1
|
Weintraub G, Hadar N, Gudes E, Dolev S, Birk OS. GeniePool 2.0: advancing variant analysis through CHM13-T2T, AlphaMissense, gnomAD V4 integration, and variant co-occurrence queries. Database (Oxford) 2024; 2024:baae130. [PMID: 39729312 PMCID: PMC11673193 DOI: 10.1093/database/baae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 11/24/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024]
Abstract
Originally developed to meet the challenges of genomic data deluge, GeniePool emerged as a pioneering platform, enabling efficient storage, accessibility, and analysis of vast genomic datasets, enabled due to its data lake architecture. Building on this foundation, GeniePool 2.0 advances genomic analysis through the integration of cutting-edge variant databases, such as CHM13-T2T, AlphaMissense, and gnomAD V4, coupled with the capability for variant co-occurrence queries. This evolution offers an unprecedented level of granularity and scope in genomic analyses, from enhancing our understanding of variant pathogenicity and phenotypic associations to facilitating research collaborations. The introduction of CHM13-T2T provides a more accurate reference for human genetic variation, AlphaMissense enriches the platform with protein-level impact predictions of missense mutations, and gnomAD V4 offers a comprehensive view of human genetic diversity. Additionally, the innovative feature for variant co-occurrence analysis is pivotal for exploring the combined effects of genetic variations, advancing our comprehension of compound heterozygosity, epistasis, and polygenic risk factors in disease pathogenesis. GeniePool 2.0 is a comprehensive and scalable platform, which aims to enhance genomic data analysis and contribute to genomic research, potentially supporting new discoveries and clinical innovations. Database URL: https://GeniePool.link.
Collapse
Affiliation(s)
- Grisha Weintraub
- Department of Computer Science, Faculty of Natural Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Noam Hadar
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ehud Gudes
- Department of Computer Science, Faculty of Natural Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Shlomi Dolev
- Department of Computer Science, Faculty of Natural Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ohad S Birk
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
2
|
Krushkal J, Zhao Y, Roney K, Zhu W, Brooks A, Wilsker D, Parchment RE, McShane LM, Doroshow JH. Association of changes in expression of HDAC and SIRT genes after drug treatment with cancer cell line sensitivity to kinase inhibitors. Epigenetics 2024; 19:2309824. [PMID: 38369747 PMCID: PMC10878021 DOI: 10.1080/15592294.2024.2309824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/14/2024] [Indexed: 02/20/2024] Open
Abstract
Histone deacetylases (HDACs) and sirtuins (SIRTs) are important epigenetic regulators of cancer pathways. There is a limited understanding of how transcriptional regulation of their genes is affected by chemotherapeutic agents, and how such transcriptional changes affect tumour sensitivity to drug treatment. We investigated the concerted transcriptional response of HDAC and SIRT genes to 15 approved antitumor agents in the NCI-60 cancer cell line panel. Antitumor agents with diverse mechanisms of action induced upregulation or downregulation of multiple HDAC and SIRT genes. HDAC5 was upregulated by dasatinib and erlotinib in the majority of the cell lines. Tumour cell line sensitivity to kinase inhibitors was associated with upregulation of HDAC5, HDAC1, and several SIRT genes. We confirmed changes in HDAC and SIRT expression in independent datasets. We also experimentally validated the upregulation of HDAC5 mRNA and protein expression by dasatinib in the highly sensitive IGROV1 cell line. HDAC5 was not upregulated in the UACC-257 cell line resistant to dasatinib. The effects of cancer drug treatment on expression of HDAC and SIRT genes may influence chemosensitivity and may need to be considered during chemotherapy.
Collapse
Affiliation(s)
- Julia Krushkal
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD, USA
| | - Yingdong Zhao
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD, USA
| | - Kyle Roney
- Department of Biostatistics and Bioinformatics, George Washington University, Washington, DC, USA
| | - Weimin Zhu
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Alan Brooks
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Deborah Wilsker
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ralph E. Parchment
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Lisa M. McShane
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD, USA
| | - James H. Doroshow
- Division of Cancer Treatment and Diagnosis and Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
3
|
Batara DC, Kim HJ, Phan LT, Kim M, Son YO, Lee S, Park SI, Choi YS, Beck S, Kim SH. Elevated α-1,2-mannosidase MAN1C1 in glioma stem cells and its implications for immunological changes and prognosis in glioma patients. Sci Rep 2024; 14:22159. [PMID: 39333557 PMCID: PMC11436702 DOI: 10.1038/s41598-024-72901-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive type of primary brain tumor, and the presence of glioma stem cells (GSCs) has been linked to its resistance to treatments and recurrence. Additionally, aberrant glycosylation has been implicated in the aggressiveness of cancers. However, the influence and underlying mechanism of N-glycosylation on the GSC phenotype and GBM malignancy remain elusive. Here, we performed an in-silico analysis approach on publicly available datasets to examine the function of N-glycosylation-related genes in GSCs and gliomas, accompanied by a qRT-PCR validation experiment. We found that high α-1,2-mannosidase MAN1C1 is associated with immunological functions and worse survival of glioma patients. Differential gene expression analysis and qRT-PCR validation revealed that MAN1C1 is highly expressed in GSCs. Furthermore, higher MAN1C1 expression predicts worse outcomes in glioma patients. Also, MAN1C1 expression is increased in the perinecrotic region of GBM and is associated with immunological and inflammatory functions, a hallmark of the GBM mesenchymal subtype. Further analysis confirmed that MAN1C1 expression is closely associated with infiltrating immune cells and disrupted immune response in the GBM microenvironment. These suggest that MAN1C1 is a potential biomarker for gliomas and may be important as an immunotherapeutic target for GBM.
Collapse
Affiliation(s)
- Don Carlo Batara
- Animal Molecular Biochemistry Laboratory, Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyun-Jin Kim
- Animal Molecular Biochemistry Laboratory, Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Le Thi Phan
- Animal Molecular Biochemistry Laboratory, Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Minseo Kim
- Animal Molecular Biochemistry Laboratory, Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Young-Ok Son
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea
| | - Seongsoo Lee
- Gwangju Center, Korea Basic Science Institute (KBSI), 49, Dosicheomdansaneop-ro, Nam-gu, Gwangju, 61751, Republic of Korea
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Sang-Ik Park
- Laboratory of Veterinary Pathology, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Young Sun Choi
- Jeollanam-do Agriculture Research and Extension Services Livestock Research Institute, Naju-si, Jeollanam-do, 58213, Republic of Korea
| | - Samuel Beck
- Department of Dermatology, Center for Aging Research, Chobanian & Avedisian School of Medicine, Boston University, Boston, 02118, USA.
| | - Sung-Hak Kim
- Animal Molecular Biochemistry Laboratory, Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
4
|
Gao S, Wu X, Lou X, Cui W. Identification of a prognostic risk-scoring model and risk signatures based on glycosylation-associated cluster in breast cancer. Front Genet 2022; 13:960567. [PMID: 36338982 PMCID: PMC9630632 DOI: 10.3389/fgene.2022.960567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
Breast cancer is a heterogeneous disease whose subtypes represent different histological origins, prognoses, and therapeutic sensitivity. But there remains a strong need for more specific biomarkers and broader alternatives for personalized treatment. Our study classified breast cancer samples from The Cancer Genome Atlas (TCGA) into three groups based on glycosylation-associated genes and then identified differentially expressed genes under different glycosylation patterns to construct a prognostic model. The final prognostic model containing 23 key molecules achieved exciting performance both in the TCGA training set and testing set GSE42568 and GSE58812. The risk score also showed a significant difference in predicting overall clinical survival and immune infiltration analysis. This work helped us to understand the heterogeneity of breast cancer from another perspective and indicated that the identification of risk scores based on glycosylation patterns has potential clinical implications and immune-related value for breast cancer.
Collapse
Affiliation(s)
- Shengnan Gao
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/ State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinjie Wu
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- Department of Orthopedic Surgery, China-Japan Friendship Hospital, Beijing, China
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Xiaoying Lou
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/ State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Cui
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/ State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Wei Cui,
| |
Collapse
|
5
|
Rujchanarong D, Scott D, Park Y, Brown S, Mehta AS, Drake R, Sandusky GE, Nakshatri H, Angel PM. Metabolic Links to Socioeconomic Stresses Uniquely Affecting Ancestry in Normal Breast Tissue at Risk for Breast Cancer. Front Oncol 2022; 12:876651. [PMID: 35832545 PMCID: PMC9273232 DOI: 10.3389/fonc.2022.876651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
A primary difference between black women (BW) and white women (WW) diagnosed with breast cancer is aggressiveness of the tumor. Black women have higher mortalities with similar incidence of breast cancer compared to other race/ethnicities, and they are diagnosed at a younger age with more advanced tumors with double the rate of lethal, triple negative breast cancers. One hypothesis is that chronic social and economic stressors result in ancestry-dependent molecular responses that create a tumor permissive tissue microenvironment in normal breast tissue. Altered regulation of N-glycosylation of proteins, a glucose metabolism-linked post-translational modification attached to an asparagine (N) residue, has been associated with two strong independent risk factors for breast cancer: increased breast density and body mass index (BMI). Interestingly, high body mass index (BMI) levels have been reported to associate with increases of cancer-associated N-glycan signatures. In this study, we used matrix assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) to investigate molecular pattern changes of N-glycosylation in ancestry defined normal breast tissue from BW and WW with significant 5-year risk of breast cancer by Gail score. N-glycosylation was tested against social stressors including marital status, single, education, economic status (income), personal reproductive history, the risk factors BMI and age. Normal breast tissue microarrays from the Susan G. Komen tissue bank (BW=43; WW= 43) were used to evaluate glycosylation against socioeconomic stress and risk factors. One specific N-glycan (2158 m/z) appeared dependent on ancestry with high sensitivity and specificity (AUC 0.77, Brown/Wilson p-value<0.0001). Application of a linear regression model with ancestry as group variable and socioeconomic covariates as predictors identified a specific N-glycan signature associated with different socioeconomic stresses. For WW, household income was strongly associated to certain N-glycans, while for BW, marital status (married and single) was strongly associated with the same N-glycan signature. Current work focuses on understanding if combined N-glycan biosignatures can further help understand normal breast tissue at risk. This study lays the foundation for understanding the complexities linking socioeconomic stresses and molecular factors to their role in ancestry dependent breast cancer risk.
Collapse
Affiliation(s)
- Denys Rujchanarong
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC, United States
| | - Danielle Scott
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC, United States
| | - Yeonhee Park
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, United States
| | - Sean Brown
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC, United States
| | - Anand S. Mehta
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC, United States
| | - Richard Drake
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC, United States
| | - George E. Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Peggi M. Angel
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
6
|
Krushkal J, Negi S, Yee LM, Evans JR, Grkovic T, Palmisano A, Fang J, Sankaran H, McShane LM, Zhao Y, O'Keefe BR. Molecular genomic features associated with in vitro response of the NCI-60 cancer cell line panel to natural products. Mol Oncol 2021; 15:381-406. [PMID: 33169510 PMCID: PMC7858122 DOI: 10.1002/1878-0261.12849] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/29/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022] Open
Abstract
Natural products remain a significant source of anticancer chemotherapeutics. The search for targeted drugs for cancer treatment includes consideration of natural products, which may provide new opportunities for antitumor cytotoxicity as single agents or in combination therapy. We examined the association of molecular genomic features in the well-characterized NCI-60 cancer cell line panel with in vitro response to treatment with 1302 small molecules which included natural products, semisynthetic natural product derivatives, and synthetic compounds based on a natural product pharmacophore from the Developmental Therapeutics Program of the US National Cancer Institute's database. These compounds were obtained from a variety of plant, marine, and microbial species. Molecular information utilized for the analysis included expression measures for 23059 annotated transcripts, lncRNAs, and miRNAs, and data on protein-changing single nucleotide variants in 211 cancer-related genes. We found associations of expression of multiple genes including SLFN11, CYP2J2, EPHX1, GPC1, ELF3, and MGMT involved in DNA damage repair, NOTCH family members, ABC and SLC transporters, and both mutations in tyrosine kinases and BRAF V600E with NCI-60 responses to specific categories of natural products. Hierarchical clustering identified groups of natural products, which correlated with a specific mechanism of action. Specifically, several natural product clusters were associated with SLFN11 gene expression, suggesting that potential action of these compounds may involve DNA damage. The associations between gene expression or genome alterations of functionally relevant genes with the response of cancer cells to natural products provide new information about potential mechanisms of action of these identified clusters of compounds with potentially similar biological effects. This information will assist in future drug discovery and in design of new targeted cancer chemotherapy agents.
Collapse
Affiliation(s)
- Julia Krushkal
- Biometric Research ProgramDivision of Cancer Treatment and DiagnosisNational Cancer InstituteNIHRockvilleMDUSA
| | - Simarjeet Negi
- Biometric Research ProgramDivision of Cancer Treatment and DiagnosisNational Cancer InstituteNIHRockvilleMDUSA
| | - Laura M. Yee
- Biometric Research ProgramDivision of Cancer Treatment and DiagnosisNational Cancer InstituteNIHRockvilleMDUSA
| | - Jason R. Evans
- Natural Products BranchDevelopmental Therapeutics ProgramDivision of Cancer Treatment and DiagnosisNational Cancer InstituteFrederickMDUSA
| | - Tanja Grkovic
- Natural Products Support GroupFrederick National Laboratory for Cancer ResearchFrederickMDUSA
| | - Alida Palmisano
- Biometric Research ProgramDivision of Cancer Treatment and DiagnosisNational Cancer InstituteNIHRockvilleMDUSA
- General Dynamics Information Technology (GDIT)Falls ChurchVAUSA
| | - Jianwen Fang
- Biometric Research ProgramDivision of Cancer Treatment and DiagnosisNational Cancer InstituteNIHRockvilleMDUSA
| | - Hari Sankaran
- Biometric Research ProgramDivision of Cancer Treatment and DiagnosisNational Cancer InstituteNIHRockvilleMDUSA
| | - Lisa M. McShane
- Biometric Research ProgramDivision of Cancer Treatment and DiagnosisNational Cancer InstituteNIHRockvilleMDUSA
| | - Yingdong Zhao
- Biometric Research ProgramDivision of Cancer Treatment and DiagnosisNational Cancer InstituteNIHRockvilleMDUSA
| | - Barry R. O'Keefe
- Natural Products BranchDevelopmental Therapeutics ProgramDivision of Cancer Treatment and DiagnosisNational Cancer InstituteFrederickMDUSA
- Molecular Targets ProgramCenter for Cancer ResearchNational Cancer InstituteFrederickMDUSA
| |
Collapse
|
7
|
Treatment of cancer stem cells from human colon adenocarcinoma cell line HT-29 with resveratrol and sulindac induced mesenchymal-endothelial transition rate. Cell Tissue Res 2019; 376:377-388. [DOI: 10.1007/s00441-019-02998-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 01/21/2019] [Indexed: 02/07/2023]
|
8
|
Monks A, Zhao Y, Hose C, Hamed H, Krushkal J, Fang J, Sonkin D, Palmisano A, Polley EC, Fogli LK, Konaté MM, Miller SB, Simpson MA, Voth AR, Li MC, Harris E, Wu X, Connelly JW, Rapisarda A, Teicher BA, Simon R, Doroshow JH. The NCI Transcriptional Pharmacodynamics Workbench: A Tool to Examine Dynamic Expression Profiling of Therapeutic Response in the NCI-60 Cell Line Panel. Cancer Res 2018; 78:6807-6817. [PMID: 30355619 PMCID: PMC6295263 DOI: 10.1158/0008-5472.can-18-0989] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/24/2018] [Accepted: 10/16/2018] [Indexed: 12/31/2022]
Abstract
: The intracellular effects and overall efficacies of anticancer therapies can vary significantly by tumor type. To identify patterns of drug-induced gene modulation that occur in different cancer cell types, we measured gene-expression changes across the NCI-60 cell line panel after exposure to 15 anticancer agents. The results were integrated into a combined database and set of interactive analysis tools, designated the NCI Transcriptional Pharmacodynamics Workbench (NCI TPW), that allows exploration of gene-expression modulation by molecular pathway, drug target, and association with drug sensitivity. We identified common transcriptional responses across agents and cell types and uncovered gene-expression changes associated with drug sensitivity. We also demonstrated the value of this tool for investigating clinically relevant molecular hypotheses and identifying candidate biomarkers of drug activity. The NCI TPW, publicly available at https://tpwb.nci.nih.gov, provides a comprehensive resource to facilitate understanding of tumor cell characteristics that define sensitivity to commonly used anticancer drugs. SIGNIFICANCE: The NCI Transcriptional Pharmacodynamics Workbench represents the most extensive compilation to date of directly measured longitudinal transcriptional responses to anticancer agents across a thoroughly characterized ensemble of cancer cell lines.
Collapse
Affiliation(s)
- Anne Monks
- Molecular Pharmacology Group, Frederick National Laboratory for Cancer Research sponsored by the NCI, Frederick, Maryland
| | - Yingdong Zhao
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Rockville, Maryland
| | - Curtis Hose
- Molecular Pharmacology Group, Frederick National Laboratory for Cancer Research sponsored by the NCI, Frederick, Maryland
| | - Hossein Hamed
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Rockville, Maryland
| | - Julia Krushkal
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Rockville, Maryland
| | - Jianwen Fang
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Rockville, Maryland
| | - Dmitriy Sonkin
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Rockville, Maryland
| | - Alida Palmisano
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Rockville, Maryland
| | - Eric C Polley
- Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Laura K Fogli
- Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Mariam M Konaté
- Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Sarah B Miller
- Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Melanie A Simpson
- Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research sponsored by the NCI, Frederick, Maryland
| | - Andrea Regier Voth
- Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research sponsored by the NCI, Frederick, Maryland
| | - Ming-Chung Li
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Rockville, Maryland
| | - Erik Harris
- Molecular Pharmacology Group, Frederick National Laboratory for Cancer Research sponsored by the NCI, Frederick, Maryland
| | - Xiaolin Wu
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the NCI, Frederick, Maryland
| | - John W Connelly
- Molecular Pharmacology Group, Frederick National Laboratory for Cancer Research sponsored by the NCI, Frederick, Maryland
| | - Annamaria Rapisarda
- Molecular Pharmacology Group, Frederick National Laboratory for Cancer Research sponsored by the NCI, Frederick, Maryland
| | - Beverly A Teicher
- Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Richard Simon
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Rockville, Maryland
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland.
- Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| |
Collapse
|