1
|
Naderain H, Khanlarkhani N, Ragerdi Kashani I, Atlasi A, Atlasi MA. Comparison of the effects of progesterone and 17 β-estradiol on Schwann cell markers expression in rat adipose-derived stem cells. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2019; 9:307-313. [PMID: 30713608 PMCID: PMC6346486 DOI: 10.30466/vrf.2018.33103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/21/2018] [Indexed: 11/22/2022]
Abstract
Steroids promote the myelination and regeneration in the peripheral nervous system. Whereas, little is known about the inducing effects by which the hormones exert their effects on Schwann cells differentiation. This could be revealed by the expression of Schwann cell markers in adipose-derived stem cells (ADSCs). The purpose of this study was to present the effects of progesterone and 17 β-estradiol on the Schwann cell markers in rat ADSCs. The mesenchymal stem cell markers (CD73, and CD90) were assayed by flow cytometry. Rat ADSCs were sequentially treated with β-mercaptoethanol, and all-trans-retinoic acid, followed by a mixture of basic fibrobroblast growth factor, platelet-derived growth factor, forskolin and heregulin. In experimental groups, forskolin and heregulin were substituted by progesterone and 17 β-estradiol. After induction, the expression of Schwann cell markers P0, and S-100 and the cellular immunocytochemical staining positive rate of anti-S100 and anti-glial fibrillary acidic protein (GFAP) antibodies were compared in the experimental and control groups. Progesterone and 17 β-estradiol triggered P0 and S-100 genes expression and induced a cellular immunocytochemical staining positive rate of S-100 and GFAP in rats ADSCs. Progesterone induced these changes stronger than 17 β-estradiol. Thus, progesterone may induce rat ADSCs toward Schwann-like cells by expression of Schwann cell markers and is more potent than 17 β-estradiol in the expression of these markers.
Collapse
Affiliation(s)
- Homayoun Naderain
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Neda Khanlarkhani
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Iraj Ragerdi Kashani
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirabbas Atlasi
- Student Research Committee, Faculty of Dentistry, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Ali Atlasi
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
2
|
Heritability of in vitro phenotypes exhibited by murine adipose-derived stromal cells. Mamm Genome 2016; 27:460-8. [PMID: 27393554 DOI: 10.1007/s00335-016-9655-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/27/2016] [Indexed: 01/17/2023]
Abstract
Adipose-derived stromal cells (ADSCs) exhibit significant potential as therapeutic agents to promote tissue regeneration. Success of ADSC-based therapies is dependent upon efficient cell expansion in vitro as well as postinjection survival in the caustic milieu of damaged tissue. Genetic background regulates ADSC proliferative capacity and stress resistance, but the extent of the genetic effect size is not completely defined. The present study aimed to quantify phenotypic ranges and heritability of in vitro ADSC characteristics. ADSCs were isolated from mice representing 16 genetically diverse inbred mouse strains, including 12 classical inbred strains and four wild-derived strains. Cells were grown in vitro, and proliferative capacity and oxidative stress resistance were assessed. The fold change for ADSC growth ranged from 0.87 (BALB/cByJ) to 23.60 (POHN/DehJ), relative to original seeding density. The heritability of proliferative capacity was estimated to be 0.6462 (p = 9.967 × 10(-15)), and this phenotype was not associated with other ADSC traits. Cell viability following H2O2 treatment ranged from 39.81 % (CAST/EiJ) to 91.60 % (DBA/2 J), and the heritability of this phenotype was calculated as 0.6146 (p = 1.22 × 10(-12)). Relationships between cell viability and weight of the donor fat pad were also discovered. Donor genetic background is a major determinant of in vitro ADSC phenotypes. This study supports the development of forward genetics strategies to identify genes that underlie ADSC phenotypic diversity, which will inform efforts to improve cell-based therapies.
Collapse
|
3
|
Feisst V, Meidinger S, Locke MB. From bench to bedside: use of human adipose-derived stem cells. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2015; 8:149-62. [PMID: 26586955 PMCID: PMC4636091 DOI: 10.2147/sccaa.s64373] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Since the discovery of adipose-derived stem cells (ASC) in human adipose tissue nearly 15 years ago, significant advances have been made in progressing this promising cell therapy tool from the laboratory bench to bedside usage. Standardization of nomenclature around the different cell types used is finally being adopted, which facilitates comparison of results between research groups. In vitro studies have assessed the ability of ASC to undergo mesenchymal differentiation as well as differentiation along alternate lineages (transdifferentiation). Recently, focus has shifted to the immune modulatory and paracrine effects of transplanted ASC, with growing interest in the ASC secretome as a source of clinical effect. Bedside use of ASC is advancing alongside basic research. An increasing number of safety-focused Phase I and Phase IIb trials have been published without identifying any significant risks or adverse events in the short term. Phase III trials to assess efficacy are currently underway. In many countries, regulatory frameworks are being developed to monitor their use and assure their safety. As many trials rely on ASC injected at a distant site from the area of clinical need, strategies to improve the homing and efficacy of transplanted cells are also being explored. This review highlights each of these aspects of the bench-to-bedside use of ASC and summarizes their clinical utility across a variety of medical specialties.
Collapse
Affiliation(s)
- Vaughan Feisst
- Dunbar Laboratory, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Sarah Meidinger
- Dunbar Laboratory, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Michelle B Locke
- Department of Surgery, Faculty of Medicine and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Ghasemi N, Razavi S. Transdifferentiation potential of adipose-derived stem cells into neural lineage and their application. ACTA ACUST UNITED AC 2014. [DOI: 10.7243/2055-091x-1-12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
East E, Johns N, Georgiou M, Golding JP, Loughlin AJ, Kingham PJ, Phillips JB. A 3D in vitro model reveals differences in the astrocyte response elicited by potential stem cell therapies for CNS injury. Regen Med 2013; 8:739-46. [PMID: 24147529 PMCID: PMC3831573 DOI: 10.2217/rme.13.61] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
AIM This study aimed to develop a 3D culture model to test the extent to which transplanted stem cells modulate astrocyte reactivity, where exacerbated glial cell activation could be detrimental to CNS repair success. MATERIALS & METHODS The reactivity of rat astrocytes to bone marrow mesenchymal stem cells, neural crest stem cells (NCSCs) and differentiated adipose-derived stem cells was assessed after 5 days. Schwann cells were used as a positive control. RESULTS NCSCs and differentiated Schwann cell-like adipose-derived stem cells did not increase astrocyte reactivity. Highly reactive responses to bone marrow mesenchymal stem cells and Schwann cells were equivalent. CONCLUSION This approach can screen therapeutic cells prior to in vivo testing, allowing cells likely to trigger a substantial astrocyte response to be identified at an early stage. NCSCs and differentiated Schwann cell-like adipose-derived stem cells may be useful in treating CNS damage without increasing astrogliosis.
Collapse
Affiliation(s)
- Emma East
- Department of Life Health & Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Noémie Johns
- Department of Life Health & Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Melanie Georgiou
- Department of Life Health & Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Jon P Golding
- Department of Life Health & Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - A Jane Loughlin
- Department of Life Health & Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Paul J Kingham
- Department of Integrative Medical Biology, Umeå University, SE 901 87, Umeå, Sweden
| | - James B Phillips
- Department of Life Health & Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
- Department of Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, 256 Gray’s Inn Road, London WC1X 8LD, UK
| |
Collapse
|
6
|
Pazdro R, Harrison DE. Murine adipose tissue-derived stromal cell apoptosis and susceptibility to oxidative stress in vitro are regulated by genetic background. PLoS One 2013; 8:e61235. [PMID: 23593442 PMCID: PMC3617166 DOI: 10.1371/journal.pone.0061235] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 03/08/2013] [Indexed: 11/24/2022] Open
Abstract
Adipose tissue-derived stromal cells (ADSCs) are of interest for regenerative medicine as they are isolated easily and can differentiate into multiple cell lineages. Studies of their in vitro proliferation, survival, and differentiation are common; however, genetic effects on these phenotypes remain unknown. To test if these phenotypes are genetically regulated, ADSCs were isolated from three genetically diverse inbred mouse strains- C57BL/6J (B6), BALB/cByJ (BALB), and DBA/2J (D2)- in which genetic regulation of hematopoietic stem function is well known. ADSCs from all three strains differentiated into osteogenic and chondrogenic lineages in vitro. ADSCs from BALB grew least well in vitro, probably due to apoptotic cell death after several days in culture. BALB ADSCs were also the most susceptible to the free radical inducers menadione and H2O2. ADSCs from the three possible F1 hybrids were employed to further define genetic regulation of ADSC phenotypes. D2, but not B6, alleles stimulated ADSC expansion in BALB cells. In contrast, B6, but not D2, alleles rescued BALB H2O2 resistance. We conclude that low oxidative stress resistance does not limit BALB ADSC growth in vitro, as these phenotypes are genetically regulated independently. In addition, ADSCs from these strains are an appropriate model system to investigate genetic regulation of ADSC apoptosis and stress resistance in future studies. Such investigations are essential to optimize cell expansion and differentiation and thus, potential for regenerative medicine.
Collapse
Affiliation(s)
- Robert Pazdro
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - David E. Harrison
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- * E-mail:
| |
Collapse
|
7
|
Takahashi H, Haraguchi N, Nishikawa S, Miyazaki S, Suzuki Y, Mizushima T, Nishimura J, Takemasa I, Yamamoto H, Mimori K, Ishii H, Doki Y, Mori M. Biological and clinical availability of adipose-derived stem cells for pelvic dead space repair. Stem Cells Transl Med 2012. [PMID: 23197692 DOI: 10.5966/sctm.2012-0085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) are a very attractive cell source for regenerative and reconstructive medicine. Although ADSCs have already been used in cardiovascular disease and cosmetic surgery, they have not yet been used in gastroenterological surgery. In this study, we clarified the utility of the combined application of ADSCs and resected intraperitoneal fatty tissues as a sealant for the pelvic dead space that sometimes causes severe and fatal complications in colorectal and gynecological surgeries. In pelvic dead space model mice, mouse ADSCs efficiently maintained transplanted intraperitoneal fatty tissues without any incidence of adhesion to surrounding organs. In vivo and in vitro analyses revealed that transplanted ADSCs differentiated into endothelial cells by expressing the angiogenic factors vascular endothelial growth factor and hepatocyte growth factor. Mouse and human ADSCs contained a CD45(-)CD34(+) subset possessing high colony formation and sphere formation abilities. In addition, the CD45(-)CD34(+) subset consisted of two characteristic subsets: the CD34(+)CD90(+) angiogenic subset and the CD34(+)CD90(-) adipogenic subset. Grafts of human ADSCs with fat transplanted into mice were efficiently maintained for more than 12 months without volume reductions. A comparative study of graft maintenance efficacy between cultured human ADSCs and freshly isolated ADSCs indicated that the cultivation of ADSCs decreased their graft maintenance ability. These findings suggested that the angiogenic and adipogenic subsets act in coordination with each other and are essential for efficient graft maintenance.
Collapse
Affiliation(s)
- Hidekazu Takahashi
- Department of Gastroenterological Surgery, Osaka University, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|