1
|
Alshajrawi OM, Tengku Din TADAATD, Marzuki SSB, Maulidiani M, Mohd Rusli NARB, Badrol Hisham NFAB, Hui Ying L, Yahya MMB, Wan Azman WNB, Ramli RA, Wan Abdul Rahman WF. Exploring the complex relationship between metabolomics and breast cancer early detection (Review). Mol Clin Oncol 2025; 22:35. [PMID: 40083862 PMCID: PMC11905217 DOI: 10.3892/mco.2025.2830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 10/08/2024] [Indexed: 03/16/2025] Open
Abstract
An overview of metabolomics in cancer research, focusing on the identification of biomarkers, pharmacological targets and therapeutic agents, is provided in the present review. The fundamentals of metabolomics, the role of metabolites in cancer emergence and the methods used in metabolomic analysis, are reviewed. The applications of metabolomics in cancer therapy and diagnostics, as well as the challenges encountered in metabolomic research, are discussed. Finally, the potential clinical uses of metabolomics in cancer research and its future possibilities are explored, emphasising the importance of non-invasive diagnostic and monitoring techniques. The present review highlights the significance of metabolite-based metabolomics as a specialised tool for illuminating disease processes and identifying treatment potentials. The malfunctioning of metabolomic pathways and metabolite accumulation or depletion is caused by metabolomics abnormalities. Metabolite signatures close to a subject's phenotypic informative dimension can be used to monitor therapies and disease prediction diagnosis and prognosis. Non-invasive diagnostic and monitoring techniques with high specificity and selectivity are urgently needed. Metabolite-based metabolomics is a specialised metabolic biomarker and pathway-analysis technique, illuminating the putative processes of numerous human illnesses and determining treatment potentials. Locating biochemical pathway modifications that are early warning signs of pathological malfunction and illness is possible by identifying functional biomarkers linked to phenotypic variance. Scientists generated numerous metabolomics profiles to disclose the underlying processes and metabolomics networks for therapeutic target research in biomedicine. The metabolomic analysis of the potential utility of metabolites as biomarkers for clinical events is summarised in the present review. The significance of metabolite-based metabolomics as a specialised tool for illuminating disease processes and identifying treatment potentials is highlighted.
Collapse
Affiliation(s)
- Omar Mahmoud Alshajrawi
- Department of Chemical Pathology, School of Medical Science, Health Campus, University Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | | | - Shahira Sofea Binti Marzuki
- Department of Chemical Pathology, School of Medical Science, Health Campus, University Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Maulidiani Maulidiani
- Faculty of Science and Marine Environment, University Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | | | | | - Lim Hui Ying
- Faculty of Science and Marine Environment, University Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - Maya Mazuwin Binti Yahya
- Department of Surgery, School of Medical Science, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Wan Norlina Binti Wan Azman
- Department of Chemical Pathology, School of Medical Science, Health Campus, University Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
- Hospital University Sains Malaysia, Health Campus, University Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Ras A. Ramli
- Faculty of Medicine, University Sultan Zainal Abidin, Kuala Terengganu, Terengganu 20400, Malaysia
| | - Wan Faiziah Wan Abdul Rahman
- Department of Pathology, School of Medical Science, Health Campus, University Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| |
Collapse
|
2
|
Jasionowska J, Gałecki P, Kalinka E, Skiba A, Szemraj J, Turska E, Talarowska M. Level of selected exponents of the kynurenine pathway in patients diagnosed with depression and selected cancers. J Psychiatr Res 2024; 179:175-181. [PMID: 39303569 DOI: 10.1016/j.jpsychires.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/01/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Altered immune system activity is one of the common pathomechanisms of depressive disorders and cancer. The aim of this study is to evaluate level of selected elements of the kynurenine pathway in groups of depressed and oncological patients. The study included 156 individuals, aged 19-65 years (M = 43.46, SD = 13.99), divided into three groups, namely depressive disorders (DD), oncology patients (OG), and a comparison group of healthy subjects (CG). A sociodemographic questionnaire and the Hamilton Depression Rating Scale (HDRS) were used in the study to assess the intensity of depressive symptoms. Level of TDO2, L-KYN, HK, AA and QA was significantly higher in patients from OG and DD groups than in the comparison group. TDO2 level in the OG group was positively correlated with the severity of depressive symptoms. When the OG and DD groups were analyzed together, level of TDO2, 3-HKYN, AA, QA correlated positively with the severity of depressive symptoms. Thus, kynurenine pathway might play an integral role in the pathogenesis of depression.
Collapse
Affiliation(s)
| | - Piotr Gałecki
- Department of Adult Psychiatry, Medical University of Lodz, Lodz, Poland
| | - Ewa Kalinka
- Department of Oncology, Polish Mother's Memorial Hospital-Research Institute, Lodz, Poland
| | - Aleksandra Skiba
- Department of Adult Psychiatry, Medical University of Lodz, Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Elżbieta Turska
- Department of Oncology, Polish Mother's Memorial Hospital-Research Institute, Lodz, Poland
| | - Monika Talarowska
- Institute of Psychology, Faculty of Educational Sciences, University of Lodz, Lodz, Poland
| |
Collapse
|
3
|
Holthuijsen DDB, van Roekel EH, Bours MJL, Ueland PM, Breukink SO, Janssen-Heijnen MLG, Keulen ETP, Gigic B, Gsur A, Meyer K, Ose J, Ulvik A, Weijenberg MP, Eussen SJPM. Longitudinal associations of plasma kynurenines and ratios with anxiety and depression scores in colorectal cancer survivors up to 12 months post-treatment. Psychoneuroendocrinology 2024; 163:106981. [PMID: 38335827 DOI: 10.1016/j.psyneuen.2024.106981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
INTRODUCTION Colorectal cancer (CRC) survivors often experience neuropsychological symptoms, including anxiety and depression. Mounting evidence suggests a role for the kynurenine pathway in these symptoms due to potential neuroprotective and neurotoxic roles of involved metabolites. However, evidence remains inconclusive and insufficient in cancer survivors. Thus, we aimed to explore longitudinal associations of plasma tryptophan, kynurenines, and their established ratios with anxiety and depression in CRC survivors up to 12 months post-treatment. METHODS In 249 stage I-III CRC survivors, blood samples were collected at 6 weeks, 6 months, and 12 months post-treatment to analyze plasma concentrations of tryptophan and kynurenines using liquid-chromatography tandem-mass spectrometry (LC/MS-MS). At the same timepoints, anxiety and depression were assessed using the Hospital Anxiety and Depression Scale (HADS). Confounder-adjusted linear mixed models were used to analyze longitudinal associations. Sensitivity analyses with false discovery rate (FDR) correction were conducted to adjust for multiple testing. RESULTS Higher plasma tryptophan concentrations were associated with lower depression scores (β as change in depression score per 1 SD increase in the ln-transformed kynurenine concentration: -0.31; 95%CI: -0.56,-0.05), and higher plasma 3-hydroxyanthranilic acid concentrations with lower anxiety scores (-0.26; -0.52,-0.01). A higher 3-hydroxykynurenine ratio (HKr; the ratio of 3-hydroxykynurenine to the sum of kynurenic acid, xanthurenic acid, anthranilic acid, and 3-hydroxyanthranilic acid) was associated with higher depression scores (0.34; 0.04,0.63) and higher total anxiety and depression scores (0.53; 0.02,1.04). Overall associations appeared to be mainly driven by inter-individual associations, which were statistically significant for tryptophan with depression (-0.60; -1.12,-0.09), xanthurenic acid with total anxiety and depression (-1.04; -1.99,-0.10), anxiety (-0.51; -1.01,-0.01), and depression (-0.56; -1.08,-0.05), and kynurenic-acid-to-quinolinic-acid ratio with depression (-0.47; -0.93,-0.01). In sensitivity analyses, associations did not remain statistically significant after FDR adjustment. CONCLUSION We observed that plasma concentrations of tryptophan, 3-hydroxyanthranilic acid, xanthurenic acid, 3-hydroxykynurenine ratio, and kynurenic-acid-to-quinolinic-acid ratio tended to be longitudinally associated with anxiety and depression in CRC survivors up to 12 months post-treatment. Future studies are warranted to further elucidate the association of plasma kynurenines with anxiety and depression.
Collapse
Affiliation(s)
- Daniëlle D B Holthuijsen
- Department of Epidemiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands; Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands.
| | - Eline H van Roekel
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
| | - Martijn J L Bours
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
| | | | - Stéphanie O Breukink
- Department of Surgery, GROW School for Oncology and Reproduction, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Maryska L G Janssen-Heijnen
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands; Department of Clinical Epidemiology, VieCuri Medical Centre, Venlo, the Netherlands
| | - Eric T P Keulen
- Department of Internal Medicine and Gastroenterology, Zuyderland Medical Centre Sittard-Geleen, Geleen, the Netherlands
| | - Biljana Gigic
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Andrea Gsur
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | | | - Jennifer Ose
- University of Utah, Salt Lake City, UT, USA; Huntsman Cancer Institute, Salt Lake City, UT, USA
| | | | - Matty P Weijenberg
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
| | - Simone J P M Eussen
- Department of Epidemiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands; Department of Epidemiology, CAPHRI School for Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
4
|
Bai J, Eldridge R, Houser M, Martin M, Powell C, Sutton KS, Noh HI, Wu Y, Olson T, Konstantinidis KT, Bruner DW. Multi-omics analysis of the gut microbiome and metabolites associated with the psychoneurological symptom cluster in children with cancer receiving chemotherapy. J Transl Med 2024; 22:256. [PMID: 38461265 PMCID: PMC10924342 DOI: 10.1186/s12967-024-05066-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/05/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND Children with cancer receiving chemotherapy commonly report a cluster of psychoneurological symptoms (PNS), including pain, fatigue, anxiety, depression, and cognitive dysfunction. The role of the gut microbiome and its functional metabolites in PNS is rarely studied among children with cancer. This study investigated the associations between the gut microbiome-metabolome pathways and PNS in children with cancer across chemotherapy as compared to healthy children. METHODS A case-control study was conducted. Cancer cases were recruited from Children's Healthcare of Atlanta and healthy controls were recruited via flyers. Participants reported PNS using the Pediatric Patient-Reported Outcomes Measurement Information System. Data for cases were collected pre-cycle two chemotherapy (T0) and post-chemotherapy (T1), whereas data for healthy controls were collected once. Gut microbiome and its metabolites were measured using fecal specimens. Gut microbiome profiling was performed using 16S rRNA V4 sequencing, and metabolome was performed using an untargeted liquid chromatography-mass spectrometry approach. A multi-omics network integration program analyzed microbiome-metabolome pathways of PNS. RESULTS Cases (n = 21) and controls (n = 14) had mean ages of 13.2 and 13.1 years. For cases at T0, PNS were significantly associated with microbial genera (e.g., Ruminococcus, Megasphaera, and Prevotella), which were linked with carnitine shuttle (p = 0.0003), fatty acid metabolism (p = 0.001) and activation (p = 0.001), and tryptophan metabolism (p = 0.008). Megasphaera, clustered with aspartate and asparagine metabolism (p = 0.034), carnitine shuttle (p = 0.002), and tryptophan (p = 0.019), was associated with PNS for cases at T1. Gut bacteria with potential probiotic functions, along with fatty acid metabolism, tryptophan, and carnitine shuttle, were more clustered in cancer cases than the control network and this linkage with PNS needs further studies. CONCLUSIONS Using multi-omics approaches, this study indicated specific microbiome-metabolome pathways linked with PNS in children with cancer across chemotherapy. Due to limitations such as antibiotic use in cancer cases, these findings need to be further confirmed in a larger cohort.
Collapse
Affiliation(s)
- Jinbing Bai
- Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, GA, 30322, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| | - Ronald Eldridge
- Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, GA, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Madelyn Houser
- Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Melissa Martin
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Christie Powell
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Kathryn S Sutton
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- School of Medicine, Emory University, Atlanta, GA, USA
| | - Hye In Noh
- Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Yuhua Wu
- Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Thomas Olson
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- School of Medicine, Emory University, Atlanta, GA, USA
| | | | - Deborah W Bruner
- Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, GA, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| |
Collapse
|
5
|
Privatt SR, Braga CP, Johnson A, Lidenge SJ, Berry L, Ngowi JR, Ngalamika O, Chapple AG, Mwaiselage J, Wood C, West JT, Adamec J. Comparative polar and lipid plasma metabolomics differentiate KSHV infection and disease states. Cancer Metab 2023; 11:13. [PMID: 37653396 PMCID: PMC10470137 DOI: 10.1186/s40170-023-00316-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Kaposi sarcoma (KS) is a neoplastic disease etiologically associated with infection by the Kaposi sarcoma-associated herpesvirus (KSHV). KS manifests primarily as cutaneous lesions in individuals due to either age (classical KS), HIV infection (epidemic KS), or tissue rejection preventatives in transplantation (iatrogenic KS) but can also occur in individuals, predominantly in sub-Saharan Africa (SSA), lacking any obvious immune suppression (endemic KS). The high endemicity of KSHV and human immunodeficiency virus-1 (HIV) co-infection in Africa results in KS being one of the top 5 cancers there. As with most viral cancers, infection with KSHV alone is insufficient to induce tumorigenesis. Indeed, KSHV infection of primary human endothelial cell cultures, even at high levels, is rarely associated with long-term culture, transformation, or growth deregulation, yet infection in vivo is sustained for life. Investigations of immune mediators that distinguish KSHV infection, KSHV/HIV co-infection, and symptomatic KS disease have yet to reveal consistent correlates of protection against or progression to KS. In addition to viral infection, it is plausible that pathogenesis also requires an immunological and metabolic environment permissive to the abnormal endothelial cell growth evident in KS tumors. In this study, we explored whether plasma metabolomes could differentiate asymptomatic KSHV-infected individuals with or without HIV co-infection and symptomatic KS from each other. METHODS To investigate how metabolic changes may correlate with co-infections and tumorigenesis, plasma samples derived from KSHV seropositive sub-Saharan African subjects in three groups, (A) asymptomatic (lacking neoplastic disease) with KSHV infection only, (B) asymptomatic co-infected with KSHV and HIV, and (C) symptomatic with clinically diagnosed KS, were subjected to analysis of lipid and polar metabolite profiles RESULTS: Polar and nonpolar plasma metabolic differentials were evident in both comparisons. Integration of the metabolic findings with our previously reported KS transcriptomics data suggests dysregulation of amino acid/urea cycle and purine metabolic pathways, in concert with viral infection in KS disease progression. CONCLUSIONS This study is, to our knowledge, the first to report human plasma metabolic differentials between in vivo KSHV infection and co-infection with HIV, as well as differentials between co-infection and epidemic KS.
Collapse
Affiliation(s)
- Sara R Privatt
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | - Alicia Johnson
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Salum J Lidenge
- Ocean Road Cancer Institute, Dar Es Salaam, Tanzania
- Muhimbili University of Health and Allied Sciences, Dar Es Salaam, Tanzania
| | - Luke Berry
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - John R Ngowi
- Ocean Road Cancer Institute, Dar Es Salaam, Tanzania
| | - Owen Ngalamika
- Dermatology and Venereology Section, Adult Hospital of the University Teaching Hospitals, University of Zambia School of Medicine, Lusaka, Zambia
| | - Andrew G Chapple
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Julius Mwaiselage
- Ocean Road Cancer Institute, Dar Es Salaam, Tanzania
- Muhimbili University of Health and Allied Sciences, Dar Es Salaam, Tanzania
| | - Charles Wood
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - John T West
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| | - Jiri Adamec
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
6
|
Girithar HN, Staats Pires A, Ahn SB, Guillemin GJ, Gluch L, Heng B. Involvement of the kynurenine pathway in breast cancer: updates on clinical research and trials. Br J Cancer 2023; 129:185-203. [PMID: 37041200 PMCID: PMC10338682 DOI: 10.1038/s41416-023-02245-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/04/2023] [Accepted: 03/17/2023] [Indexed: 04/13/2023] Open
Abstract
Breast cancer (BrCa) is the leading cause of cancer incidence and mortality in women worldwide. While BrCa treatment has been shown to be highly successful if detected at an early stage, there are few effective strategies to treat metastatic tumours. Hence, metastasis remains the main cause in most of BrCa deaths, highlighting the need for new approaches in this group of patients. Immunotherapy has been gaining attention as a new treatment for BrCa metastasis and the kynurenine pathway (KP) has been suggested as one of the potential targets. The KP is the major biochemical pathway in tryptophan (TRP) metabolism, catabolising TRP to nicotinamide adenine dinucleotide (NAD+). The KP has been reported to be elevated under inflammatory conditions such as cancers and that its activity suppresses immune surveillance. Dysregulation of the KP has previously been reported implicated in BrCa. This review aims to discuss and provide an update on the current mechanisms involved in KP-mediated immune suppression and cancer growth. Furthermore, we also provide a summary on 58 studies about the involvement of the KP and BrCa and five clinical trials targeting KP enzymes and their outcome.
Collapse
Affiliation(s)
- Hemaasri-Neya Girithar
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ananda Staats Pires
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Seong Beom Ahn
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Gilles J Guillemin
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Laurence Gluch
- The Strathfield Breast Centre, Strathfield, NSW, Australia
| | - Benjamin Heng
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
7
|
Plaza-Diaz J, Álvarez-Mercado AI. The Interplay between Microbiota and Chemotherapy-Derived Metabolites in Breast Cancer. Metabolites 2023; 13:703. [PMID: 37367861 PMCID: PMC10301694 DOI: 10.3390/metabo13060703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
The most common cancer in women is breast cancer, which is also the second leading cause of death in this group. It is, however, important to note that some women will develop or will not develop breast cancer regardless of whether certain known risk factors are present. On the other hand, certain compounds are produced by bacteria in the gut, such as short-chain fatty acids, secondary bile acids, and other metabolites that may be linked to breast cancer development and mediate the chemotherapy response. Modeling the microbiota through dietary intervention and identifying metabolites directly associated with breast cancer and its complications may be useful to identify actionable targets and improve the effect of antiangiogenic therapies. Metabolomics is therefore a complementary approach to metagenomics for this purpose. As a result of the combination of both techniques, a better understanding of molecular biology and oncogenesis can be obtained. This article reviews recent literature about the influence of bacterial metabolites and chemotherapy metabolites in breast cancer patients, as well as the influence of diet.
Collapse
Affiliation(s)
- Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Ana Isabel Álvarez-Mercado
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Institute of Nutrition and Food Technology, Biomedical Research Center, University of Granada, 18016 Armilla, Spain
| |
Collapse
|
8
|
Li H, Lockwood MB, Schlaeger JM, Liu T, Danciu OC, Doorenbos AZ. Tryptophan and Kynurenine Pathway Metabolites and Psychoneurological Symptoms Among Breast Cancer Survivors. Pain Manag Nurs 2023; 24:52-59. [PMID: 36229337 PMCID: PMC9925397 DOI: 10.1016/j.pmn.2022.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Among breast cancer survivors, pain, fatigue, depression, anxiety, and sleep disturbance are common psychoneurological symptoms that cluster together. Inflammation-induced activation of the tryptophan-kynurenine metabolomic pathway may play an important role in these symptoms. AIMS This study investigated the relationship between the metabolites involved in the tryptophan-kynurenine pathway and psychoneurological symptoms among breast cancer survivors. DESIGN Cross-sectional study. SETTING Participants were recruited at the oncology clinic at the University of Illinois Hospital & Health Sciences System. PARTICIPANTS/SUBJECTS 79 breast cancer survivors after major cancer treatment. METHODS We assessed psychoneurological symptoms with the PROMIS-29 and collected metabolites from fasting blood among breast cancer survivors after major cancer treatment, then analyzed four major metabolites involved in the tryptophankynurenine pathway (tryptophan, kynurenine, kynurenic acid, and quinolinic acid). Latent profile analysis identified subgroups based on the five psychoneurological symptoms. Mann-Whitney U tests and multivariable logistic regression compared targeted metabolites between subgroups. RESULTS We identified two distinct symptom subgroups (low, 81%; high, 19%). Compared with participants in the low symptom subgroup, patients in the high symptom subgroup had higher BMI (p = .024) and were currently using antidepressants (p = .008). Using multivariable analysis, lower tryptophan levels (p = .019) and higher kynurenine/tryptophan ratio (p = .028) were associated with increased risk of being in the high symptom subgroup after adjusting for BMI and antidepressant status. CONCLUSION The tryptophan-kynurenine pathway and impaired tryptophan availability may contribute to the development of psychoneurological symptoms.
Collapse
Affiliation(s)
- Hongjin Li
- Department of Human Development Nursing Science, College of Nursing, University of Illinois Chicago, Chicago, Illinois.
| | - Mark B Lockwood
- Department of Biobehavioral Nursing Science, College of Nursing, University of Illinois Chicago, Chicago, Illinois
| | - Judith M Schlaeger
- Department of Human Development Nursing Science, College of Nursing, University of Illinois Chicago, Chicago, Illinois
| | - Tingting Liu
- College of Nursing, Florida State University, Tallahassee, Florida
| | - Oana C Danciu
- College of Medicine, University of Illinois Chicago, Chicago, Illinois
| | - Ardith Z Doorenbos
- Department of Biobehavioral Nursing Science, College of Nursing, University of Illinois Chicago, Chicago, Illinois
| |
Collapse
|
9
|
van Roekel EH, Bours MJL, Breukink SO, Aquarius M, Keulen ETP, Gicquiau A, Rinaldi S, Vineis P, Arts ICW, Gunter MJ, Leitzmann MF, Scalbert A, Weijenberg MP. Longitudinal associations of plasma metabolites with persistent fatigue among colorectal cancer survivors up to 2 years after treatment. Int J Cancer 2023; 152:214-226. [PMID: 36054767 PMCID: PMC9825888 DOI: 10.1002/ijc.34252] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/08/2022] [Accepted: 07/25/2022] [Indexed: 01/11/2023]
Abstract
The underlying biological mechanisms causing persistent fatigue complaints after colorectal cancer treatment need further investigation. We investigated longitudinal associations of circulating concentrations of 138 metabolites with total fatigue and subdomains of fatigue between 6 weeks and 2 years after colorectal cancer treatment. Among stage I-III colorectal cancer survivors (n = 252), blood samples were obtained at 6 weeks, and 6, 12 and 24 months posttreatment. Total fatigue and fatigue subdomains were measured using a validated questionnaire. Tandem mass spectrometry was applied to measure metabolite concentrations (BIOCRATES AbsoluteIDQp180 kit). Confounder-adjusted longitudinal associations were analyzed using linear mixed models, with false discovery rate (FDR) correction. We assessed interindividual (between-participant differences) and intraindividual longitudinal associations (within-participant changes over time). In the overall longitudinal analysis, statistically significant associations were observed for 12, 32, 17 and three metabolites with total fatigue and the subscales "fatigue severity," "reduced motivation" and "reduced activity," respectively. Specifically, higher concentrations of several amino acids, lysophosphatidylcholines, diacylphosphatidylcholines, acyl-alkylphosphatidylcholines and sphingomyelins were associated with less fatigue, while higher concentrations of acylcarnitines were associated with more fatigue. For "fatigue severity," associations appeared mainly driven by intraindividual associations, while for "reduced motivation" stronger interindividual associations were found. We observed longitudinal associations of several metabolites with total fatigue and fatigue subscales, and that intraindividual changes in metabolites over time were associated with fatigue severity. These findings point toward inflammation and an impaired energy metabolism due to mitochondrial dysfunction as underlying mechanisms. Mechanistic studies are necessary to determine whether these metabolites could be targets for intervention.
Collapse
Affiliation(s)
- Eline H. van Roekel
- Department of EpidemiologyGROW School for Oncology and Developmental Biology, Maastricht UniversityMaastrichtThe Netherlands
| | - Martijn J. L. Bours
- Department of EpidemiologyGROW School for Oncology and Developmental Biology, Maastricht UniversityMaastrichtThe Netherlands
| | - Stéphanie O. Breukink
- Department of Surgery, GROW School for Oncology and Developmental BiologySchool of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+MaastrichtThe Netherlands
| | - Michèl Aquarius
- Department of GastroenterologyVieCuri Medical CenterVenloThe Netherlands
| | - Eric T. P. Keulen
- Department of Internal Medicine and GastroenterologyZuyderland Medical CentreSittard‐GeleenThe Netherlands
| | - Audrey Gicquiau
- Nutrition and Metabolism BranchInternational Agency for Research on Cancer (IARC‐WHO)LyonFrance
| | - Sabina Rinaldi
- Nutrition and Metabolism BranchInternational Agency for Research on Cancer (IARC‐WHO)LyonFrance
| | - Paolo Vineis
- MRC Centre for Environment and HealthSchool of Public Health, Imperial CollegeLondonUK
- Italian Institute of TechnologyGenoaItaly
| | - Ilja C. W. Arts
- Maastricht Centre for Systems Biology (MaCSBio)Maastricht UniversityMaastrichtThe Netherlands
| | - Marc J. Gunter
- Nutrition and Metabolism BranchInternational Agency for Research on Cancer (IARC‐WHO)LyonFrance
| | - Michael F. Leitzmann
- Department of Epidemiology and Preventive MedicineUniversity of RegensburgRegensburgGermany
| | - Augustin Scalbert
- Nutrition and Metabolism BranchInternational Agency for Research on Cancer (IARC‐WHO)LyonFrance
| | - Matty P. Weijenberg
- Department of EpidemiologyGROW School for Oncology and Developmental Biology, Maastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
10
|
Bai J, Withycombe J, Eldridge RC. Metabolic Pathways Associated With Psychoneurological Symptoms in Children With Cancer Receiving Chemotherapy. Biol Res Nurs 2022; 24:281-293. [PMID: 35285272 PMCID: PMC9343884 DOI: 10.1177/10998004211069619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
CONTEXT Children with cancer undergoing chemotherapy experience a cluster of psychoneurological symptoms (PNS), including pain, fatigue, anxiety, and depressive symptoms. Metabolomics is promising to differentiate metabolic pathways associated with the PNS cluster. OBJECTIVES Identify metabolic pathways associated with the PNS cluster in children with cancer before and after chemotherapy. METHODS Pain, fatigue, anxiety, and depressive symptoms were assessed using the Pediatric PROMIS scales. T-scores were computed and divided dichotomously by a cutoff point of 50; the PNS cluster was a sum of the four symptoms ranging from 0 (all T-scores <50) to 4 (all T-scores ≥50). Serum metabolites were processed using liquid chromatography mass-spectrometry untargeted metabolomics approach. Linear regression models examined metabolites associated with the PNS cluster. Metabolic pathway enrichment analysis was performed. RESULTS Participant demographics (n = 40) were 55% female, 60% white, 62.5% aged 13-19 years, and 62.5% diagnoses of Hodgkin's lymphoma and B-cell acute lymphocytic leukemia. Among 9276 unique metabolic features, 454 were associated with pain, 281 with fatigue, 596 with anxiety, 551 with depressive symptoms, and 300 with the PNS cluster across one chemotherapy cycle. Fatty acids pathways were associated with pain: de novo fatty acid biosynthesis (p < .001), fatty acid metabolism (p = .001), fatty acid activation (p = .004), and omega-3 fatty acid metabolism (p = .009). Tryptophan amino acid pathway was associated with fatigue (p < .001), anxiety (p = .015), and the PNS cluster (p = .037). Carnitine shuttle was associated with the PNS cluster (p = .015). CONCLUSION Fatty acids and amino acids pathways were associated with PNS in children undergoing chemotherapy. These findings require further investigation in a larger sample.
Collapse
Affiliation(s)
- Jinbing Bai
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | | | - Ronald C. Eldridge
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| |
Collapse
|
11
|
Withycombe JS, Eldridge R, Jin Y, Gu H, Castellino SM, Sears DD. Metabolites Associated With Fatigue and Physical Activity in Childhood Cancer. Biol Res Nurs 2022; 24:350-361. [PMID: 35466716 DOI: 10.1177/10998004221085029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Introduction: Children and adolescents with cancer report increased fatigue and decreased physical activity, introducing risk factors for chronic disease and suppressed quality of life. Research suggests an inverse relationship between fatigue and physical activity, but the biological explanation is not well understood. The purpose of this study was to 1) explore metabolites associated with fatigue or physical activity and 2) to identify any shared metabolomic elements. Methods: Children, ages 8-17 years, attending a pediatric oncology summer camp provided Patient-Reported Outcome Measurement System® (PROMIS) Pediatric Fatigue assessments, physical activity data (steps/day), and urine samples pre- and post-camp. Differences in PROMIS Pediatric Fatigue scores and average daily steps were calculated using paired t-tests. Liquid chromatography-tandem mass spectrometry was conducted using a targeted metabolomic approach. Results: Thirty-two enrolled children had complete data. Fatigue scores decreased (pre-camp 45.1; post-camp 42.1; p = 0.04) while steps-per-day increased (pre-camp 6699; post-camp 16,021; p < 0.001). Twenty-seven metabolites significantly differentiated (false discovery rate <0.20) between low, medium, or high physical activity, while 8 metabolites discriminated between high and low fatigue. Indole-3-lactic acid, a tryptophan metabolite, was significantly associated with both physical activity and fatigue. Conclusion: This study provides evidence of metabolome associations with fatigue and physical activity in children with cancer. Overlapping metabolomic elements provide evidence of biological inter-connectivity and suggest areas for future research. Given the known evidence regarding the benefits of physical activity, and the potential interaction with fatigue, nurses should routinely assess patient reports of these elements and provide patient/family education related to fatigue management and physical activity goals.
Collapse
Affiliation(s)
- Janice S Withycombe
- 47810Clemson University School of Nursing, Clemson, SC, USA.,Nell Hodgson Woodruff School of Nursing, 15792Emory University, Atlanta, GA, USA
| | - Ronald Eldridge
- Nell Hodgson Woodruff School of Nursing, 15792Emory University, Atlanta, GA, USA
| | - Yan Jin
- College of Health Solutions, 7864Arizona State University, Phoenix, AZ, USA
| | - Haiwai Gu
- College of Health Solutions, 7864Arizona State University, Phoenix, AZ, USA.,Department of Environmental Health Sciences, the Robert Stempel College of Public Health and Social Work, 584996Florida International University, Miami, FL, USA.,Center for Translational Science, Cellular Biology and Pharmacology Department, the Herbert Wertheim College of Medicine, Florida International University, Port St Lucie, FL, USA
| | - Sharon M Castellino
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA.,Emory University School of Medicine, Atlanta, GA, USA
| | - Dorothy D Sears
- College of Health Solutions, 7864Arizona State University, Phoenix, AZ, USA.,Moores Cancer Center, UC San Diego, La Jolla, CA, USA.,Department of Medicine, UC San Diego, La Jolla, CA, USA
| |
Collapse
|
12
|
Crowder SL, Playdon MC, Gudenkauf LM, Ose J, Gigic B, Greathouse L, Peoples AR, Sleight AG, Jim HSL, Figueiredo JC. A Molecular Approach to Understanding the Role of Diet in Cancer-Related Fatigue: Challenges and Future Opportunities. Nutrients 2022; 14:nu14071496. [PMID: 35406105 PMCID: PMC9003400 DOI: 10.3390/nu14071496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023] Open
Abstract
Cancer-related fatigue (CRF) is considered one of the most frequent and distressing symptoms for cancer survivors. Despite its high prevalence, factors that predispose, precipitate, and perpetuate CRF are poorly understood. Emerging research focuses on cancer and treatment-related nutritional complications, changes in body composition, and nutritional deficiencies that can compound CRF. Nutritional metabolomics, the novel study of diet-related metabolites in cells, tissues, and biofluids, offers a promising tool to further address these research gaps. In this position paper, we examine CRF risk factors, summarize metabolomics studies of CRF, outline dietary recommendations for the prevention and management of CRF in cancer survivorship, and identify knowledge gaps and challenges in applying nutritional metabolomics to understand dietary contributions to CRF over the cancer survivorship trajectory.
Collapse
Affiliation(s)
- Sylvia L. Crowder
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL 33617, USA; (S.L.C.); (L.M.G.); (H.S.L.J.)
| | - Mary C. Playdon
- Cancer Control and Population Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA;
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Lisa M. Gudenkauf
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL 33617, USA; (S.L.C.); (L.M.G.); (H.S.L.J.)
| | - Jennifer Ose
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84112, USA; (J.O.); (A.R.P.)
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA
| | - Biljana Gigic
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, 69047 Heidelberg, Germany;
| | - Leigh Greathouse
- Human Science and Design, Robbins College of Health and Human Sciences, Baylor University, Waco, TX 76798, USA;
| | - Anita R. Peoples
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84112, USA; (J.O.); (A.R.P.)
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA
| | - Alix G. Sleight
- Department of Physical Medicine and Rehabilitation, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
- Center for Integrated Research in Cancer and Lifestyle, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Heather S. L. Jim
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL 33617, USA; (S.L.C.); (L.M.G.); (H.S.L.J.)
| | - Jane C. Figueiredo
- Center for Integrated Research in Cancer and Lifestyle, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Correspondence:
| |
Collapse
|
13
|
A pilot study of metabolomic pathways associated with fatigue in patients with colorectal cancer receiving chemotherapy. Eur J Oncol Nurs 2022; 56:102096. [DOI: 10.1016/j.ejon.2022.102096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 01/09/2023]
|
14
|
Al-Bashaireh AM, Khraisat O, Alnazly EK, Aldiqs M. Inflammatory Markers, Metabolic Profile, and Psychoneurological Symptoms in Women with Breast Cancer: A Literature Review. Cureus 2021; 13:e19953. [PMID: 34976536 PMCID: PMC8713038 DOI: 10.7759/cureus.19953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2021] [Indexed: 11/10/2022] Open
Abstract
Breast cancer is one of the most prevalent cancers in women. The improvement in breast cancer treatment has significantly increased the proportion of survival rate for women with breast cancer. Despite the advancement in breast cancer treatment, a great proportion of survivors suffer from co-occurring psychoneurological symptoms which impact their quality of life. The most frequently reported psychoneurological symptoms among women with breast cancer are depressive symptoms, anxiety, fatigue, sleep disturbances, and pain. These symptoms usually appear as a cluster. Inflammatory activation and serum metabolic alterations have been associated with the etiology of cancer and with various chronic neurocognitive disorders. However, to date, no studies considered the combined effects of inflammatory markers and metabolites in the development of psychoneurological symptoms in women with breast cancer especially those who were treated with chemotherapy. Further clarification of the relationships between the inflammatory markers, serum metabolic alterations, and psychoneurological symptoms in women with breast cancer should be pursued.
Collapse
|
15
|
Perez-Tejada J, Labaka A, Vegas O, Larraioz A, Pescador A, Arregi A. Anxiety and depression after breast cancer: The predictive role of monoamine levels. Eur J Oncol Nurs 2021; 52:101953. [PMID: 33813184 DOI: 10.1016/j.ejon.2021.101953] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/18/2021] [Accepted: 03/21/2021] [Indexed: 11/19/2022]
Abstract
PURPOSE Despite the fact that the prevalence of anxiety and depression in breast cancer survivors is higher than in the general female population, the psychobiological substrate of this phenomenon has yet to be elucidated. We aimed to examine the predictive role of peripheral dopamine (DA), noradrenaline (NA), serotonin (5-HT) and kynurenine (KYN) in anxiety and depression among breast cancer survivors. METHOD We evaluated 107 women using the Hospital Anxiety and Depression Scale, and monoamine levels were analyzed via high-performance liquid chromatography. RESULTS High KYN levels predicted both disorders, while low NA and DA predicted anxiety and depressive symptoms, respectively. A negative conditional effect of 5-HT was found for anxiety and depression among younger women only, while being both middle-aged and younger influenced the negative conditional effect of DA on depression. CONCLUSION Monoamine variations may render breast cancer survivors more vulnerable to anxiety and depression, with young women being especially vulnerable to the detrimental effect of low DA and 5-HT. Assessing subclinical psychobiological markers allows mental health nurses to identify vulnerable survivors prior to the onset of anxiety and depression, and to adjust nursing interventions accordingly.
Collapse
Affiliation(s)
- Joana Perez-Tejada
- Oncologic Center (Onkologikoa), 121 Begiristain, 20014, San Sebastian, Spain.
| | - Ainitze Labaka
- Department of Nursing II, University of the Basque Country, 105 Begiristain, 20014, San Sebastian, Spain.
| | - Oscar Vegas
- Department of Basic Psychological Processes and Their Development, University of the Basque Country, 70 Tolosa Av., 20018, San Sebastian, Spain.
| | - Aitziber Larraioz
- Oncologic Center (Onkologikoa), 121 Begiristain, 20014, San Sebastian, Spain.
| | - Ane Pescador
- Oncologic Center (Onkologikoa), 121 Begiristain, 20014, San Sebastian, Spain.
| | - Amaia Arregi
- Department of Basic Psychological Processes and Their Development, University of the Basque Country, 70 Tolosa Av., 20018, San Sebastian, Spain.
| |
Collapse
|
16
|
Feng LR, Barb JJ, Regan J, Saligan LN. Plasma metabolomic profile associated with fatigue in cancer patients. Cancer Med 2021; 10:1623-1633. [PMID: 33534943 PMCID: PMC7940245 DOI: 10.1002/cam4.3749] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/18/2020] [Accepted: 01/10/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Metabolomics is the newest -omics methodology and allows for a functional snapshot of the biochemical activity and cellular state. The goal of this study is to characterize metabolomic profiles associated with cancer-related fatigue, a debilitating symptom commonly reported by oncology patients. METHODS Untargeted ultrahigh performance liquid chromatography/mass spectrometry metabolomics approach was used to identify metabolites in plasma samples collected from a total of 197 participants with or without cancer. Partial least squares-discriminant analysis (PLS-DA) was used to identify discriminant metabolite features, and diagnostic performance of selected classifiers was quantified using area under the receiver operating characteristics (AUROC) curve analysis. Pathway enrichment analysis was performed using Fisher's exact test and the Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathway database. FINDINGS The global metabolomics approach yielded a total of 1120 compounds of known identity. Significant metabolic pathways unique to fatigued cancer versus control groups included sphingolipid metabolism, histidine metabolism, and cysteine and methionine metabolism. Significant pathways unique to non-fatigued cancer versus control groups included inositol phosphate metabolism, primary bile acid biosynthesis, ascorbate and aldarate metabolism, starch and sucrose metabolism, and pentose and glucuronate interconversions. Pathways shared between the two comparisons included caffeine metabolism, tyrosine metabolism, steroid hormone biosynthesis, sulfur metabolism, and phenylalanine metabolism. CONCLUSIONS We found significant metabolomic profile differences associated with cancer-related fatigue. By comparing metabolic signatures unique to fatigued cancer patients with metabolites associated with, but not unique to, fatigued cancer individuals (overlap pathways) and metabolites associated with cancer but not fatigue, we provided a broad view of the metabolic phenotype of cancer-related fatigue.
Collapse
Affiliation(s)
- Li Rebekah Feng
- National Institute of Nursing ResearchNational Institutes of HealthBethesdaMDUSA
| | | | - Jeniece Regan
- The Pennsylvania State University College of MedicineHersheyPAUSA
| | - Leorey N. Saligan
- National Institute of Nursing ResearchNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
17
|
Gonzalez-Mercado VJ, Marrero S, Pérez-Santiago J, Tirado-Gómez M, Marrero-Falcón MA, Pedro E, Saligan LN. Association of Radiotherapy-Related Intestinal Injury and Cancer-related Fatigue: A Brief Review and Commentary. PUERTO RICO HEALTH SCIENCES JOURNAL 2021; 40:6-11. [PMID: 33876912 PMCID: PMC9109698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Radiotherapy treatment-induced intestinal injury and gut microbial perturbation/dysbiosis have been implicated in the pathobiology of cancer-related fatigue. The objective of this brief review was to explore the available evidence of the relationship between intestinal injury and self-reported fatigue, especially among cancer patients. The scientific evidence-including our own-linking gut mucosal barrier dysfunction and gut microbial perturbation/dysbiosis induced by cancer treatment with worsening of cancer related fatigue (perhaps through the gut-brain axis) is limited but promising. Emerging data suggest that lifestyle interventions and the administration of specific probiotics may favorably modulate the gut microbiota and potentially mediate beneficial effects leading to improvements in fatigue.
Collapse
Affiliation(s)
| | - Sara Marrero
- College of Arts and Sciences, University of South Florida, Tampa, FL, United States
| | - Josué Pérez-Santiago
- Assistant Professor of Computational Biology and Bioinformatics Director, Puerto Rico Omics Center Comprehensive Cancer Center, University of Puerto Rico San Juan, PR
| | - Maribel Tirado-Gómez
- Assistant Professor of Medicine, Department of Hematology and Oncology, Medical Sciences Campus, University of Puerto Rico, San Juan, PR
| | | | - Elsa Pedro
- Assistant Professor, School of Pharmacy, Medical Sciences Campus, University of Puerto Rico, San Juan, PR
| | - Leorey N Saligan
- Tenure-Track Investigator and Chief of Symptom Biology Unit NINR/NIH, Bethesda, MD, United States
| |
Collapse
|
18
|
Sun X, Zhao B, Qu H, Chen S, Hao X, Chen S, Qin Z, Chen G, Fan Y. Sera and lungs metabonomics reveals key metabolites of resveratrol protecting against PAH in rats. Biomed Pharmacother 2021; 133:110910. [PMID: 33378990 DOI: 10.1016/j.biopha.2020.110910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/12/2020] [Accepted: 10/18/2020] [Indexed: 01/13/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a type of high morbidity and mortality disease. Currently, the intrinsic metabolic alteration and potential mechanism of PAH are still not fully uncovered. Previously, we have found that polyphenol resveratrol (Rev) reversed the remodeling of the pulmonary vasculature and decreased the number of mitochondria in pulmonary arterial smooth muscle cells (PASMCs) (Lei Yu et al. (2017)). However, potential effects of Rev on the changed metabolic molecules derived from lung tissue and serum have no fully elucidated. Thus, we conducted a systematic elaboration through the metabonomics method. Various of metabolites in different pathways including amino acid metabolism, tricarboxylic acid cycle (TCA), acetylcholine metabolism, fatty acid metabolism and biosynthesis in male Wistar rats' sera and lung tissues were explored in three groups (normal group, PAH group, PAH and Rev treatment group). We found that leucine and isoleucine degradation, valine, leucine and isoleucine biosynthesis, tryptophan metabolism and aminoacyl-tRNA biosynthesis were involved in the development of PAH. Hydroxyphenyllactic, isopalmitic acid and cytosine might be significant key metabolites. Further work in this area may inform personalized treatment approaches in clinical practice of PAH through elucidating pathophysiology mechanisms of experimental verification.
Collapse
Affiliation(s)
- Xiangju Sun
- Department of Pharmacy, Fourth Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Baoshan Zhao
- College of Basic Medical Sciences, Harbin Medical University, Daqing, 163319, China
| | - Huichong Qu
- College of Pharmacy, Harbin Medical University, Daqing, 163319, China
| | - Shuo Chen
- College of Pharmacy, Harbin Medical University, Daqing, 163319, China
| | - Xuewei Hao
- Inspection Institute, Harbin Medical University, Daqing, Heilongjiang Province, 163319, China
| | - Siyue Chen
- College of Pharmacy, Harbin Medical University, Daqing, 163319, China
| | - Zhuwen Qin
- College of Pharmacy, Harbin Medical University, Daqing, 163319, China
| | - Guoyou Chen
- College of Pharmacy, Harbin Medical University, Daqing, 163319, China.
| | - Yuhua Fan
- College of Basic Medical Sciences, Harbin Medical University, Daqing, 163319, China.
| |
Collapse
|
19
|
Kimble LP, Leslie S, Carlson N. Metabolomics Research Conducted by Nurse Scientists: A Systematic Scoping Review. Biol Res Nurs 2020; 22:436-448. [PMID: 32648468 PMCID: PMC7708730 DOI: 10.1177/1099800420940041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metabolomics, one of the newest omics, allows for investigation of holistic responses of living systems to myriad biological, behavioral, and environmental factors. Researcher use metabolomics to examine the underlying mechanisms of clinically observed phenotypes. However, these methods are complex, potentially impeding their uptake by scientists. In this scoping review, we summarize literature illustrating nurse scientists' use of metabolomics. Using electronic search methods, we identified metabolomics investigations conducted by nurse scientists and published in English-language journals between 1990 and November 2019. Of the studies included in the review (N = 30), 9 (30%) listed first and/or senior authors that were nurses. Studies were conducted predominantly in the United States and focused on a wide array of clinical conditions across the life span. The upward trend we note in the use of these methods by nurse scientists over the past 2 decades mirrors a similar trend across scientists of all backgrounds. A broad range of study designs were represented in the literature we reviewed, with the majority involving untargeted metabolomics (n = 16, 53.3%) used to generate hypotheses (n = 13, 76.7%) of potential metabolites and/or metabolic pathways as mechanisms of clinical conditions. Metabolomics methods match well with the unique perspective of nurse researchers, who seek to integrate the experiences of individuals to develop a scientific basis for clinical practice that emphasizes personalized approaches. Although small in number, metabolomics investigations by nurse scientists can serve as the foundation for robust programs of research to answer essential questions for nursing.
Collapse
Affiliation(s)
- Laura P Kimble
- School of Nursing, 1371Emory University, Atlanta, GA, USA
| | - Sharon Leslie
- Woodruff Health Sciences Center Library, 1371Emory University, Atlanta, GA, USA
| | - Nicole Carlson
- School of Nursing, 1371Emory University, Atlanta, GA, USA
| |
Collapse
|
20
|
Li H, Liu T, Heinsberg LW, Lockwood MB, Wainwright DA, Jang MK, Doorenbos AZ. Systematic Review of the Kynurenine Pathway and Psychoneurological Symptoms Among Adult Cancer Survivors. Biol Res Nurs 2020; 22:472-484. [PMID: 32602357 PMCID: PMC7708728 DOI: 10.1177/1099800420938141] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The co-occurrence of multiple psychoneurological symptoms, including pain, sleep disturbance, fatigue, depression, anxiety, and cognitive disturbance among adult cancer survivors led us to question which common biological mechanisms are shared among these conditions. Variances in tryptophan (Trp) levels and downstream metabolites of the kynurenine (Kyn) metabolic pathway are known to affect immune response and psychoneurological symptoms. The objective of this systematic review was to help us (a) better understand the role of the Kyn pathway in psychoneurological symptoms among adult cancer survivors and (b) identify common significant biomarkers across psychoneurological symptoms as a guide for future research. Some evidence has shown that decreased Trp levels and increased Kyn, Trp/Kyn ratio, and kynurenic acid/Trp ratio in parallel with immune activation are correlated with some psychoneurological symptoms among people undergoing cancer treatment, although discrepancies exist between studies. Kyn pathway activation could also be associated with psychoneurological symptoms among adult cancer survivors, but further research is needed to confirm its exact etiological role with respect to psychoneurological symptoms.
Collapse
Affiliation(s)
- Hongjin Li
- Department of Biobehavioral Health Science, College of Nursing, University of Illinois, Chicago, IL, USA
- University of Illinois Cancer Center, Chicago, IL, USA
| | - Tingting Liu
- Eleanor Mann School of Nursing, University of Arkansas, Fayetteville, AR, USA
| | - Lacey W Heinsberg
- Department of Health Promotion and Development, School of Nursing, University of Pittsburgh, PA, USA
| | - Mark B Lockwood
- Department of Biobehavioral Health Science, College of Nursing, University of Illinois, Chicago, IL, USA
| | - Derek A Wainwright
- Department of Neurological Surgery, Medicine (Hematology and Oncology) and Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Min Kyeong Jang
- Department of Biobehavioral Health Science, College of Nursing, University of Illinois, Chicago, IL, USA
- University of Illinois Cancer Center, Chicago, IL, USA
| | - Ardith Z Doorenbos
- Department of Biobehavioral Health Science, College of Nursing, University of Illinois, Chicago, IL, USA
- University of Illinois Cancer Center, Chicago, IL, USA
| |
Collapse
|
21
|
Sforzini L, Nettis MA, Mondelli V, Pariante CM. Inflammation in cancer and depression: a starring role for the kynurenine pathway. Psychopharmacology (Berl) 2019; 236:2997-3011. [PMID: 30806743 PMCID: PMC6820591 DOI: 10.1007/s00213-019-05200-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/13/2019] [Indexed: 12/13/2022]
Abstract
Depression is a common comorbidity in cancer cases, but this is not only due to the emotional distress of having a life-threatening disease. A common biological mechanism, involving a dysregulated immune system, seems to underpin this comorbidity. In particular, the activation of the kynurenine pathway of tryptophan degradation due to inflammation may play a key role in the development and persistence of both diseases. As a consequence, targeting enzymes involved in this pathway offers a unique opportunity to develop new strategies to treat cancer and depression at once. In this work, we provide a systematic review of the evidence up to date on the kynurenine pathway role in linking depression and cancer and on clinical implications of this evidence. In particular, complications due to chemotherapy are discussed, as well as the potential antidepressant efficacy of novel immunotherapies for cancer.
Collapse
Affiliation(s)
- Luca Sforzini
- Psychiatry Unit, Department of Biomedical and Clinical Sciences, ASST Fatebenefratelli-Sacco University Hospital, Università di Milano, Milan, Italy
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, London, UK
| | - Maria Antonietta Nettis
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, London, UK.
- National Institute for Health and Research Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK.
| | - Valeria Mondelli
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, London, UK
- National Institute for Health and Research Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Carmine Maria Pariante
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, London, UK
- National Institute for Health and Research Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| |
Collapse
|
22
|
Chen Z, Li Z, Li H, Jiang Y. Metabolomics: a promising diagnostic and therapeutic implement for breast cancer. Onco Targets Ther 2019; 12:6797-6811. [PMID: 31686838 PMCID: PMC6709037 DOI: 10.2147/ott.s215628] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/22/2019] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer among women and the leading cause of cancer death. Despite the advent of numerous diagnosis and treatment methods in recent years, this heterogeneous disease still presents great challenges in early diagnosis, curative treatments and prognosis monitoring. Thus, finding promising early diagnostic biomarkers and therapeutic targets and approaches is meaningful. Metabolomics, which focuses on the analysis of metabolites that change during metabolism, can reveal even a subtle abnormal change in an individual. In recent decades, the exploration of cancer-related metabolomics has increased. Metabolites can be promising biomarkers for the screening, response evaluation and prognosis of BC. In this review, we summarized the workflow of metabolomics, described metabolite signatures based on molecular subtype as well as reclassification and then discussed the application of metabolomics in the early diagnosis, monitoring and prognosis of BC to offer new insights for clinicians in breast cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Zhanghan Chen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China
| | - Zehuan Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China
| | - Haoran Li
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China
| | - Ying Jiang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China
| |
Collapse
|
23
|
Breast Cancer Metabolomics: From Analytical Platforms to Multivariate Data Analysis. A Review. Metabolites 2019; 9:metabo9050102. [PMID: 31121909 PMCID: PMC6572290 DOI: 10.3390/metabo9050102] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/13/2019] [Accepted: 05/17/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer is a major health issue worldwide for many years and has been increasing significantly. Among the different types of cancer, breast cancer (BC) remains the leading cause of cancer-related deaths in women being a disease caused by a combination of genetic and environmental factors. Nowadays, the available diagnostic tools have aided in the early detection of BC leading to the improvement of survival rates. However, better detection tools for diagnosis and disease monitoring are still required. In this sense, metabolomic NMR, LC-MS and GC-MS-based approaches have gained attention in this field constituting powerful tools for the identification of potential biomarkers in a variety of clinical fields. In this review we will present the current analytical platforms and their applications to identify metabolites with potential for BC biomarkers based on the main advantages and advances in metabolomics research. Additionally, chemometric methods used in metabolomics will be highlighted.
Collapse
|
24
|
Bo L, Guojun T, Li G. An Expanded Neuroimmunomodulation Axis: sCD83-Indoleamine 2,3-Dioxygenase-Kynurenine Pathway and Updates of Kynurenine Pathway in Neurologic Diseases. Front Immunol 2018; 9:1363. [PMID: 29963055 PMCID: PMC6013554 DOI: 10.3389/fimmu.2018.01363] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/01/2018] [Indexed: 12/30/2022] Open
Abstract
Many neurologic diseases are related to autoimmune dysfunction and a variety of molecules or reaction pathways are involved in the regulation of immune function of the nervous system. Soluble CD83 (sCD83) is the soluble form of CD83, a specific marker of mature dendritic cell, which has recently been shown to have an immunomodulatory effect. Indoleamine 2,3-dioxygenase (IDO; corresponding enzyme intrahepatic, tryptophan 2,3-dioxygenase, TDO), a rate-limiting enzyme of extrahepatic tryptophan kynurenine pathway (KP) participates in the immunoregulation through a variety of mechanisms solely or with the synergy of sCD83, and the imbalances of metabolites of KP were associated with immune dysfunction. With the complement of sCD83 to IDO-KP, a previously known immunomodulatory axis, this review focused on an expanded neuroimmunomodulation axis: sCD83-IDO-KP and its involvement in nervous system diseases.
Collapse
Affiliation(s)
- Li Bo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tan Guojun
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guo Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|