbB2 is associated with increased ROS and that high ROS sub-population of ErbB2 cancer cells show elevated SOD1. In the same cells, decrease in SOD1 is associated with an elevation in both apoptosis as well as oncogene-induced senescence. Based on these results, we suggest that SOD1 carries a housekeeping function that maintains ROS levels below a threshold that supports oncogene-dependent proliferation, while allowing escape from oncogene-induced senescence, independently of the oncogene driving tumor formation. These results identify SOD1 as an ideal target for cancer therapy as SOD1 inhibitors hold the potential to prevent the growth of cancers cells of diverse genotypes, activate multiple modes of cell death therefore making acquired resistance more difficult, while sparing normal tissues.
Collapse
Affiliation(s)
- Maria L Gomez
- Department of Medicine, Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA
| | - Nagma Shah
- Department of Medicine, Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA
| | - Timothy C Kenny
- Department of Medicine, Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA
| | - Edmund C Jenkins
- Department of Medicine, Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA
| | - Doris Germain
- Department of Medicine, Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA.
| |
Collapse
|
17
|
Vojnic M, Kubota D, Kurzatkowski C, Offin M, Suzawa K, Benayed R, Schoenfeld AJ, Plodkowski AJ, Poirier JT, Rudin CM, Kris MG, Rosen NX, Yu HA, Riely GJ, Arcila ME, Somwar R, Ladanyi M. Acquired BRAF Rearrangements Induce Secondary Resistance to EGFR therapy in EGFR-Mutated Lung Cancers. J Thorac Oncol 2019; 14:802-815. [PMID: 30831205 PMCID: PMC6486868 DOI: 10.1016/j.jtho.2018.12.038] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 10/23/2018] [Accepted: 12/27/2018] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Multiple genetic mechanisms have been identified in EGFR-mutant lung cancers as mediators of acquired resistance (AR) to EGFR tyrosine kinase inhibitors (TKIs), but many cases still lack a known mechanism. METHODS To identify novel mechanisms of AR, we performed targeted large panel sequencing of samples from 374 consecutive patients with metastatic EGFR-mutant lung cancer, including 174 post-TKI samples, of which 38 also had a matched pre-TKI sample. Alterations hypothesized to confer AR were introduced into drug-sensitive EGFR-mutant lung cancer cell lines (H1975, HCC827, and PC9) by using clustered regularly interspaced short palindromic repeats/Cas9 genome editing. MSK-LX138cl, a cell line with EGFR exon 19 deletion (ex19del) and praja ring finger ubiquitin ligase 2 gene (PJA2)/BRAF fusion, was generated from an EGFR TKI-resistant patient sample. RESULTS We identified four patients (2.3%) with a BRAF fusion (three with acylglycerol kinase gene (AGK)/BRAF and one with PJA2/BRAF) in samples obtained at AR to EGFR TKI therapy (two posterlotinib samples and two posterlotinib and postosimertinib samples). Pre-TKI samples were available for two of four patients and both were negative for BRAF fusion. Induction of AGK/BRAF fusion in H1975 (L858R + T790M), PC9 (ex19del) and HCC827 (ex19del) cells increased phosphorylation of BRAF, MEK1/2, ERK1/2, and signal transducer and activator of transcription 3 and conferred resistance to growth inhibition by osimertinib. MEK inhibition with trametinib synergized with osimertinib to block growth. Alternately, a pan-RAF inhibitor as a single agent blocked growth of all cell lines with mutant EGFR and BRAF fusion. CONCLUSION BRAF fusion is a mechanism of AR to EGFR TKI therapy in approximately 2% of patients. Combined inhibition of EGFR and MEK (with osimertinib and trametinib) or BRAF (with a pan-RAF inhibitor) are potential therapeutic strategies that should be explored.
Collapse
Affiliation(s)
- Morana Vojnic
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Daisuke Kubota
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Michael Offin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ken Suzawa
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ryma Benayed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Adam J Schoenfeld
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrew J Plodkowski
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John T Poirier
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Charles M Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Weill Cornell Medical College, New York, New York
| | - Mark G Kris
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Weill Cornell Medical College, New York, New York
| | - Neal X Rosen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Helena A Yu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Weill Cornell Medical College, New York, New York
| | - Gregory J Riely
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Weill Cornell Medical College, New York, New York
| | - Maria E Arcila
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Romel Somwar
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
18
|
Gomez M, Germain D. Cross talk between SOD1 and the mitochondrial UPR in cancer and neurodegeneration. Mol Cell Neurosci 2019; 98:12-18. [PMID: 31028834 DOI: 10.1016/j.mcn.2019.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 04/23/2019] [Indexed: 01/23/2023] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) is rapidly gaining attention. While the CHOP (ATF4/5) axis of the UPRmt was the first to be described, other axes have subsequently been reported. Validation of this complex pathway in C. elegans has been extensively studied. However, validation of the UPRmt in mouse models of disease known to implicate mitochondrial reprogramming or dysfunction, such as cancer and neurodegeneration, respectively, is only beginning to emerge. This review summarizes recent findings and highlights the major role of the superoxide dismutase SOD1 in the communication between the mitochondria and the nucleus in these settings. While SOD1 has mostly been studied in the context of familial amyotrophic lateral sclerosis (fALS), recent studies suggest that SOD1 may be a potentially important mediator of the UPRmt and converge to emphasize an increasingly vital role of SOD1 as a therapeutic target in cancer.
Collapse
Affiliation(s)
- Maria Gomez
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, Department of Medicine, Division of Hematology/Oncology, New York, 10029, NY, USA
| | - Doris Germain
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, Department of Medicine, Division of Hematology/Oncology, New York, 10029, NY, USA.
| |
Collapse
|
19
|
Foo CHJ, Pervaiz S. gRASping the redox lever to modulate cancer cell fate signaling. Redox Biol 2019; 25:101094. [PMID: 30638892 PMCID: PMC6859584 DOI: 10.1016/j.redox.2018.101094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/22/2018] [Accepted: 12/26/2018] [Indexed: 01/17/2023] Open
Abstract
RAS proteins are critical regulators of signaling networks controlling diverse cellular functions such as cell proliferation and survival and its mutation are among the most powerful oncogenic drivers in human cancers. Despite intense efforts, direct RAS-targeting strategies remain elusive due to its "undruggable" nature. To that end, bulk of the research efforts has been directed towards targeting upstream and/or downstream of RAS signaling. However, the therapeutic efficacies of these treatments are limited in the long run due to the acquired drug resistance in RAS-driven cancers. Interestingly, recent studies have uncovered a potential role of RAS in redox-regulation as well as the interplay between ROS and RAS-associated signaling networks during process of cancer initiation and progression. More specifically, these studies provide ample evidence to implicate RAS as a redox-rheostat, manipulating ROS levels to provide a redox-milieu conducive for carcinogenesis. Importantly, the understanding of RAS-ROS interplay could provide us with novel targetable vulnerabilities for designing therapeutic strategies. In this review, we provide a brief summary of the advances in the field to illustrate the dual role of RAS in redox-regulation and its implications in RAS signaling outcomes and also emerging redox-based strategies to target RAS-driven cancers.
Collapse
Affiliation(s)
- Chuan Han Jonathan Foo
- Department of Physiology, YLL School of Medicine, National University of Singapore (NUS), Singapore; NUS Graduate School of Integrative Sciences and Engineering, NUS, Singapore
| | - Shazib Pervaiz
- Department of Physiology, YLL School of Medicine, National University of Singapore (NUS), Singapore; Medical Science Cluster Cancer Program, YLL School of Medicine, National University of Singapore (NUS), Singapore; NUS Graduate School of Integrative Sciences and Engineering, NUS, Singapore; National University Cancer Institute, NUHS, Singapore.
| |
Collapse
|
20
|
Chong SJF, Lai JXH, Eu JQ, Bellot GL, Pervaiz S. Reactive Oxygen Species and Oncoprotein Signaling-A Dangerous Liaison. Antioxid Redox Signal 2018; 29:1553-1588. [PMID: 29186971 DOI: 10.1089/ars.2017.7441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
SIGNIFICANCE There is evidence to implicate reactive oxygen species (ROS) in tumorigenesis and its progression. This has been associated with the interplay between ROS and oncoproteins, resulting in enhanced cellular proliferation and survival. Recent Advances: To date, studies have investigated specific contributions of the crosstalk between ROS and signaling networks in cancer initiation and progression. These investigations have challenged the established dogma of ROS as agents of cell death by demonstrating a secondary function that fuels cell proliferation and survival. Studies have thus identified (onco)proteins (Bcl-2, STAT3/5, RAS, Rac1, and Myc) in manipulating ROS level as well as exploiting an altered redox environment to create a milieu conducive for cancer formation and progression. CRITICAL ISSUES Despite these advances, drug resistance and its association with an altered redox metabolism continue to pose a challenge at the mechanistic and clinical levels. Therefore, identifying specific signatures, altered protein expressions, and modifications as well as protein-protein interplay/function could not only enhance our understanding of the redox networks during cancer initiation and progression but will also provide novel targets for designing specific therapeutic strategies. FUTURE DIRECTIONS Not only a heightened realization is required to unravel various gene/protein networks associated with cancer formation and progression, particularly from the redox standpoint, but there is also a need for developing more sensitive tools for assessing cancer redox metabolism in clinical settings. This review attempts to summarize our current knowledge of the crosstalk between oncoproteins and ROS in promoting cancer cell survival and proliferation and treatment strategies employed against these oncoproteins. Antioxid. Redox Signal.
Collapse
Affiliation(s)
- Stephen Jun Fei Chong
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Jolin Xiao Hui Lai
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Jie Qing Eu
- 2 Cancer Science Institute , Singapore, Singapore
| | - Gregory Lucien Bellot
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,3 Department of Hand and Reconstructive Microsurgery, National University Health System , Singapore, Singapore
| | - Shazib Pervaiz
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,4 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore, Singapore .,5 National University Cancer Institute, National University Health System , Singapore, Singapore .,6 School of Biomedical Sciences, Curtin University , Perth, Australia
| |
Collapse
|
21
|
Gupta A, Ahmad A, Singh H, Kaur S, K M N, Ansari MM, Jayamurugan G, Khan R. Nanocarrier Composed of Magnetite Core Coated with Three Polymeric Shells Mediates LCS-1 Delivery for Synthetic Lethal Therapy of BLM-Defective Colorectal Cancer Cells. Biomacromolecules 2018; 19:803-815. [DOI: 10.1021/acs.biomac.7b01607] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Anuradha Gupta
- Institute of Nano Science and Technology, Mohali, Punjab 160062, India
| | - Anas Ahmad
- Institute of Nano Science and Technology, Mohali, Punjab 160062, India
| | - Hardeep Singh
- Institute of Nano Science and Technology, Mohali, Punjab 160062, India
| | - Sharanjeet Kaur
- Institute of Nano Science and Technology, Mohali, Punjab 160062, India
| | - Neethu K M
- Institute of Nano Science and Technology, Mohali, Punjab 160062, India
| | - Md. Meraj Ansari
- Institute of Nano Science and Technology, Mohali, Punjab 160062, India
| | | | - Rehan Khan
- Institute of Nano Science and Technology, Mohali, Punjab 160062, India
| |
Collapse
|
22
|
Hoshi H, Hiyama G, Ishikawa K, Inageda K, Fujimoto J, Wakamatsu A, Togashi T, Kawamura Y, Takahashi N, Higa A, Goshima N, Semba K, Watanabe S, Takagi M. Construction of a novel cell-based assay for the evaluation of anti-EGFR drug efficacy against EGFR mutation. Oncol Rep 2016; 37:66-76. [PMID: 27840973 PMCID: PMC5355725 DOI: 10.3892/or.2016.5227] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/17/2016] [Indexed: 01/05/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) overexpression and EGFR-mediated signaling pathway dysregulation have been observed in tumors from patients with various cancers, especially non-small cell lung cancer. Thus, several anti-EGFR drugs have been developed for cancer therapy. For patients with known EGFR activating mutations (EGFR exon 19 in-frame deletions and exon 21 L858R substitution), treatment with an EGFR tyrosine kinase inhibitor (EGFR TKI; gefitinib, erlotinib or afatinib) represents standard first-line therapy. However, the clinical efficacy of these TKIs is ultimately limited by the development of acquired drug resistance such as by mutation of the gatekeeper T790 residue (T790M). To overcome this acquired drug resistance and develop novel anti-EGFR drugs, a cell-based assay system for EGFR TKI resistance mutant-selective inhibitors is required. We constructed a novel cell-based assay for the evaluation of EGFR TKI efficacy against EGFR mutation. To this end, we established non-tumorigenic immortalized breast epithelial cells that proliferate dependent on EGF (MCF 10A cells), which stably overexpress mutant EGFR. We found that the cells expressing EGFR containing the T790M mutation showed higher resistance against gefitinib, erlotinib and afatinib compared with cells expressing wild-type EGFR. In contrast, L858R mutant-expressing cells exhibited higher TKI sensitivity. The effect of T790M-selective inhibitors (osimertinib and rociletinib) on T790M mutant-expressing cells was significantly higher than gefitinib and erlotinib. Finally, when compared with commercially available isogenic MCF 10A cell lines carrying introduced mutations in EGFR, our EGFR mutant-overexpressing cells exhibited obviously higher responsiveness to EGFR TKIs depending on the underlying mutations because of the higher levels of EGFR phosphorylation in the EGFR mutant-overexpressing cells than in the isogenic cell lines. In conclusion, we successfully developed a novel cell-based assay for evaluating the efficacy of anti-EGFR drugs against EGFR mutation.
Collapse
Affiliation(s)
- Hirotaka Hoshi
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Gen Hiyama
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Kosuke Ishikawa
- Japan Biological Informatics Consortium (JBIC), Koto-ku, Tokyo 135-0064, Japan
| | - Kiyoshi Inageda
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Jiro Fujimoto
- Japan Biological Informatics Consortium (JBIC), Koto-ku, Tokyo 135-0064, Japan
| | - Ai Wakamatsu
- Japan Biological Informatics Consortium (JBIC), Koto-ku, Tokyo 135-0064, Japan
| | - Takushi Togashi
- Japan Biological Informatics Consortium (JBIC), Koto-ku, Tokyo 135-0064, Japan
| | - Yoshifumi Kawamura
- Japan Biological Informatics Consortium (JBIC), Koto-ku, Tokyo 135-0064, Japan
| | - Nobuhiko Takahashi
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Arisa Higa
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Naoki Goshima
- National Institute of Advanced Industrial Science and Technology (AIST), Koto-ku, Tokyo 135-0064, Japan
| | - Kentaro Semba
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Shinya Watanabe
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Motoki Takagi
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| |
Collapse
|
23
|
Shukla N, Somwar R, Smith RS, Ambati S, Munoz S, Merchant M, D'Arcy P, Wang X, Kobos R, Antczak C, Bhinder B, Shum D, Radu C, Yang G, Taylor BS, Ng CKY, Weigelt B, Khodos I, de Stanchina E, Reis-Filho JS, Ouerfelli O, Linder S, Djaballah H, Ladanyi M. Proteasome Addiction Defined in Ewing Sarcoma Is Effectively Targeted by a Novel Class of 19S Proteasome Inhibitors. Cancer Res 2016; 76:4525-34. [PMID: 27256563 DOI: 10.1158/0008-5472.can-16-1040] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 05/09/2016] [Indexed: 01/05/2023]
Abstract
Ewing sarcoma is a primitive round cell sarcoma with a peak incidence in adolescence that is driven by a chimeric oncogene created from the fusion of the EWSR1 gene with a member of the ETS family of genes. Patients with metastatic and recurrent disease have dismal outcomes and need better therapeutic options. We screened a library of 309,989 chemical compounds for growth inhibition of Ewing sarcoma cells to provide the basis for the development of novel therapies and to discover vulnerable pathways that might broaden our understanding of the pathobiology of this aggressive sarcoma. This screening campaign identified a class of benzyl-4-piperidone compounds that selectively inhibit the growth of Ewing sarcoma cell lines by inducing apoptosis. These agents disrupt 19S proteasome function through inhibition of the deubiquitinating enzymes USP14 and UCHL5. Functional genomic data from a genome-wide shRNA screen in Ewing sarcoma cells also identified the proteasome as a node of vulnerability in Ewing sarcoma cells, providing orthologous confirmation of the chemical screen findings. Furthermore, shRNA-mediated silencing of USP14 or UCHL5 in Ewing sarcoma cells produced significant growth inhibition. Finally, treatment of a xenograft mouse model of Ewing sarcoma with VLX1570, a benzyl-4-piperidone compound derivative currently in clinical trials for relapsed multiple myeloma, significantly inhibited in vivo tumor growth. Overall, our results offer a preclinical proof of concept for the use of 19S proteasome inhibitors as a novel therapeutic strategy for Ewing sarcoma. Cancer Res; 76(15); 4525-34. ©2016 AACR.
Collapse
Affiliation(s)
- Neerav Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Romel Somwar
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Roger S Smith
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sri Ambati
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Stanley Munoz
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Melinda Merchant
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Padraig D'Arcy
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Xin Wang
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Rachel Kobos
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christophe Antczak
- High-Throughput Drug Screening Facility, Memorial Sloan Kettering Cancer Center, New YorkNew York
| | - Bhavneet Bhinder
- High-Throughput Drug Screening Facility, Memorial Sloan Kettering Cancer Center, New YorkNew York
| | - David Shum
- High-Throughput Drug Screening Facility, Memorial Sloan Kettering Cancer Center, New YorkNew York
| | - Constantin Radu
- High-Throughput Drug Screening Facility, Memorial Sloan Kettering Cancer Center, New YorkNew York
| | - Guangbin Yang
- Organic Synthesis Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Barry S Taylor
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York. Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York. Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Charlotte K Y Ng
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Inna Khodos
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ouathek Ouerfelli
- Organic Synthesis Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Stig Linder
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden. Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
| | - Hakim Djaballah
- High-Throughput Drug Screening Facility, Memorial Sloan Kettering Cancer Center, New YorkNew York
| | - Marc Ladanyi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York. Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
24
|
Che M, Wang R, Li X, Wang HY, Zheng XFS. Expanding roles of superoxide dismutases in cell regulation and cancer. Drug Discov Today 2015; 21:143-149. [PMID: 26475962 DOI: 10.1016/j.drudis.2015.10.001] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/14/2015] [Accepted: 10/07/2015] [Indexed: 12/20/2022]
Abstract
Reactive oxygen species (ROS) have important roles in normal physiology and diseases, particularly cancer. Under normal physiological conditions, they participate in redox reactions and serve as second messengers for regulatory functions. Owing to aberrant metabolism, cancer cells accumulate excessive ROS, thus requiring a robustly active antioxidant system to prevent cellular damage. Superoxide dismutases (SODs) are enzymes that catalyze the removal of superoxide free radicals. There are three distinct members of this metalloenzyme family in mammals: SOD1 (Cu/ZnSOD), SOD2 (MnSOD) and SOD3 (ecSOD). SODs are increasingly recognized for their regulatory functions in growth, metabolism and oxidative stress responses, which are also crucial for cancer development and survival. Growing evidence shows that SODs are also potentially useful anticancer drug targets. This review will focus on recent research of SODs in cellular regulation, with emphasis on their roles in cancer biology and therapy.
Collapse
Affiliation(s)
- Meixia Che
- Rutgers Cancer Institute of New Jersey and Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Ren Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xiaoxing Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Hui-Yun Wang
- Rutgers Cancer Institute of New Jersey and Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, State University of New Jersey, New Brunswick, NJ 08903, USA; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - X F Steven Zheng
- Rutgers Cancer Institute of New Jersey and Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, State University of New Jersey, New Brunswick, NJ 08903, USA; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
25
|
Harris KK, Fay A, Yan HG, Kunwar P, Socci ND, Pottabathini N, Juventhala RR, Djaballah H, Glickman MS. Novel imidazoline antimicrobial scaffold that inhibits DNA replication with activity against mycobacteria and drug resistant Gram-positive cocci. ACS Chem Biol 2014; 9:2572-83. [PMID: 25222597 PMCID: PMC4245167 DOI: 10.1021/cb500573z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
Bacterial
antimicrobial resistance is an escalating public health
threat, yet the current antimicrobial pipeline remains alarmingly
depleted, making the development of new antimicrobials an urgent need.
Here, we identify a novel, potent, imidazoline antimicrobial compound,
SKI-356313, with bactericidal activity against Mycobacterium
tuberculosis and Gram-positive cocci, including vancomycin-resistant Enterococcus faecium (VRE) and methicillin-resistant Staphylococcus aureus (MRSA). SKI-356313 is active in murine
models of Streptococcus pneumoniae and MRSA infection
and is potently bactericidal for both replicating and nonreplicating M. tuberculosis. Using a combination of genetics, whole
genome sequencing, and a novel target ID approach using real time
imaging of core macromolecular biosynthesis, we show that SKI-356313
inhibits DNA replication and displaces the replisome from the bacterial
nucleoid. These results identify a new antimicrobial scaffold with
a novel mechanism of action and potential therapeutic utility against
nonreplicating M. tuberculosis and antibiotic resistant
Gram-positive cocci.
Collapse
Affiliation(s)
- Kendra K. Harris
- Program
in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, New York 10021, United States
- Weill Cornell,
Rockefeller, Sloan Kettering Tri-Institutional MD-PhD Program, New York, New York 10065, United States
| | | | | | - Pratima Kunwar
- Viral
Vaccine Program, Seattle Biomedical Research Institute, Seattle, Washington 98109, United States
- Department
of Global Health, University of Washington School of Medicine, Seattle, Washington 98109, United States
| | | | - Narender Pottabathini
- Discovery
Services Division, GVK Biosciences Pvt. Ltd, Plot 28A, IDA Nacharam, Hyderabad 500076, India
| | - Ramakrishna R. Juventhala
- Discovery
Services Division, GVK Biosciences Pvt. Ltd, Plot 28A, IDA Nacharam, Hyderabad 500076, India
| | | | - Michael S. Glickman
- Program
in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, New York 10021, United States
| |
Collapse
|
26
|
Bhinder B, Antczak C, Shum D, Radu C, Mahida JP, Liu-Sullivan N, Ibanez G, Raja BS, Calder PA, Djaballah H. Chemical & RNAi screening at MSKCC: a collaborative platform to discover & repurpose drugs to fight disease. Comb Chem High Throughput Screen 2014; 17:298-318. [PMID: 24661215 DOI: 10.2174/1386207317666140323132222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 10/22/2013] [Accepted: 10/23/2013] [Indexed: 11/22/2022]
Abstract
Memorial Sloan Kettering Cancer Center (MSKCC) has implemented the creation of a full service state-of-the-art High-throughput Screening Core Facility (HTSCF) equipped with modern robotics and custom-built screening data management resources to rapidly store and query chemical and RNAi screening data outputs. The mission of the facility is to provide oncology clinicians and researchers alike with access to cost-effective HTS solutions for both chemical and RNAi screening, with an ultimate goal of novel target identification and drug discovery. HTSCF was established in 2003 to support the institution's commitment to growth in molecular pharmacology and in the realm of therapeutic agents to fight chronic diseases such as cancer. This endeavor required broad range of expertise in technology development to establish robust and innovative assays, large collections of diverse chemical and RNAi duplexes to probe specific cellular events, sophisticated compound and data handling capabilities, and a profound knowledge in assay development, hit validation, and characterization. Our goal has been to strive for constant innovation, and we strongly believe in shifting the paradigm from traditional drug discovery towards translational research now, making allowance for unmet clinical needs in patients. Our efforts towards repurposing FDA-approved drugs fructified when digoxin, identified through primary HTS, was administered in the clinic for treatment of stage Vb retinoblastoma. In summary, the overall aim of our facility is to identify novel chemical probes, to study cellular processes relevant to investigator's research interest in chemical biology and functional genomics, and to be instrumental in accelerating the process of drug discovery in academia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Hakim Djaballah
- HTS Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.
| |
Collapse
|
27
|
Chang Q, Berdyshev E, Cao D, Bogaard JD, White JJ, Chen S, Shah R, Mu W, Grantner R, Bettis S, Grassi MA. Cytochrome P450 2C epoxygenases mediate photochemical stress-induced death of photoreceptors. J Biol Chem 2014; 289:8337-52. [PMID: 24519941 DOI: 10.1074/jbc.m113.507152] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Degenerative loss of photoreceptors occurs in inherited and age-related retinal degenerative diseases. A chemical screen facilitates development of new testing routes for neuroprotection and mechanistic investigation. Herein, we conducted a mouse-derived photoreceptor (661W cell)-based high throughput screen of the Food and Drug Administration-approved Prestwick drug library to identify putative cytoprotective compounds against light-induced, synthetic visual chromophore-precipitated cell death. Different classes of hit compounds were identified, some of which target known genes or pathways pathologically associated with retinitis pigmentosa. Sulfaphenazole (SFZ), a selective inhibitor of human cytochrome P450 (CYP) 2C9 isozyme, was identified as a novel and leading cytoprotective compound. Expression of CYP2C proteins was induced by light. Gene-targeted knockdown of CYP2C55, the homologous gene of CYP2C9, demonstrated viability rescue to light-induced cell death, whereas stable expression of functional CYP2C9-GFP fusion protein further exacerbated light-induced cell death. Mechanistically, SFZ inhibited light-induced necrosis and mitochondrial stress-initiated apoptosis. Light elicited calcium influx, which was mitigated by SFZ. Light provoked the release of arachidonic acid from membrane phospholipids and production of non-epoxyeicosatrienoic acid metabolites. Administration of SFZ further stimulated the production of non-epoxyeicosatrienoic acid metabolites, suggesting a metabolic shift of arachidonic acid under inhibition of the CYP2C pathway. Together, our findings indicate that CYP2C genes play a direct causative role in photochemical stress-induced death of photoreceptors and suggest that the CYP monooxygenase system is a risk factor for retinal photodamage, especially in individuals with Stargardt disease and age-related macular degeneration that deposit condensation products of retinoids.
Collapse
Affiliation(s)
- Qing Chang
- From the Departments of Ophthalmology and Visual Sciences and
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Andruska N, Mao C, Cherian M, Zhang C, Shapiro DJ. Evaluation of a luciferase-based reporter assay as a screen for inhibitors of estrogen-ERα-induced proliferation of breast cancer cells. ACTA ACUST UNITED AC 2012; 17:921-32. [PMID: 22498909 DOI: 10.1177/1087057112442960] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Estrogens, acting through estrogen receptor α (ERα), stimulate breast cancer proliferation, making ERα an attractive drug target. Since 384-well format screens for inhibitors of proliferation can be challenging for some cells, inhibition of luciferase-based reporters is often used as a surrogate end point. To identify novel small-molecule inhibitors of 17β-estradiol (E(2))-ERα-stimulated cell proliferation, we established a cell-based screen for inhibitors of E(2)-ERα induction of an estrogen response element (ERE)(3)-luciferase reporter. Seventy-five "hits" were evaluated in tiered follow-up assays to identify where hits failed to progress and evaluate their effectiveness as inhibitors of E(2)-ERα-induced proliferation of breast cancer cells. Only 8 of 75 hits from the luciferase screen inhibited estrogen-induced proliferation of ERα-positive MCF-7 and T47D cells but not control ERα-negative MDA-MB-231 cells. Although 12% of compounds inhibited E(2)-ERα-stimulated proliferation in only one of the ERα-positive cell lines, 40% of compounds were toxic and inhibited growth of all the cell lines, and ~37% exhibited little or no ability to inhibit E(2)-ERα-stimulated cell proliferation. Representative compounds were evaluated in more detail, and a lead ERα inhibitor was identified.
Collapse
Affiliation(s)
- Neal Andruska
- Department of Biochemistry, University of Illinois, Urbana, IL, USA.
| | | | | | | | | |
Collapse
|
29
|
Superoxide dismutase 1 (SOD1) is a target for a small molecule identified in a screen for inhibitors of the growth of lung adenocarcinoma cell lines. Proc Natl Acad Sci U S A 2011; 108:16375-80. [PMID: 21930909 DOI: 10.1073/pnas.1113554108] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We previously described four small molecules that reduced the growth of lung adenocarcinoma cell lines with either epidermal growth factor receptor (EGFR) or KRAS mutations in a high-throughout chemical screen. By combining affinity proteomics and gene expression analysis, we now propose superoxide dismutase 1 (SOD1) as the most likely target of one of these small molecules, referred to as lung cancer screen 1 (LCS-1). siRNAs against SOD1 slowed the growth of LCS-1 sensitive cell lines; conversely, expression of a SOD1 cDNA increased proliferation of H358 cells and reduced sensitivity of these cells to LCS-1. In addition, SOD1 enzymatic activity was inhibited in vitro by LCS-1 and two closely related analogs. These results suggest that SOD1 is an LCS-1-binding protein that may act in concert with mutant proteins, such as EGFR and KRAS, to promote cell growth, providing a therapeutic target for compounds like LCS-1.
Collapse
|