1
|
Saha N, Samuel M. Dietary xenobiotics and their role in immunomodulation. Food Sci Biotechnol 2025; 34:1805-1817. [PMID: 40196336 PMCID: PMC11972276 DOI: 10.1007/s10068-024-01752-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/17/2024] [Accepted: 11/13/2024] [Indexed: 04/09/2025] Open
Abstract
Within our daily dietary intake, lies an intriguing and frequently overlooked dimension- the realm of dietary xenobiotics. These chemical compounds originate from different food sources like grilled or processed meat (animal-origin), flavonoids, preservatives, beverages(plant-origin) and so on. Numerous studies have explored the oncogenic properties. Additionally, these compounds also result in interrupting the humoral and cellular immune response. This review specifically concentrates on elucidating the regulatory functions of these dietary xenobiotics within the human immune system. While some, like heterocyclic amines (HCAs) and polycyclic aromatic hydrocarbons (PAHs), are predominantly deemed harmful, certain other compounds, such as specific phenolic compounds and nitrates, have exhibited therapeutic benefits. Furthermore, the review notes the immunomodulatory role of two relatively underexplored compounds, acrylamide and maltol. This underscores the necessity to broaden the scope of investigation surrounding these compounds and this review gives a brief overview of these xenobiotics interfering with the immune system. Graphical abstract
Collapse
Affiliation(s)
- Nilanjan Saha
- Department of Forensic Science, National Forensic Sciences University, Tripura Campus, VIP Road, Radhanagar, Agartala, Tripura 799006 India
| | - Monisha Samuel
- Department of Forensic Science, National Forensic Sciences University, Tripura Campus, VIP Road, Radhanagar, Agartala, Tripura 799006 India
| |
Collapse
|
2
|
Johnson VJ, Luster MI, Edwards A, Kashon M, Burleson GR, Burleson FG, Germolec DR. An In Vitro Test Battery using Human Whole Blood for Immunotoxicity Hazard Identification: Proof of Concept Studies with Dexamethasone and Benzo(a)pyrene. Toxicology 2025:154153. [PMID: 40233920 DOI: 10.1016/j.tox.2025.154153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 04/17/2025]
Abstract
Immunotoxicity assessment is nearing a crossroads predicated on mounting pressure for reduction/replacement of animals in toxicology. This has fueled the development of alternative New Approach Methodologies (NAMs) for hazard identification. This work details a comprehensive human whole blood NAM battery for immunotoxicity testing. The test system is a closed tube culture containing whole blood diluted 1:3 in culture media with or without an immune stimulant, anti-CD3/CD28 or viral peptide pool. Model immunotoxicants dexamethasone (DEX; 0 - 1.94 μM) and benzo(a)pyrene [B(a)P; 0 - 6.3 μM], were added to the test system for 24hours. Immune cells were identified and counted by flow cytometric immunophenotyping and assessed for natural killer (NK) cell activity and T cell activation. Supernatants were interrogated for proinflammatory cytokine concentrations. In vitro treatment with DEX resulted in concentration-dependent suppression of cytokine production, NK cell activity, and T cell activation induced by anti-CD3/CD28, as well as viral-induced cytokine production. B(a)P caused suppression of cytokine production and a nonsignificant reduction in T cell activation but did not impact NK cell activity, however, immunosuppression by B(a)P only occurred following metabolic activation by S9 fraction enzymes. Advantages of this NAM battery include assessment of adaptive immunity and direct translation of immunotoxicity to viral host resistance. These results provide evidence of in vitro immunotoxicity that reflect known outcomes from in vivo studies. This multi-endpoint human whole blood NAM battery should be useful for screening compounds for immunotoxicity hazard identification without reliance on animal systems for increased translatability to humans.
Collapse
Affiliation(s)
| | | | - Amber Edwards
- Burleson Research Technologies, Inc., Morrisville, NC, USA
| | - Michael Kashon
- Burleson Research Technologies, Inc., Morrisville, NC, USA; Mountainview Research Analytics, LLC., Morgantown, WV, USA
| | | | | | - Dori R Germolec
- Division of Translational Toxicology, National Toxicology Program, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| |
Collapse
|
3
|
Johnson VJ, Rider CV, Luster MI, Willson CJ, Harris S, Stiffler B, Blake J, Mutlu E, Godfrey V, Burback B, Fernando R, Waidyanatha S, Burleson GR, Germolec DR. Suppression of the T-dependent antibody response following oral exposure to selected polycyclic aromatic compounds in B6C3F1/N mice. FRONTIERS IN TOXICOLOGY 2025; 7:1558639. [PMID: 40115130 PMCID: PMC11922959 DOI: 10.3389/ftox.2025.1558639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 01/30/2025] [Indexed: 03/23/2025] Open
Abstract
Introduction The ability of polycyclic aromatic compounds (PACs), most notably benzo(a) pyrene [B(a)P], to suppress antibody responses in experimental animals is well documented. Very little information, however, is available on the immunotoxicity of related PACs despite their widespread presence in the environment. Additionally, there are several weaknesses in existing immunotoxicity databases for PACs in experimental animals, limiting their applicability in quantitative risk assessment. Careful characterization of strong positive and clear negative PACs is needed in order to lay the foundation for generating robust immunotoxicity data for structurally diverse PACs that have not yet been evaluated. Methods In the current study, adult B6C3F1/N female mice were treated daily for 28 consecutive days by oral administration of B(a)P to provide dose levels ranging between 2 and 150 mg/kg bodyweight/day. In addition, phenanthrene and pyrene, non-carcinogenic PACs, were tested at dose ranges between 12.5 and 800 mg/kg bodyweight/day and 3.1 and 200 mg/kg bodyweight/day, respectively. Immune assessments following PAC exposure included organ weights and immunopathology, hematology, quantification of immune cell types in the spleen, and T-dependent antibody response (TDAR) to sheep red blood cells (SRBC). Results Benzo(a)pyrene exposure resulted in significant decreases in lymphoid organ weights, immune cell populations in the spleen and TDAR. The most sensitive indicator for immunotoxicity from B(a)P treatment was suppression of antibody responses, where an ∼75% decrease occurred at a dose level of 9 mg/kg bodyweight/day and ∼32% decrease at the lowest tested dose of 2 mg/kg bodyweight/day. Antibody suppression was associated with significant immune cell loss in the spleen; however, it was clear that the suppression of the TDAR was more sensitive than cell loss indicating that cell function impairments were involved. Phenanthrene treatment also resulted in suppression of the antibody response but only at dose levels ≥50 mg/kg bodyweight/day without significant effects on other parameters, while pyrene showed no significant immune effects. Conclusion Suppression of the TDAR to SRBC immunization was the most sensitive immune endpoint being 33 times more sensitive than changes in liver weight, a commonly used outcome for risk assessment for PACs. Benzo(a)pyrene was the most potent PAC regarding suppression of humoral immunity whereas pyrene did not affect the immune responses tested. These studies lay the foundation for evaluating diverse PACs with a range of immunotoxicological potencies.
Collapse
Affiliation(s)
- Victor J Johnson
- Burleson Research Technologies, Inc., Morrisville, NC, United States
| | - Cynthia V Rider
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Michael I Luster
- Burleson Research Technologies, Inc., Morrisville, NC, United States
| | - Cynthia J Willson
- Integrated Laboratory Systems, LLC, An Inotiv Company, Morrisville, NC, United States
| | | | | | - James Blake
- RTI International, Research Triangle Park, NC, United States
| | - Esra Mutlu
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Veronica Godfrey
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | | | - Reshan Fernando
- RTI International, Research Triangle Park, NC, United States
| | - Suramya Waidyanatha
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Gary R Burleson
- Burleson Research Technologies, Inc., Morrisville, NC, United States
| | - Dori R Germolec
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| |
Collapse
|
4
|
Chauhan P, Bhardwaj N, Rajaura S, Chandra H, Singh A, Babu R, Gupta NJ. Benzo (A) pyrene exposure alters alveolar epithelial and macrophage cells diversity and induces antioxidant responses in lungs. Toxicol Rep 2024; 13:101777. [PMID: 39506978 PMCID: PMC11539143 DOI: 10.1016/j.toxrep.2024.101777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024] Open
Abstract
This study was designed to investigate the toxic effects of benzo (a) pyrene (BaP) in the lungs. Mice were repeatedly treated orally with BaP (50 mg/kg body weight, twice a week for four weeks) to induce a tumour. After 4 months of BaP administration, tumours were visible beneath the skin. The histopathological section of the lungs shows congestion of pulmonary blood vessels, alveolar hyperplasia, and concurrent epithelial hyperplasia with infiltrates of inflammatory cells also seen. Thereafter, a single-cell suspension of lung tissues was stained with fluorescently conjugated antibodies for the demarcation of alveolar epithelial (anti-mouse CD74 and podoplanin) and macrophage (F4/80 and CD11b) cells and measured by flow cytometry. The expression of antioxidant genes was assessed by qRT-PCR. The number of alveolar epithelial cells 1 (AEC1) increased, but the number of alveolar epithelial cells 2 (AEC2) and transitional alveolar epithelial cells (TAEC) was significantly decreased in tumour-bearing mice. The proportion of CD11b+ alveolar macrophages (AM) and interstitial macrophages (IM) was increased, but the proportion of F4/80+ AM cells was reduced. The BaP administration significantly increased the ROS production in alveolar cells. The relative expression levels of antioxidant genes (SOD1, catalase, GPX1, and HIF-1α) were increased, but NRF2 expression was decreased in BaP-treated alveolar cells. The expression of anti-inflammatory (NF-κB) was also significantly increased. In conclusion, BaP exposure induced an inflammatory response, altered alveolar epithelial cell and macrophage diversity, and increased antioxidant responses in the lungs.
Collapse
Affiliation(s)
- Pooja Chauhan
- Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand, India
| | - Nitin Bhardwaj
- Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand, India
| | - Sumit Rajaura
- Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand, India
| | - Harish Chandra
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand, India
| | - Ashutosh Singh
- Department of Biochemistry, Lucknow University, Lucknow, Uttar Pradesh, India
| | - Ram Babu
- Department of Botany, Kirori Mal College, New Delhi, India
| | - Neelu Jain Gupta
- Department of Zoology, CCS University Campus Meerut, Uttar Pradesh, India
| |
Collapse
|
5
|
Colbeth HL, Chen KT, Picciotto S, Costello S, Eisen EA. Exposure to Metalworking Fluids and Cancer Incidence in the United Auto Workers-General Motors Cohort. Am J Epidemiol 2023; 192:171-181. [PMID: 36305635 DOI: 10.1093/aje/kwac190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 08/04/2022] [Accepted: 10/20/2022] [Indexed: 02/07/2023] Open
Abstract
In previous studies, investigators have reported increased risks of specific cancers associated with exposure to metalworking fluids (MWFs). In this report we broadly examine the incidence of 14 types of cancer, with a focus on digestive, respiratory, and hormonal cancers, in the United Auto Workers-General Motors (UAW-GM) cohort, a cohort of workers exposed to MWFs (1973-2015). The cohort included 39,132 workers followed for cancer incidence. Cox models yielded estimates of adjusted hazard ratios, with categorical variables for lagged cumulative exposure to 3 types of MWF (straight, soluble, and synthetic). We fitted penalized splines to examine the shape of the exposure-response relationships. There were 7,809 incident cancer cases of interest. Oil-based straight and soluble MWFs were each modestly associated with all cancers combined. Exposure-response patterns were consistent with prior reports from this cohort, and results for splined exposures generally reflected their categorically modeled counterparts. We found significantly increased incidence of stomach and kidney cancer with higher levels of straight MWF exposure and increased rectal and prostate cancer with increasing water-based synthetic MWF exposure. Only non-Hodgkin lymphoma and prostate cancer were associated with soluble MWF. All results for colon and lung cancers were null. Our results provide updated evidence for associations between MWF exposure and incidence of several types of cancer.
Collapse
|
6
|
Yu YY, Jin H, Lu Q. Effect of polycyclic aromatic hydrocarbons on immunity. J Transl Autoimmun 2022; 5:100177. [PMID: 36561540 PMCID: PMC9763510 DOI: 10.1016/j.jtauto.2022.100177] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 09/06/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Nearly a quarter of the total number of deaths in the world are caused by unhealthy living or working environments. Therefore, we consider it significant to introduce the effect of a widely distributed component of air/water/food-source contaminants, polycyclic aromatic hydrocarbons (PAHs), on the human body, especially on immunity in this review. PAHs are a large class of organic compounds containing two or more benzene rings. PAH exposure could occur in most people through breath, smoke, food, and direct skin contact, resulting in both cellular immunosuppression and humoral immunosuppression. PAHs usually lead to the exacerbation of autoimmune diseases by regulating the balance of T helper cell 17 and regulatory T cells, and promoting type 2 immunity. However, the receptor of PAHs, aryl hydrocarbon receptor (AhR), appears to exhibit duality in the immune response, which seems to explain some seemingly opposite experimental results. In addition, PAH exposure was also able to exacerbate allergic reactions and regulate monocytes to a certain extent. The specific regulation mechanisms of immune system include the assistance of AhR, the activation of the CYP-ROS axis, the recruitment of intracellular calcium, and some epigenetic mechanisms. This review aims to summarize our current understanding on the impact of PAHs in the immune system and some related diseases such as cancer, autoimmune diseases (rheumatoid arthritis, type 1 diabetes, multiple sclerosis, and systemic lupus erythematosus), and allergic diseases (asthma and atopic dermatitis). Finally, we also propose future research directions for the prevention or treatment on environmental induced diseases.
Collapse
Affiliation(s)
- Yang-yiyi Yu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China,Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences (2019RU027), Changsha, China
| | - Hui Jin
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China,Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences (2019RU027), Changsha, China,Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China,Corresponding author. Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China,Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences (2019RU027), Changsha, China,Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China,Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu, 210042, China,Corresponding author. Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
7
|
Rider CV. Mixture Math: Deciding What to Add in a Cumulative Risk Assessment. CURRENT OPINION IN TOXICOLOGY 2022; 31:100358. [PMID: 35813121 PMCID: PMC9262140 DOI: 10.1016/j.cotox.2022.100358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Component-based approaches for cumulative risk assessment provide an important tool for informing public health policy. While current quantitative cumulative risk assessments focus narrowly on pesticides that share a mechanism of action, growing scientific evidence supports expansion of their application to encompass stressors that target a common disease. Case studies have demonstrated dose additive effects of chemicals with different mechanisms of action on liver steatosis, craniofacial malformations, and male reproductive tract developmental disruption. Evidence also suggests that nonchemical stressors such as noise or psychosocial stress can modify effects of chemicals. Focused research attention is required before nonchemical stressors can routinely be included in quantitative cumulative risk assessments.
Collapse
Affiliation(s)
- Cynthia V. Rider
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
8
|
Elsheikh AM, M Roshdy T, Hassan SA, A Hussein M, M Fayed A. Resveratrol: A Potential Protector Against Benzo[a]pyrene- Induced Lung Toxicity. Pak J Biol Sci 2022; 25:78-89. [PMID: 35001578 DOI: 10.3923/pjbs.2022.78.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
<b>Background and Objective:</b> Benzo[a]pyrene (B[a]P), a major component of lipophilic pollutants then can be translated to diffluent substances. The aim of t he present article was to investigate protective activity of resveratrol against lung toxicity induced by B[a]P. Material and Methods: Male Sprague-Dawley rats were randomly assigned to 6 groups (6 animals/group): 3 negative control groups, control positive, B[a]P (20 mg kg<sup></sup><sup>1</sup> b.wt., resveratrol (50 mg kg<sup></sup><sup>1</sup> b.wt.)-B[a]P and vitamin C (1 g kg<sup></sup><sup>1</sup> b.wt.)-B[a]P groups. <b>Results:</b> The daily oral administration of the resveratrol (50 mg kg<sup></sup><sup>1</sup> b.wt.) and vitamin C (1 g kg<sup></sup><sup>1</sup> b.wt.) for 30 days to rats treated with B[a]P (20 mg kg<sup></sup><sup>1</sup> b.wt.) resulted in a significant improve plasma cholesterol, triglyceride and HDL-C as well as serum TNF-α, TBARS, IL-2,IL-6, haptoglobin, histamine, IgA, Ig E,Ig G and Ig M in B[a]P treated rats. On the other hand oral administration of resveratrol elevated the SOD, GPx and GR gene expression in lung rats treated with B[a]P. Furthermore, resveratrol and vitamin C nearly normalized these effects in lung histoarchitecture. <b>Conclusion:</b> The obtained biochemical, molecular biology and histological results of this study proved the lung protective activity of resveratrol against B[a]P induced lung toxicity in rats.
Collapse
|
9
|
Hoang AQ, Suzuki G, Michinaka C, Tue NM, Tuyen LH, Tu MB, Takahashi S. Characterization of unsubstituted and methylated polycyclic aromatic hydrocarbons in settled dust: Combination of instrumental analysis and in vitro reporter gene assays and implications for cancer risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147821. [PMID: 34029822 DOI: 10.1016/j.scitotenv.2021.147821] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/19/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Concentrations of 34 unsubstituted and methylated polycyclic aromatic hydrocarbons (PAHs and Me-PAHs) and AhR-mediated activities in settled dust samples were determined by a combination of gas chromatography-mass spectrometry and an in vitro reporter gene assay (PAH-CALUX). The levels of Σ34PAHs and bioassay-derived benzo[a]pyrene equivalents (CALUX BaP-EQs) were significantly higher in workplace dust from informal end-of-life vehicle dismantling workshops than in common house dust and road dust. In all the samples, the theoretical BaP-EQs of PAHs (calculated using PAH-CALUX relative potencies) accounted for 28 ± 19% of the CALUX BaP-EQs, suggesting significant contribution of aryl hydrocarbon receptor (AhR) agonists and/or mixture effects. Interestingly, the bioassay-derived BaP-EQs in these samples were significantly correlated with not only unsubstituted PAHs with known carcinogenic potencies but also many Me-PAHs, which should be included in future monitoring and toxicity tests. The bioassay responses of many sample extracts were substantially reduced but not suppressed with sulfuric acid treatment, indicating contribution of persistent AhR agonists. Cancer risk assessment based on the CALUX BaP-EQs has revealed unacceptable level of risk in many cases. The application of bioassay-derived BaP-EQs may reduce underestimation in environmental management and risk evaluation regarding PAHs and their derivatives (notably Me-PAHs), suggesting a consideration of using in vitro toxic activity instead of conventional chemical-specific approach in such assessment practices.
Collapse
Affiliation(s)
- Anh Quoc Hoang
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan; Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi 11000, Viet Nam
| | - Go Suzuki
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan
| | - Chieko Michinaka
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan
| | - Nguyen Minh Tue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan; Centre for Environmental Technology and Sustainable Development (CETASD), University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi 11400, Viet Nam
| | - Le Huu Tuyen
- Centre for Environmental Technology and Sustainable Development (CETASD), University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi 11400, Viet Nam
| | - Minh Binh Tu
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi 11000, Viet Nam
| | - Shin Takahashi
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan.
| |
Collapse
|
10
|
Phelps DW, Fletcher AA, Rodriguez-Nunez I, Balik-Meisner MR, Tokarz DA, Reif DM, Germolec DR, Yoder JA. In vivo assessment of respiratory burst inhibition by xenobiotic exposure using larval zebrafish. J Immunotoxicol 2021; 17:94-104. [PMID: 32407153 DOI: 10.1080/1547691x.2020.1748772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Currently, assessment of the potential immunotoxicity of a given agent involves a tiered approach for hazard identification and mechanistic studies, including observational studies, evaluation of immune function, and measurement of susceptibility to infectious and neoplastic diseases. These studies generally use costly low-throughput mammalian models. Zebrafish, however, offer an excellent alternative due to their rapid development, ease of maintenance, and homology to mammalian immune system function and development. Larval zebrafish also are a convenient model to study the innate immune system with no interference from the adaptive immune system. In this study, a respiratory burst assay (RBA) was utilized to measure reactive oxygen species (ROS) production after developmental xenobiotic exposure. Embryos were exposed to non-teratogenic doses of chemicals and at 96 h post-fertilization, the ability to produce ROS was measured. Using the RBA, 12 compounds with varying immune-suppressive properties were screened. Seven compounds neither suppressed nor enhanced the respiratory burst; five reproducibly suppressed global ROS production, but with varying potencies: benzo[a]pyrene, 17β-estradiol, lead acetate, methoxychlor, and phenanthrene. These five compounds have all previously been reported as immunosuppressive in mammalian innate immunity assays. To evaluate whether the suppression of ROS by these compounds was a result of decreased immune cell numbers, flow cytometry with transgenic zebrafish larvae was used to count the numbers of neutrophils and macrophages after chemical exposure. With this assay, benzo[a]pyrene was found to be the only chemical that induced a change in the number of immune cells by increasing macrophage but not neutrophil numbers. Taken together, this work demonstrates the utility of zebrafish larvae as a vertebrate model for identifying compounds that impact innate immune function at non-teratogenic levels and validates measuring ROS production and phagocyte numbers as metrics for monitoring how xenobiotic exposure alters the innate immune system.
Collapse
Affiliation(s)
- Drake W Phelps
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Ashley A Fletcher
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Ivan Rodriguez-Nunez
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | | | - Debra A Tokarz
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.,Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - David M Reif
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.,Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.,Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Dori R Germolec
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.,Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
11
|
Li Z. An equivalency iterative algorithm for cancer risk assessment of chemical mixtures with additive effects. CHEMOSPHERE 2021; 263:128131. [PMID: 33297119 DOI: 10.1016/j.chemosphere.2020.128131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/04/2020] [Accepted: 08/24/2020] [Indexed: 06/12/2023]
Abstract
To better estimate cumulative cancer risks and avoid the overestimated risk from the linear extrapolation, an equivalency iterative algorithm associated with a carcinogenesis hypothesis was introduced for a mixture of chemicals with the same mode of action (MOA). A lognormal dose-response function was applied for carcinogenic chemicals. Under some circumstances, the repetitive random iterative algorithm could be transformed into the nonrepetitive one. It was also demonstrated that the equivalent value for a lognormal-based equivalency iterative algorithm with the same shape parameter was independent of the operation order. Based on the theorems of the algorithm and Plackett and Hewlett's minimum effective dose assumption, the sum of toxicity-weighted dose for a mixture of chemicals was mathematically derived. Compared to the estimation of risk by the linear extrapolation method (e.g., cancer slope factors), the equivalency iterative algorithm for lognormal functions can avoid overestimated risk significantly, which can help better estimate the cumulative cancer risk for a mixture of chemicals with the same MOA.
Collapse
Affiliation(s)
- Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, 510275, China.
| |
Collapse
|
12
|
Hsieh JH, Sedykh A, Mutlu E, Germolec DR, Auerbach SS, Rider CV. Harnessing In Silico, In Vitro, and In Vivo Data to Understand the Toxicity Landscape of Polycyclic Aromatic Compounds (PACs). Chem Res Toxicol 2020; 34:268-285. [PMID: 33063992 DOI: 10.1021/acs.chemrestox.0c00213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Polycyclic aromatic compounds (PACs) are compounds with a minimum of two six-atom aromatic fused rings. PACs arise from incomplete combustion or thermal decomposition of organic matter and are ubiquitous in the environment. Within PACs, carcinogenicity is generally regarded to be the most important public health concern. However, toxicity in other systems (reproductive and developmental toxicity, immunotoxicity) has also been reported. Despite the large number of PACs identified in the environment, research attention to understand exposure and health effects of PACs has focused on a relatively limited subset, namely polycyclic aromatic hydrocarbons (PAHs), the PACs with only carbon and hydrogen atoms. To triage the rest of the vast number of PACs for more resource-intensive testing, we developed a data-driven approach to contextualize hazard characterization of PACs, by leveraging the available data from various data streams (in silico toxicity, in vitro activity, structural fingerprints, and in vivo data availability). The PACs were clustered on the basis of their in silico toxicity profiles containing predictions from 8 different categories (carcinogenicity, cardiotoxicity, developmental toxicity, genotoxicity, hepatotoxicity, neurotoxicity, reproductive toxicity, and urinary toxicity). We found that PACs with the same parent structure (e.g., fluorene) could have diverse in silico toxicity profiles. In contrast, PACs with similar substituted groups (e.g., alkylated-PAHs) or heterocyclics (e.g., N-PACs) with varying ring sizes could have similar in silico toxicity profiles, suggesting that these groups are better candidates for toxicity read-across analysis. The clusters/regions associated with certain in silico toxicity, in vitro activity, and structural fingerprints were identified. We found that genotoxicity/carcinogenicity (in silico toxicity) and xenobiotic homeostasis and stress response (in vitro activity), respectively, dominate the toxicity/activity variation seen in the PACs. The "hot spots" with enriched toxicity/activity in conjunction with availability of in vivo carcinogenicity data revealed regions of either data-poor (hydroxylated-PAHs) or data-rich (unsubstituted, parent PAHs) PACs. These regions offer potential targets for prioritization of further in vivo assessment and for chemical read-across efforts. The analysis results are searchable through an interactive web application (https://ntp.niehs.nih.gov/go/pacs_tableau), allowing for alternative hypothesis generation.
Collapse
Affiliation(s)
- Jui-Hua Hsieh
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina 27709, United States
| | | | - Esra Mutlu
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina 27709, United States
| | - Dori R Germolec
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina 27709, United States
| | - Scott S Auerbach
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina 27709, United States
| | - Cynthia V Rider
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina 27709, United States
| |
Collapse
|
13
|
He C, Shen M, Morita K, Wang D, Kanazawa T, Yoshida Y. Nuclear factor of activated T cells as a marker of in vivo low‐dose dibenzo[
a
,
h
]anthracene exposure. J Appl Toxicol 2020; 40:1239-1247. [DOI: 10.1002/jat.3981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 01/25/2023]
Affiliation(s)
- Cuiying He
- Department of Immunology and Parasitology, School of MedicineUniversity of Occupational and Environmental Health Kitakyushu Japan
- Department of Hematologythe Fourth Hospital of Hebei Medical University Shijiazhuang China
| | - Mengyue Shen
- Department of Immunology and Parasitology, School of MedicineUniversity of Occupational and Environmental Health Kitakyushu Japan
| | - Kentaro Morita
- Department of Immunology and Parasitology, School of MedicineUniversity of Occupational and Environmental Health Kitakyushu Japan
| | - Duo Wang
- Department of Immunology and Parasitology, School of MedicineUniversity of Occupational and Environmental Health Kitakyushu Japan
| | - Tamotsu Kanazawa
- Department of Immunology and Parasitology, School of MedicineUniversity of Occupational and Environmental Health Kitakyushu Japan
| | - Yasuhiro Yoshida
- Department of Immunology and Parasitology, School of MedicineUniversity of Occupational and Environmental Health Kitakyushu Japan
| |
Collapse
|
14
|
Petit P, Maître A, Persoons R, Bicout DJ. Lung cancer risk assessment for workers exposed to polycyclic aromatic hydrocarbons in various industries. ENVIRONMENT INTERNATIONAL 2019; 124:109-120. [PMID: 30641254 DOI: 10.1016/j.envint.2018.12.058] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/14/2018] [Accepted: 12/28/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Millions of workers are exposed to carcinogenic polycyclic aromatic hydrocarbon (PAH) mixtures. The toxicity of PAH mixtures is variable and depends on the composition of the mixture, which is related to the emission sources. Although several indicators exist, the cancer risk estimation associated with occupational exposure to PAHs is poorly known. OBJECTIVES To assess the risk of lung cancer associated with PAHs in several industries using the atmospheric concentrations of benzo[a]pyrene (BaP) as a proxy. METHODS A total of 93 exposure groups belonging to 9 industries were investigated. Eight indicators found in the literature were compared to assess risks. A consensual indicator was used to estimate lung cancer risks. RESULTS Approximately 30% of the exposure groups were above the maximal risk level of the European Union (10-4). The risk probabilities were >10-3 for coke and silicon production; >10-4 for the manufacturing of carbon products and aluminum production; >10-5 for foundries and combustion processes; >10-6 for the use of lubricating oils and engine exhaust emissions; and >10-7 for bitumen. The risk probabilities were highly variable within industries (from 1 to 1000 likelihood). A total of 27 (95% CI: 0.1-54) contemporary additional lung cancer cases could be expected per year in the French exposed population based on estimations using published data. CONCLUSION This study provides an overview of cancer risk estimation in many industries. Despite efforts and changes that had been made to decrease risks, PAHs remain a sanitary threat for people exposed to these pollutants in occupational environments.
Collapse
Affiliation(s)
- Pascal Petit
- Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, EPSP team (Environment and Health Prediction of Populations), 38000 Grenoble, France.
| | - Anne Maître
- Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, EPSP team (Environment and Health Prediction of Populations), 38000 Grenoble, France; Grenoble Alpes teaching Hospital, CHUGA, Occupational and Environmental Toxicology Laboratory, Biochemistry Toxicology and Pharmacology Department, Biology and Pathology Institute, F-38000 Grenoble, France
| | - Renaud Persoons
- Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, EPSP team (Environment and Health Prediction of Populations), 38000 Grenoble, France; Grenoble Alpes teaching Hospital, CHUGA, Occupational and Environmental Toxicology Laboratory, Biochemistry Toxicology and Pharmacology Department, Biology and Pathology Institute, F-38000 Grenoble, France
| | - Dominique J Bicout
- Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, EPSP team (Environment and Health Prediction of Populations), 38000 Grenoble, France; VetAgro Sup, Biomathematics and Epidemiology Unit, Veterinary Campus of Lyon, F-69280 Marcy l'Etoile, France
| |
Collapse
|
15
|
De Guise S, Levin M, Gebhard E, Jasperse L, Burdett Hart L, Smith CR, Venn-Watson S, Townsend F, Wells R, Balmer B, Zolman E, Rowles T, Schwacke L. Changes in immune functions in bottlenose dolphins in the northern Gulf of Mexico associated with the Deepwater Horizon oil spill. ENDANGER SPECIES RES 2017. [DOI: 10.3354/esr00814] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
16
|
Hardonnière K, Huc L, Sergent O, Holme JA, Lagadic-Gossmann D. Environmental carcinogenesis and pH homeostasis: Not only a matter of dysregulated metabolism. Semin Cancer Biol 2017; 43:49-65. [PMID: 28088583 DOI: 10.1016/j.semcancer.2017.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 12/18/2022]
Abstract
According to the World Health Organization, around 20% of all cancers would be due to environmental factors. Among these factors, several chemicals are indeed well recognized carcinogens. The widespread contaminant benzo[a]pyrene (B[a]P), an often used model carcinogen of the polycyclic aromatic hydrocarbons' family, has been suggested to target most, if not all, cancer hallmarks described by Hanahan and Weinberg. It is classified as a group I carcinogen by the International Agency for Research on Cancer; however, the precise intracellular mechanisms underlying its carcinogenic properties remain yet to be thoroughly defined. Recently, the pH homeostasis, a well known regulator of carcinogenic processes, was suggested to be a key actor in both cell death and Warburg-like metabolic reprogramming induced upon B[a]P exposure. The present review will highlight those data with the aim of favoring research on the role of H+ dynamics in environmental carcinogenesis.
Collapse
Affiliation(s)
- Kévin Hardonnière
- Institut national de la santé et de la recherche médicale (Inserm), Institut de recherche en santé, environnement et travail (Irset - Inserm UMR 1085), F-35043 Rennes, France; Université de Rennes 1, Structure fédérative de recherche Biosit, UMS CNRS 3480/US Inserm 018, F 35043 Rennes, France
| | - Laurence Huc
- INRA UMR 1331 ToxAlim (Research Center in Food Toxicology), University of Toulouse ENVT, INP, UPS, 180 Chemin de Tournefeuille, F-31027, France
| | - Odile Sergent
- Institut national de la santé et de la recherche médicale (Inserm), Institut de recherche en santé, environnement et travail (Irset - Inserm UMR 1085), F-35043 Rennes, France; Université de Rennes 1, Structure fédérative de recherche Biosit, UMS CNRS 3480/US Inserm 018, F 35043 Rennes, France
| | - Jørn A Holme
- Domain of Infection Control, Environment and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Dominique Lagadic-Gossmann
- Institut national de la santé et de la recherche médicale (Inserm), Institut de recherche en santé, environnement et travail (Irset - Inserm UMR 1085), F-35043 Rennes, France; Université de Rennes 1, Structure fédérative de recherche Biosit, UMS CNRS 3480/US Inserm 018, F 35043 Rennes, France.
| |
Collapse
|
17
|
Wang GZ, Cheng X, Zhou B, Wen ZS, Huang YC, Chen HB, Li GF, Huang ZL, Zhou YC, Feng L, Wei MM, Qu LW, Cao Y, Zhou GB. The chemokine CXCL13 in lung cancers associated with environmental polycyclic aromatic hydrocarbons pollution. eLife 2015; 4:e09419. [PMID: 26565418 PMCID: PMC4764582 DOI: 10.7554/elife.09419] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 11/04/2015] [Indexed: 12/16/2022] Open
Abstract
More than 90% of lung cancers are caused by cigarette smoke and air pollution, with polycyclic aromatic hydrocarbons (PAHs) as key carcinogens. In Xuanwei City of Yunnan Province, the lung cancer incidence is among the highest in China, attributed to smoky coal combustion-generated PAH pollution. Here, we screened for abnormal inflammatory factors in non-small cell lung cancers (NSCLCs) from Xuanwei and control regions (CR) where smoky coal was not used, and found that a chemokine CXCL13 was overexpressed in 63/70 (90%) of Xuanwei NSCLCs and 44/71 (62%) of smoker and 27/60 (45%) of non-smoker CR patients. CXCL13 overexpression was associated with the region Xuanwei and cigarette smoke. The key carcinogen benzo(a)pyrene (BaP) induced CXCL13 production in lung epithelial cells and in mice prior to development of detectable lung cancer. Deficiency in Cxcl13 or its receptor, Cxcr5, significantly attenuated BaP-induced lung cancer in mice, demonstrating CXCL13's critical role in PAH-induced lung carcinogenesis.
Collapse
Affiliation(s)
- Gui-Zhen Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xin Cheng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bo Zhou
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhe-Sheng Wen
- Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yun-Chao Huang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hao-Bin Chen
- Department of Pathology, The First People’s Hospital of Qu Jing City, Qu Jing, China
| | - Gao-Feng Li
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhi-Liang Huang
- Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yong-Chun Zhou
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lin Feng
- Department of Pathology, Chinese PLA General Hospital, Beijing, China
| | - Ming-Ming Wei
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Li-Wei Qu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yi Cao
- Laboratory of Molecular and Experimental Pathology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Guang-Biao Zhou
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Bourdon-Lacombe JA, Moffat ID, Deveau M, Husain M, Auerbach S, Krewski D, Thomas RS, Bushel PR, Williams A, Yauk CL. Technical guide for applications of gene expression profiling in human health risk assessment of environmental chemicals. Regul Toxicol Pharmacol 2015; 72:292-309. [PMID: 25944780 DOI: 10.1016/j.yrtph.2015.04.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 04/10/2015] [Accepted: 04/13/2015] [Indexed: 01/14/2023]
Abstract
Toxicogenomics promises to be an important part of future human health risk assessment of environmental chemicals. The application of gene expression profiles (e.g., for hazard identification, chemical prioritization, chemical grouping, mode of action discovery, and quantitative analysis of response) is growing in the literature, but their use in formal risk assessment by regulatory agencies is relatively infrequent. Although additional validations for specific applications are required, gene expression data can be of immediate use for increasing confidence in chemical evaluations. We believe that a primary reason for the current lack of integration is the limited practical guidance available for risk assessment specialists with limited experience in genomics. The present manuscript provides basic information on gene expression profiling, along with guidance on evaluating the quality of genomic experiments and data, and interpretation of results presented in the form of heat maps, pathway analyses and other common approaches. Moreover, potential ways to integrate information from gene expression experiments into current risk assessment are presented using published studies as examples. The primary objective of this work is to facilitate integration of gene expression data into human health risk assessments of environmental chemicals.
Collapse
Affiliation(s)
| | - Ivy D Moffat
- Water and Air Quality Bureau, Health Canada, Ottawa, ON, Canada.
| | - Michelle Deveau
- Water and Air Quality Bureau, Health Canada, Ottawa, ON, Canada
| | - Mainul Husain
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Scott Auerbach
- Biomolecular Screening Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Daniel Krewski
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, ON, Canada
| | - Russell S Thomas
- National Centre for Computational Toxicology, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Pierre R Bushel
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| |
Collapse
|
19
|
Kemmerling J, Fehlert E, Kuper CF, Rühl-Fehlert C, Stropp G, Vogels J, Krul C, Vohr HW. The transferability from rat subacute 4-week oral toxicity study to translational research exemplified by two pharmaceutical immunosuppressants and two environmental pollutants with immunomodulating properties. Eur J Pharmacol 2015; 759:326-42. [PMID: 25823813 DOI: 10.1016/j.ejphar.2015.03.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/05/2015] [Accepted: 03/12/2015] [Indexed: 01/29/2023]
Abstract
Exposure to chemicals may have an influence on the immune system. Often, this is an unwanted effect but in some pharmaceuticals, it is the intended mechanism of action. Immune function tests and in depth histopathological investigations of immune organs were integrated in rodent toxicity studies performed according to an extended OECD test guideline 407 protocol. Exemplified by two immunosuppressive drugs, azathioprine and cyclosporine A, and two environmental chemicals, hexachlorobenzene and benzo[a]pyrene, results of subacute rat studies were compared to knowledge in other species particular in humans. Although immune function has a high concordance in mammalian species, regarding the transferability from rodents to humans various factors have to be taken into account. In rats, sensitivity seems to depend on factors such as strain, sex, stress levels as well as metabolism. The two immunosuppressive drugs showed a high similarity of effects in animals and humans as the immune system was the most sensitive target in both. Hexachlorobenzene gave an inconsistent pattern of effects when considering the immune system of different species. In some species pronounced inflammation was observed, whereas in primates liver toxicity seemed more obvious. Generally, the immune system was not the most sensitive target in hexachlorobenzene-treatment. Immune function tests in rats gave evidence of a reaction to systemic inflammation rather than a direct impact on immune cells. Data from humans are likewise equivocal. In the case of benzo[a]pyrene, the immune system was the most sensitive target in rats. In the in vitro plaque forming cell assay (Mishell-Dutton culture) a direct comparison of cells from different species including rat and human was possible and showed similar reactions. The doses in the rat study had, however, no realistic relation to human exposure, which occurs exclusively in mixtures and in a much lower range. In summary, a case by case approach is necessary when testing immunotoxicity. Improvements for the translation from animals to humans related to immune cells can be expected from in vitro tests which offer direct comparison with reactions of human immune cells. This may lead to a better understanding of results and variations seen in animal studies.
Collapse
Affiliation(s)
- Jessica Kemmerling
- Bayer Pharma AG, GDD-GED-TOX-IT-Immunotoxicology, Aprather Weg, 42096 Wuppertal, Germany.
| | - Ellen Fehlert
- Department of Medicine IV, Eberhard-Karls University, Otfried-Müller Street 10, 72076 Tübingen, Germany
| | - C Frieke Kuper
- TNO Innovation for Life, PO Box 360, 3700 AJ Zeist, The Netherlands
| | | | - Gisela Stropp
- Bayer Pharma AG, GDD-GED-Product Stewardship Industrial Chemicals, Aprather Weg, 42096 Wuppertal, Germany
| | - Jack Vogels
- TNO Innovation for Life, PO Box 360, 3700 AJ Zeist, The Netherlands
| | - Cyrille Krul
- TNO Innovation for Life, PO Box 360, 3700 AJ Zeist, The Netherlands
| | - Hans-Werner Vohr
- Bayer Pharma AG, GDD-GED-TOX-IT-Immunotoxicology, Aprather Weg, 42096 Wuppertal, Germany
| |
Collapse
|
20
|
Dasgupta S, Cao A, Mauer B, Yan B, Uno S, McElroy A. Genotoxicity of oxy-PAHs to Japanese medaka (Oryzias latipes) embryos assessed using the comet assay. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:13867-13876. [PMID: 24510601 DOI: 10.1007/s11356-014-2586-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/21/2014] [Indexed: 06/03/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have long been recognized as important environmental toxicants. Despite a plethora of information on the fate and effects of parent PAHs, relatively little is known about the environmental fate and toxicity of ketone- and quinone-substituted PAH oxidation products (termed oxy-PAHs), particularly in the aquatic environment. This study begins to fill that gap using embryos of the Japanese medaka (Oryzias latipes) as a model species. The genotoxic potential of two environmentally relevant oxy-PAHs, acenaphthenequinone and 7,12-benz[a]anthracenquinone, was assessed using the comet assay. We found that both oxy-PAHs could cause significant increases in DNA damage after only 48 h of exposure at the lowest concentrations tested (5 μg/L). Comparisons of the genotoxic potential between these oxy-PAHs and their corresponding parent PAHs (acenaphthene and benz[a]anthracene) and a well-known mutagenic PAH, benzo[a]pyrene, indicated similar potencies among all five of these compounds, particularly after longer (7 day) exposures. This study demonstrates the mutagenic potential of oxy-PAHs to an in vivo fish embryo model and points out the need for further study of their environmental occurrence and biologic effects.
Collapse
Affiliation(s)
- Subham Dasgupta
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-5000, USA
| | | | | | | | | | | |
Collapse
|