1
|
Zieman EA, Phillips VC, Jiménez FA, Nielsen CK. CLINICAL AND SUBCLINICAL CYTAUXZOON FELIS INFECTIONS IN DOMESTIC CATS FROM A RECENTLY IDENTIFIED ENDEMIC REGION. J Parasitol 2023; 109:525-529. [PMID: 37861238 DOI: 10.1645/23-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
Cytauxzoon felis is a tick-transmitted intraerythrocytic apicomplexan infecting felids in the southeastern and midwestern United States. Bobcats (Lynx rufus) are the natural wildlife reservoir of C. felis, where in enzootic areas prevalence can reach 100%. Domestic cats can be subclinically infected with C. felis or can develop cytauxzoonosis. Two studies have documented the presence of C. felis in domestic cats in Illinois; these studies have shown a limited number of cases submitted to specialty labs. During 2014-2018, we obtained blood samples collected by veterinary staff from 514 cats that were apparently healthy and 74 cats that were suspected of cytauxzoonosis. These samples were screened using a sensitive, nested PCR to detect the presence of C. felis DNA. We herein document frequent occurrences of cytauxzoonosis (8-15 cases/year from 4 veterinary clinics) and 12.5% prevalence of subclinical infections in southern Illinois, a locality showing a sharp increase in cases of cytauxzoonosis. Our results suggest a high risk of cytauxzoonosis in southern Illinois, despite only recently being recognized in the area. We found no specific risk factors for cytauxzoonosis or subclinical infections in this location. In addition, cases of cytauxzoonosis occur every month of the year (with the highest frequency in summer) and therefore tick prevention should be used in domestic cats in enzootic regions throughout the year.
Collapse
Affiliation(s)
- Elliott A Zieman
- Department of Biological Sciences, Eastern Illinois University, 600 Lincoln Ave., Charleston, Illinois 61920
| | - Victoria C Phillips
- School of Biological Sciences, Zoology, Southern Illinois University Carbondale, 1125 Lincoln Dr., Carbondale, Illinois 62901-6501
| | - F Agustín Jiménez
- School of Biological Sciences, Zoology, Southern Illinois University Carbondale, 1125 Lincoln Dr., Carbondale, Illinois 62901-6501
| | - Clayton K Nielsen
- Cooperative Wildlife Research Laboratory and Forestry Program, Southern Illinois University Carbondale, 1205 Lincoln Dr., Carbondale, Illinois 62901
| |
Collapse
|
2
|
Cytauxzoon felis: An Overview. Pathogens 2023; 12:pathogens12010133. [PMID: 36678481 PMCID: PMC9860807 DOI: 10.3390/pathogens12010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Cytauxzoon felis is a tick-transmitted, obligate, hemoprotozoal, piroplasmid pathogen of felids and the causative agent of cytauxzoonosis. It has a complex life cycle which includes a tick as its definitive host and a felid as its intermediate host. Since its first description in 1976, C. felis infections of felids have been reported in several southeastern and south-central U.S. states, overlapping with the ranges of its two known biological vectors, Amblyomma americanum (Lone star tick) and Dermacentor variabilis (American dog tick). Infected felids demonstrate disease as either an acute, often-fatal, infection, or a subclinical carrier infection. To develop effective C. felis transmission control strategies, the incidence of acute cytauxzoonosis, patient risk factors, the role of domestic cat carriers, and ecological variabilities need to be investigated further. Of equal importance is communicating these strategies for high-risk cat populations, including recommending year-round use of an acaricide product for all cats that spend any time outdoors. More studies are needed to further identify factors affecting C. felis and other Cytauxzoon spp. infection, transmission, disease progression, and treatment options and outcomes within the U.S. and globally. Here we provide an overview of C. felis highlighting its lifecycle within its definitive host, transmission to its intermediate host, symptoms and signs providing evidence of transmission, definitive diagnosis, current treatment and prevention strategies, and future considerations regarding this condition.
Collapse
|
3
|
Cohn LA. Cytauxzoonosis. Vet Clin North Am Small Anim Pract 2022; 52:1211-1224. [DOI: 10.1016/j.cvsm.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Yang TS, Reichard MV, Marr HS, Cohn LA, Nafe L, Whitehurst N, Birkenheuer AJ. Direct injection of Amblyomma americanum ticks with Cytauxzoon felis. Ticks Tick Borne Dis 2022; 13:101847. [PMID: 34673404 PMCID: PMC10658644 DOI: 10.1016/j.ttbdis.2021.101847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/02/2021] [Accepted: 10/03/2021] [Indexed: 10/20/2022]
Abstract
Cytauxzoon felis is a tick-borne hemoprotozoan parasite that causes life-threatening disease in domestic cats in the United States. Currently, the platforms for C. felis research are limited to natural or experimental infection of domestic cats. This study aims to develop an alternative model by infecting Amblyomma americanum ticks with C. felis via direct injection. Amblyomma americanum adults were injected with C. felis-infected feline erythrocytes through two routes: directly into the digestive tract through the anal pore (IA injection), or percutaneously into the tick hemocoel (IH injection). RNAscope® in situ hybridization (ISH) was used to visualize the parasites within the ticks at different time points after injection. Four months after injection, ticks were divided into 3 infestation groups based on injection methods and inoculum type and fed on 3 naïve cats to assess the ticks' ability to transmit C. felis. Prior to the transmission challenge, selected ticks from each infestation group were tested for C. felis RNA via reverse transcription-PCR (RT-PCR). In both IA- and IH-injected ticks, ISH signals were observed in ticks up to 3 weeks after injection. The number of hybridization signals notably decreased over time, and no signals were detected by 4 months after injection. Prior to the transmission challenge, 37-57% of the sampled ticks were positive for C. felis RNA via RT-PCR. While the majority of injected ticks successfully attached and fed to repletion on all 3 cats during the transmission challenge, none of the cats became infected with C. felis. These results suggest that injected C. felis remained alive in ticks but was unable to progress to infective sporozoites after injection. It is unclear why this infection technique had been successful for other closely related tick-borne hemoprotozoa and not for C. felis. This outcome may be associated with uncharacterized differences in the C. felis life cycle, the lack of the feeding or molting in our model or absence of gametocytes in the inoculum. Nonetheless, our study demonstrated the potential of using ticks as an alternative model to study C. felis. Future improvement of a tick model for C. felis should consider other tick species for the injection model or utilize infection methods that more closely emulate the natural infection process.
Collapse
Affiliation(s)
- Tzushan S Yang
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Mason V Reichard
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Henry S Marr
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Leah A Cohn
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, MO 65211, USA
| | - Laura Nafe
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, MO 65211, USA
| | - Nathan Whitehurst
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Adam J Birkenheuer
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA.
| |
Collapse
|
5
|
Reichard MV, Sanders TL, Weerarathne P, Meinkoth JH, Miller CA, Scimeca RC, Almazán C. Cytauxzoonosis in North America. Pathogens 2021; 10:pathogens10091170. [PMID: 34578202 PMCID: PMC8469551 DOI: 10.3390/pathogens10091170] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 11/25/2022] Open
Abstract
Cytauxzoonosis is an emerging tick-borne disease of domestic and wild felids produced by infection of Cytauxzoon felis, an apicomplexan protozoan similar to Theileria spp. Transmitted by Amblyomma americanum, lone star tick, and Dermacentor variabilis, American dog tick, infection of C. felis in cats is severe, characterized by depression, lethargy, fever, hemolytic crisis, icterus, and possibly death. Cytauxzoonosis occurs mainly in the southern, south-central, and mid-Atlantic United States in North America, in close association with the distribution and activity of tick vectors. Infection of C. felis, although severe, is no longer considered uniformly fatal, and unless moribund, every attempt to treat cytauxzoonosis cats should be made. Herein we review cytauxzoonosis, including its etiology, affected species, its life cycle and pathogenesis, clinical signs, diagnosis, and epidemiology, emphasizing clinical pathology findings in cats infected with this important emerging tick-borne disease in North and South America.
Collapse
Affiliation(s)
- Mason V. Reichard
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (T.L.S.); (P.W.); (J.H.M.); (C.A.M.); (R.C.S.)
- Correspondence: (M.V.R.); (C.A.)
| | - Tiana L. Sanders
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (T.L.S.); (P.W.); (J.H.M.); (C.A.M.); (R.C.S.)
| | - Pabasara Weerarathne
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (T.L.S.); (P.W.); (J.H.M.); (C.A.M.); (R.C.S.)
| | - James H. Meinkoth
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (T.L.S.); (P.W.); (J.H.M.); (C.A.M.); (R.C.S.)
| | - Craig A. Miller
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (T.L.S.); (P.W.); (J.H.M.); (C.A.M.); (R.C.S.)
| | - Ruth C. Scimeca
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (T.L.S.); (P.W.); (J.H.M.); (C.A.M.); (R.C.S.)
| | - Consuelo Almazán
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Avenida de las Ciencias S/N, Juriquilla, Querétaro 76230, Mexico
- Correspondence: (M.V.R.); (C.A.)
| |
Collapse
|
6
|
Winzelberg Olson S, Hohenhaus AE. Feline non-regenerative anemia: Diagnostic and treatment recommendations. J Feline Med Surg 2019; 21:615-631. [PMID: 31234748 PMCID: PMC10814193 DOI: 10.1177/1098612x19856178] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PRACTICAL RELEVANCE Non-regenerative anemia, or anemia with reticulocytopenia, is a daily diagnosis in feline practice. CLINICAL CHALLENGES The disease processes underlying non-regenerative anemia are many and diverse. A major diagnostic evaluation may be required to correctly diagnose and treat the underlying cause. AUDIENCE All veterinarians caring for cats will face the diagnostic and therapeutic challenge of non-regenerative anemia. Readers will benefit from the review of diagnostic testing and therapeutic options for non-regenerative anemia. EVIDENCE BASE This review summarizes the currently available literature informing diagnostic and treatment recommendations related to non-regenerative anemia. The evidence available to support the recommendations in this review is graded as low and includes predominantly expert opinion, case reports and cases series, on which the authors' interpretation/consensus is based.
Collapse
Affiliation(s)
- Sarah Winzelberg Olson
- DVM, Diplomate ACVIM (Oncology and Small Animal Internal Medicine) Animal Medical Center, New York, NY, USA
| | - Ann E Hohenhaus
- DVM, Diplomate ACVIM (Oncology and Small Animal Internal Medicine) Animal Medical Center, New York, NY, USA
| |
Collapse
|
7
|
Tarigo JL, Kelly LS, Brown HM, Peterson DS. Limited genetic variability of Cytauxzoon felis apical membrane antigen-1 (ama1) from domestic cats and bobcats. Parasit Vectors 2019; 12:115. [PMID: 30890166 PMCID: PMC6423858 DOI: 10.1186/s13071-019-3347-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/26/2019] [Indexed: 11/10/2022] Open
Abstract
Background Cytauxzoon felis is a tick-transmitted apicomplexan that causes cytauxzoonosis in domestic cats (Felis catus). Even with intensive care, the mortality rate of acute cytauxzoonosis approaches 40% in domestic cats, while bobcats (Lynx rufus), the natural intermediate host of C. felis, remain clinically asymptomatic. However, multiple reports of domestic cats surviving acute disease without any treatment exist. One hypothesis for survival of these cats is infection with unique C. felis genotypes of lower pathogenicity. Prior studies have identified genetically distinct C. felis isolates containing polymorphisms within internal transcribed spacer regions (ITS) of the rRNA operon. However, these polymorphisms do not correlate with the clinical outcome of cytauxzoonosis, and so additional genetic markers are needed to test this hypothesis. We selected C. felis apical membrane antigen-1 (ama1) as a potential genetic marker of differential pathogenicity. AMA1 is a vaccine candidate for relatives of C. felis within Plasmodium spp.; however its historically high level of genetic polymorphism has resulted in escape from vaccine-induced immunity. While such diversity has hindered vaccine development, the expected polymorphism within the ama1 gene may be useful to evaluate population genetics. Results A 677 bp sequence of the C. felis ama1 gene was PCR-amplified from 84 domestic cats and 9 bobcats and demonstrated 99.9% sequence identity across all samples. A single nucleotide polymorphism (SNP) was identified in domestic cats and bobcats with evidence for co-infection with both genotypes identified in two domestic cats. The prevalence of the two genotypes varied with geographical distribution in domestic cats. Nucleotide diversity (π) and haplotype diversity (H) were calculated for C. felis ama1 and ama1 of related apicomplexans to assess genetic diversity. Based on these values (π = 0.00067 and H = 0.457), the diversity of the C. felis ama1 gene region analyzed is considerably lower than what is documented in related apicomplexans. Conclusions In surprising contrast to related apicomplexans, our results support that the sequence of the C. felis ama1 gene is highly conserved. While lack of genetic diversity limits utility of C. felis AMA1 as a genetic marker for clinical outcome, it supports further investigation as a vaccine candidate for cytauxzoonosis.
Collapse
Affiliation(s)
- Jaime L Tarigo
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Lisa S Kelly
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | | | - David S Peterson
- Department of Infectious Diseases, Center for Tropical and Emerging Global Diseases University of Georgia, Athens, GA, USA.
| |
Collapse
|
8
|
Schreeg ME, Marr HS, Tarigo JL, Sherrill MK, Outi HK, Scholl EH, Bird DM, Vigil A, Hung C, Nakajima R, Liang L, Trieu A, Doolan DL, Thomas JE, Levy MG, Reichard MV, Felgner PL, Cohn LA, Birkenheuer AJ. Identification of Cytauxzoon felis antigens via protein microarray and assessment of expression library immunization against cytauxzoonosis. Clin Proteomics 2018; 15:44. [PMID: 30618510 PMCID: PMC6310948 DOI: 10.1186/s12014-018-9218-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/14/2018] [Indexed: 01/17/2023] Open
Abstract
Background Cytauxzoonosis is a disease of felids in North America caused by the tick-transmitted apicomplexan parasite Cytauxzoon felis. Cytauxzoonosis is particularly virulent for domestic cats, but no vaccine currently exists. The parasite cannot be cultivated in vitro, presenting a significant limitation for vaccine development. Methods Recent sequencing of the C. felis genome has identified over 4300 putative protein-encoding genes. From this pool we constructed a protein microarray containing 673 putative C. felis proteins. This microarray was probed with sera from C. felis-infected and naïve cats to identify differentially reactive antigens which were incorporated into two expression library vaccines, one polyvalent and one monovalent. We assessed the efficacy of these vaccines to prevent of infection and/or disease in a tick-challenge model. Results Probing of the protein microarray resulted in identification of 30 differentially reactive C. felis antigens that were incorporated into the two expression library vaccines. However, expression library immunization failed to prevent infection or disease in cats challenged with C. felis. Conclusions Protein microarray facilitated high-throughput identification of novel antigens, substantially increasing the pool of characterized C. felis antigens. These antigens should be considered for development of C. felis vaccines, diagnostics, and therapeutics. Electronic supplementary material The online version of this article (10.1186/s12014-018-9218-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Megan E Schreeg
- 1College of Veterinary Medicine, North Carolina State University, Research Building Room 464, 1060 William Moore Drive, Raleigh, NC 27607 USA
| | - Henry S Marr
- 1College of Veterinary Medicine, North Carolina State University, Research Building Room 464, 1060 William Moore Drive, Raleigh, NC 27607 USA
| | - Jaime L Tarigo
- 1College of Veterinary Medicine, North Carolina State University, Research Building Room 464, 1060 William Moore Drive, Raleigh, NC 27607 USA.,2College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA 30602 USA
| | - Meredith K Sherrill
- 3College of Veterinary Medicine, University of Missouri, 1600 East Rollins, Columbia, MO 65211 USA
| | - Hilton K Outi
- 3College of Veterinary Medicine, University of Missouri, 1600 East Rollins, Columbia, MO 65211 USA
| | - Elizabeth H Scholl
- 4College of Agriculture and Life Sciences, North Carolina State University, 2501 Founders Dr, Raleigh, NC 27607 USA
| | - David M Bird
- 4College of Agriculture and Life Sciences, North Carolina State University, 2501 Founders Dr, Raleigh, NC 27607 USA
| | - Adam Vigil
- 5School of Medicine, University of California Irvine, 1001 Health Sciences Rd, Irvine, CA 92617 USA
| | - Chris Hung
- 5School of Medicine, University of California Irvine, 1001 Health Sciences Rd, Irvine, CA 92617 USA
| | - Rie Nakajima
- 5School of Medicine, University of California Irvine, 1001 Health Sciences Rd, Irvine, CA 92617 USA
| | - Li Liang
- 5School of Medicine, University of California Irvine, 1001 Health Sciences Rd, Irvine, CA 92617 USA
| | - Angela Trieu
- 6QIMR Berghofer Medical Research Institute, 300 Herston Rd, Brisbane City, QLD 4006 Australia
| | - Denise L Doolan
- 6QIMR Berghofer Medical Research Institute, 300 Herston Rd, Brisbane City, QLD 4006 Australia.,7Australian Institute of Tropical Health and Medicine, James Cook University, 1 James Cook Dr, Douglas, QLD 4814 Australia
| | - Jennifer E Thomas
- 8Center for Veterinary Health Sciences, Oklahoma State University, 208 S McFarland St, Stillwater, OK 74078 USA
| | - Michael G Levy
- 1College of Veterinary Medicine, North Carolina State University, Research Building Room 464, 1060 William Moore Drive, Raleigh, NC 27607 USA
| | - Mason V Reichard
- 8Center for Veterinary Health Sciences, Oklahoma State University, 208 S McFarland St, Stillwater, OK 74078 USA
| | - Philip L Felgner
- 5School of Medicine, University of California Irvine, 1001 Health Sciences Rd, Irvine, CA 92617 USA
| | - Leah A Cohn
- 3College of Veterinary Medicine, University of Missouri, 1600 East Rollins, Columbia, MO 65211 USA
| | - Adam J Birkenheuer
- 1College of Veterinary Medicine, North Carolina State University, Research Building Room 464, 1060 William Moore Drive, Raleigh, NC 27607 USA
| |
Collapse
|
9
|
Khana DB, Peterson DS, Stanton JB, Schreeg ME, Birkenheuer AJ, Tarigo JL. Genetic conservation of Cytauxzoon felis antigens and mRNA expression in the schizont life-stage. Vet Parasitol 2018; 263:49-53. [PMID: 30389023 DOI: 10.1016/j.vetpar.2018.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/02/2018] [Accepted: 10/07/2018] [Indexed: 11/27/2022]
Abstract
Cytauxzoonosis is a highly fatal disease of domestic cats caused by the apicomplexan protozoan Cytauxzoon felis, which is most closely related to Theileria spp. The growing prevalence, high morbidity and mortality, and treatment cost of cytauxzoonosis emphasize the need for vaccine development. Traditional approaches for vaccine development, however, have been hindered by the inability to culture C. felis in vitro. Recent availability of the annotated C. felis genome combined with genome-based vaccine design and protein microarray immunoscreening allowed for high-throughput identification of C. felis antigens that could serve as vaccine candidates. This study assessed the suitability of three of these vaccine candidates (cf30, cf63, cf58) in addition to a previously reported vaccine candidate (cf76) based on two criteria: genetic conservation among diverse C. felis geographic isolates and expression in tissues containing the C. felis schizont life stage, which has been previously associated with the development of a protective immune response. A comparison of seventeen C. felis isolates across seven states demonstrated high sequence identity (99-100%) for cf30, cf63, and cf58, similar to the degree of conservation previously reported for cf76. RNAscope® in situ hybridization using acutely infected feline splenic tissue revealed robust levels of all transcripts in the schizont life stage of the parasite. These data support the suitability of these three antigens for further investigation as vaccine candidates against cytauxzoonosis.
Collapse
Affiliation(s)
- Daven B Khana
- University of Georgia, College of Veterinary Medicine, Department of Pathology, 501 D.W. Brooks Dr., Athens, GA, 30602, United States
| | - David S Peterson
- University of Georgia, Center for Tropical and Emerging Global Diseases, Department of Infectious Diseases, 500 D.W. Brooks Dr., Athens, GA, 30602, United States
| | - James B Stanton
- University of Georgia, College of Veterinary Medicine, Department of Pathology, 501 D.W. Brooks Dr., Athens, GA, 30602, United States
| | - Megan E Schreeg
- North Carolina State University, College of Veterinary Medicine, Department of Clinical Sciences, 1060 William Moore Drive, Raleigh, NC, 27607, United States
| | - Adam J Birkenheuer
- North Carolina State University, College of Veterinary Medicine, Department of Clinical Sciences, 1060 William Moore Drive, Raleigh, NC, 27607, United States
| | - Jaime L Tarigo
- University of Georgia, College of Veterinary Medicine, Department of Pathology, 501 D.W. Brooks Dr., Athens, GA, 30602, United States.
| |
Collapse
|
10
|
Pollard DA, Reichard MV, Cohn LA, James AM, Holman PJ. Genetic variability of cloned Cytauxzoon felis ribosomal RNA ITS1 and ITS2 genomic regions from domestic cats with varied clinical outcomes from five states. Vet Parasitol 2017; 244:136-143. [PMID: 28917305 DOI: 10.1016/j.vetpar.2017.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 06/17/2017] [Accepted: 08/02/2017] [Indexed: 10/19/2022]
Abstract
Cytauxzoon felis is a tick-borne hemoparasite that causes cytauxzoonosis in domestic cats in the United States. Historically, feline cytauxzoonosis was reported to be nearly always fatal. However, increasing evidence of cats surviving acute infection and/or harboring a chronic, subclinical infection has suggested the existence of different C. felis strains that may vary in pathogenicity. In this study, the intraspecific variation of the C. felis first and second ribosomal RNA internal transcribed spacer (ITS1, ITS2) regions was assessed for any clinical outcome or geographic associations. Sequence data were obtained for 122C. felis ITS1 and ITS2 clones from 41 domestic cat blood samples from Arkansas, Kansas, Missouri, Oklahoma, and Texas. Seven previously reported ITS1 region sequences were found, and a previously undescribed 23-bp insert was detected in cloned ITS1 sequences from a domestic cat in Missouri and two cats in Oklahoma. Four previously reported ITS2 region sequences were identified, and a 40-bp insert similar to that previously reported in C. felis of a domestic cat from Arkansas and pumas was detected in 18 cloned C. felis sequences from 12 domestic cats. One clone contained both the 23-bp insert and 40-bp insert within the ITS1 and ITS2 regions, respectively. Combined ITS1 and ITS2 sequence genotypes revealed that C. felis sequences from 27 cats (72/122 clones) corresponded to four previously described genotypes, ITSa, ITSc, ITSd, and ITSn. Five clones with the novel 23-bp insert from three cat isolates represented two new genotypes, ITSaa and ITSbb. Genotypes ITScc, ITSdd, ITSee, ITSff, ITSgg, and ITShh denoted 13 clones that matched prior sequences but had no previously assigned genotype. Genotypes ITSii through ITStt comprised 32 clones that were similar to, but did not exactly match, previously described genotypes. Twenty-five cats had C. felis infections with multiple ITS genotypes. Considerable C. felis genetic diversity was revealed with no significant geographic or clinical outcome associations.
Collapse
Affiliation(s)
- Dana A Pollard
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843-4467, USA
| | - Mason V Reichard
- Department of Veterinary Pathobiology, Center for Veterinary Health Science, Oklahoma State University, Stillwater, OK 74078, USA
| | - Leah A Cohn
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO 65211, USA
| | - Andrea M James
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843-4467, USA
| | - Patricia J Holman
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843-4467, USA.
| |
Collapse
|
11
|
Zieman EA, Jiménez FA, Nielsen CK. Concurrent Examination of Bobcats and Ticks Reveals High Prevalence of Cytauxzoon felis in Southern Illinois. J Parasitol 2017; 103:343-348. [PMID: 28355128 DOI: 10.1645/16-133] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Cytauxzoon felis is an intraerythrocytic apicomplexan of felids enzootic in the southeastern United States. In domestic cats (Felis catus), this parasite can result in the highly fatal disease cytauxzoonosis or bobcat fever. Bobcats (Lynx rufus) are the wild animal reservoir host. To date, the characterization of prevalence of C. felis in bobcats is mostly based on broad-scale surveys from hunter-harvested specimens collected across large geographic areas, usually consisting of multiple states. Detailed studies on the development, transmission, distribution, effects, and prevalence of C. felis in the tick vectors are scarce. To fill some of these gaps in the literature, such as prevalence in ticks and bobcats in a discrete region, we examined bobcats and ticks in an 8,000-km2 portion of southern Illinois. We screened for C. felis using a nested polymerase chain reaction that amplifies a fragment of the nuclear small subunit (SSU) 18S rRNA. We screened 125 individual bobcats collected in southern Illinois from 2003 to 2015; of these, 70.6% were positive for C. felis. In addition, we screened 214 ticks of both vector species (Amblyomma americanum and Dermacentor variabilis) and detected C. felis in 15.6% of them; this prevalence is higher than reported by previous surveys. Our study reports the prevalence of C. felis in ticks and bobcats from south Illinois. We found that 70.6% of bobcats and 15.6% of ticks were infected with C. felis, which suggests risk of transmission to domestic cats.
Collapse
Affiliation(s)
- Elliott A Zieman
- * Department of Zoology, Southern Illinois University Carbondale, 1125 Lincoln Dr., Carbondale, Illinois 62901-6501. Correspondence should be sent to Elliott A. Zieman at:
| | - F Agustín Jiménez
- * Department of Zoology, Southern Illinois University Carbondale, 1125 Lincoln Dr., Carbondale, Illinois 62901-6501. Correspondence should be sent to Elliott A. Zieman at:
| | - Clayton K Nielsen
- * Department of Zoology, Southern Illinois University Carbondale, 1125 Lincoln Dr., Carbondale, Illinois 62901-6501. Correspondence should be sent to Elliott A. Zieman at:
| |
Collapse
|
12
|
|
13
|
Gallusová M, Jirsová D, Mihalca AD, Gherman CM, D'Amico G, Qablan MA, Modrý D. CytauxzoonInfections in Wild Felids from Carpathian-Danubian-Pontic Space: Further Evidence for a DifferentCytauxzoonSpecies in European Felids. J Parasitol 2016; 102:377-80. [DOI: 10.1645/15-881] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
14
|
Greay TL, Oskam CL, Gofton AW, Rees RL, Ryan UM, Irwin PJ. A survey of ticks (Acari: Ixodidae) of companion animals in Australia. Parasit Vectors 2016; 9:207. [PMID: 27160149 PMCID: PMC4862205 DOI: 10.1186/s13071-016-1480-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/29/2016] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Ticks are among the most important vectors of pathogens affecting companion animals, and also cause health problems such as tick paralysis, anaemia, dermatitis, and secondary infections. Twenty ixodid species have previously been recorded on dogs, cats, and horses in Australia, including Rhipicephalus sanguineus, Ixodes holocyclus and Haemaphysalis longicornis, which transmit tick-borne diseases. A survey of hard ticks (Acari: Ixodidae) was conducted during 2012-2015 to investigate tick species that infest dogs, cats, and horses in Australia. METHODS Individual tick specimens were collected from dogs, cats and horses across Australia and sample collection locations were mapped using QGIS software. Ticks were morphologically examined to determine species, instar and sex. The companion animal owners responded to questionnaires and data collected were summarised with SPSS software. RESULTS A total of 4765 individual ticks were identified in this study from 7/8 states and territories in Australia. Overall, 220 larvae, 805 nymphs, 1404 males, and 2336 females of 11 tick species were identified from 837 companion animal hosts. One novel host record was obtained during this study for Ixodes myrmecobii, which was found on Felis catus (domestic cat) in the town of Esperance, Western Australia. The most common tick species identified included R. sanguineus on dogs (73 %), I. holocyclus on cats (81 %) and H. longicornis on horses (60 %). CONCLUSIONS This study is the first of its kind to be conducted in Australia and our results contribute to the understanding of the species and distribution of ticks that parasitise dogs, cats, and horses in Australia. Records of R. sanguineus outside of the recorded distribution range emphasise the need for a systematic study of the habitat range of this species. Several incomplete descriptions of ixodid species encountered in this study hindered morphological identification.
Collapse
Affiliation(s)
- Telleasha L. Greay
- />Vector and Water-Borne Pathogen Research Laboratory, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia Australia
| | - Charlotte L. Oskam
- />Vector and Water-Borne Pathogen Research Laboratory, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia Australia
| | - Alexander W. Gofton
- />Vector and Water-Borne Pathogen Research Laboratory, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia Australia
| | | | - Una M. Ryan
- />Vector and Water-Borne Pathogen Research Laboratory, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia Australia
| | - Peter J. Irwin
- />Vector and Water-Borne Pathogen Research Laboratory, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia Australia
| |
Collapse
|
15
|
Rapid High-Resolution Melt Analysis of Cytauxzoon felis Cytochrome b To Aid in the Prognosis of Cytauxzoonosis. J Clin Microbiol 2015; 53:2517-24. [PMID: 26019197 DOI: 10.1128/jcm.00635-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/21/2015] [Indexed: 11/20/2022] Open
Abstract
Cytauxzoon felis is a virulent, tick-transmitted, protozoan parasite that infects felines. Cytauxzoonosis was previously thought to be uniformly fatal in domestic cats. Treatment combining atovaquone and azithromycin (A&A) has been associated with survival rates of over 60%. Atovaquone, a ubiquinone analogue, targets C. felis cytochrome b (cytb), of which 30 unique genotypes have been identified. The C. felis cytb genotype cytb1 is associated with increased survival rates in cats treated with A&A. The purpose of this study was to design a PCR panel that could distinguish C. felis cytb1 from other cytochrome b genotypes. Primer pairs were designed to span five different nucleotide positions at which single-nucleotide polymorphisms in the C. felis cytb gene had been identified. Through the use of high-resolution melt analysis, this panel was predicted to distinguish cytb1 from other cytb genotypes. Assays were validated using samples from 69 cats with cytauxzoonosis for which the C. felis cytb genotypes had been characterized previously. The PCR panel identified C. felis cytb1 with 100% sensitivity and 98.2% specificity. High-resolution melt analysis can rapidly provide prognostic information for clients considering A&A treatment in cats with cytauxzoonosis.
Collapse
|