1
|
Sanchez-Cano A, Luesma-Bartolomé MJ, Solanas E, Orduna-Hospital E. Comparative Effects of Red and Blue LED Light on Melatonin Levels During Three-Hour Exposure in Healthy Adults. Life (Basel) 2025; 15:715. [PMID: 40430143 PMCID: PMC12113466 DOI: 10.3390/life15050715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/25/2025] [Accepted: 04/26/2025] [Indexed: 05/29/2025] Open
Abstract
Circadian rhythms, essential for regulating human physiology and behavior, are influenced by light exposure, particularly at night. This study examined the impact of red (631 nm) and blue (464 nm) LED light on melatonin secretion, a key circadian marker. Twelve participants aged 19-55 years were exposed to red and blue light for three hours (9:00 p.m.-midnight), with hourly saliva samples analyzed via ELISA to track melatonin levels. Initially, melatonin levels were comparable under both light conditions. After one hour, both lights suppressed melatonin, but differences emerged after two hours: blue light-maintained suppression, with levels at 7.5 pg/mL, while red light allowed recovery to 26.0 pg/mL (p = 0.019). This pattern persisted at the third hour. Blue light had stronger suppression effects, particularly in younger participants and men. These results underscore blue light's disruptive effects on circadian health and highlight red light as a less disruptive alternative for nighttime environments.
Collapse
Affiliation(s)
- Ana Sanchez-Cano
- Department of Applied Physics, University of Zaragoza, 50009 Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragon), 50009 Zaragoza, Spain
| | - María José Luesma-Bartolomé
- Department of Human Anatomy and Histology, University of Zaragoza, 50009 Zaragoza, Spain; (M.J.L.-B.); (E.S.)
| | - Estela Solanas
- Department of Human Anatomy and Histology, University of Zaragoza, 50009 Zaragoza, Spain; (M.J.L.-B.); (E.S.)
| | - Elvira Orduna-Hospital
- Department of Applied Physics, University of Zaragoza, 50009 Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragon), 50009 Zaragoza, Spain
| |
Collapse
|
2
|
Hartstein LE, Wright KP, Behn CD, Stowe S, LeBourgeois MK. The Circadian Response to Evening Light Spectra in Early Childhood: Preliminary Insights. J Biol Rhythms 2025; 40:181-193. [PMID: 39773135 PMCID: PMC11922671 DOI: 10.1177/07487304241311652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Although the sensitivity of the circadian system to the characteristics of light (e.g., biological timing, intensity, duration, spectrum) has been well studied in adults, data in early childhood remain limited. Utilizing a crossover, within-subjects design, we examined differences in the circadian response to evening light exposure at two different correlated color temperatures (CCT) in preschool-aged children. Healthy, good sleeping children (n = 10, 3.0-5.9 years) completed two 10-day protocols. In each protocol, after maintaining a stable sleep schedule for 7 days, a 3-day in-home dim-light circadian assessment was performed. On the first and third evenings of the in-home protocol, dim-light melatonin onset (DLMO) was assessed. On the second evening, children received a 1-h light exposure of 20 lux from either 2700 K (low CCT) or 5000 K (high CCT) (~9 and ~16 melanopic equivalent daylight illuminance (mEDI lux), respectively) centered around their habitual bedtime. Children received the remaining light condition during their second protocol, with the order counterbalanced across participants. Salivary melatonin was collected to compute melatonin suppression and circadian phase shift resulting from each experimental light condition. Melatonin suppression across the 1-h light stimulus was significantly greater during exposure to the high CCT light (M = 56.3%, SD = 19.25%) than during the low CCT light (M = 23.90%, SD = 41.06%). Both light conditions resulted in marked delays of circadian timing, but only a small difference (d = -0.25) was observed in the delay between the 5000 K (M = 35.3 min, SD = 34.3 min) and 2700 K (M = 26.7 min, SD = 15.9 min) conditions. Together, these findings add to a growing literature demonstrating high responsivity of the circadian clock to evening light exposure in early childhood and provide preliminary evidence of melatonin suppression sensitivity to differences in light spectrum in preschool-aged children.
Collapse
Affiliation(s)
- Lauren E. Hartstein
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
- Department of Psychiatry, The University of Arizona College of Medicine Tucson, Tucson, AZ, USA
| | - Kenneth P. Wright
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Cecilia Diniz Behn
- Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, CO, USA
- Division of Endocrinology, Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Shelby Stowe
- Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, CO, USA
| | | |
Collapse
|
3
|
Liu J, Cao Y, Fan T, Zhao J, Zhu T, Gao H, Tao F, Zhu B. The association between outdoor artificial light at night exposure and antenatal depression and anxiety symptoms: A retrospective cohort study in China. ENVIRONMENTAL RESEARCH 2025; 266:120515. [PMID: 39631650 DOI: 10.1016/j.envres.2024.120515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Outdoor artificial light at night (ALAN) has emerged as a significant source of environmental pollution, however its association with antenatal depression and anxiety symptoms has been rarely explored before. METHODS This study was based on a cohort study conducted at the Maternal and Child Health Care Center in Ma'anshan City, Anhui Province, China, which ultimately included 1047 pregnant women. Depression and anxiety symptoms were evaluated utilizing the self-administered Patient Health Questionnaire (PHQ-9) and the 7-item Generalized Anxiety Scale (GAD-7), respectively. Exposure levels to outdoor ALAN were calculated utilizing satellite data and the participants' usual addresses. Logistic regression and restricted cubic spline were used to assess the association between exposure to outdoor ALAN and depression and anxiety symptoms in pregnant women. RESULTS After adjusting for confounding factors, high ALAN exposure during the pre-pregnancy period (ORdepression = 3.16, 95% CI: 1.14-8.75; ORanxiety = 3.09, 95% CI: 1.51-6.28) and first trimester (ORdepression = 2.90, 95% CI: 1.13-7.45; ORanxiety = 3.11, 95% CI: 1.55-6.25) were associated with increased risks of antenatal depression and anxiety symptoms. Restricted cubic spline analyses showed the above associations were not nonlinear. CONCLUSION Our study is the first to propose that exposure to high levels of outdoor ALAN three months before pregnancy and during the first trimester of pregnancy is a risk factor for antenatal depression and anxiety symptoms.
Collapse
Affiliation(s)
- Jingjing Liu
- Anhui Medical University, School of Public Health, Department of Maternal, Child and Adolescent Health, Center for Big Data and Population Health of IHM, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yidan Cao
- Anhui Medical University, School of Public Health, Department of Maternal, Child and Adolescent Health, Center for Big Data and Population Health of IHM, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Tuyan Fan
- Anhui Medical University, School of Public Health, Department of Maternal, Child and Adolescent Health, Center for Big Data and Population Health of IHM, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jiawen Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Tianli Zhu
- Anhui Medical University, School of Public Health, Department of Maternal, Child and Adolescent Health, Center for Big Data and Population Health of IHM, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hui Gao
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Fangbiao Tao
- Anhui Medical University, School of Public Health, Department of Maternal, Child and Adolescent Health, Center for Big Data and Population Health of IHM, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Beibei Zhu
- Anhui Medical University, School of Public Health, Department of Maternal, Child and Adolescent Health, Center for Big Data and Population Health of IHM, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
4
|
Longcore T, Villanueva SAMB, Nguyen-Ngo K, Ghiani CA, Harrison B, Colwell CS. Relative importance of intensity and spectrum of artificial light at night in disrupting behavior of a nocturnal rodent. J Exp Biol 2024; 227:jeb247235. [PMID: 38873751 PMCID: PMC11418196 DOI: 10.1242/jeb.247235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/01/2024] [Indexed: 06/15/2024]
Abstract
The influence of light spectral properties on circadian rhythms is of substantial interest to laboratory-based investigation of the circadian system and to field-based understanding of the effects of artificial light at night. The trade-offs between intensity and spectrum regarding masking behaviors are largely unknown, even for well-studied organisms. We used a custom LED illumination system to document the response of wild-type house mice (Mus musculus) to 1-h nocturnal exposure of all combinations of four intensity levels (0.01, 0.5, 5 and 50 lx) and three correlated color temperatures (CCT; 1750, 1950 and 3000 K). Higher intensities of light (50 lx) suppressed cage activity substantially, and consistently more for the higher CCT light (91% for 3000 K, 53% for 1750 K). At the lowest intensity (0.01 lx), mean activity was increased, with the greatest increases for the lowest CCT (12.3% increase at 1750 K, 3% increase at 3000 K). Multiple linear regression confirmed the influence of both CCT and intensity on changes in activity, with the scaled effect size of intensity 3.6 times greater than that of CCT. Activity suppression was significantly lower for male than for female mice. Assessment of light-evoked cFos expression in the suprachiasmatic nucleus at 50 lx showed no significant difference between high and low CCT exposure. The significant differences by spectral composition illustrate a need to account for light spectrum in circadian studies of behavior, and confirm that spectral controls can mitigate some, but certainly not all, of the effects of light pollution on species in the wild.
Collapse
Affiliation(s)
- Travis Longcore
- UCLA Institute of the Environment and Sustainability, 619 Charles E. Young Drive East, La Kretz Hall, Suite 300, Box 951496, Los Angeles, CA 90095-1496, USA
| | - Sophia Anne Marie B. Villanueva
- UCLA Department of Integrative Biology and Physiology, 612 Charles E. Young Drive East, Box 957246, Los Angeles, CA 90095-7246, USA
- UCLA Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, 760 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Kyle Nguyen-Ngo
- UCLA Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, 760 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Cristina A. Ghiani
- UCLA Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, 760 Westwood Plaza, Los Angeles, CA 90095, USA
- UCLA Department of Pathology and Laboratory Medicine, 10833 Le Conte Avenue, Los Angeles, CA 90095-1732, USA
| | - Benjamin Harrison
- Korrus, Inc., 837 North Spring Street, Suite 103, Los Angeles, CA 90012, USA
| | - Christopher S. Colwell
- UCLA Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, 760 Westwood Plaza, Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
Höhn C, Hahn MA, Gruber G, Pletzer B, Cajochen C, Hoedlmoser K. Effects of evening smartphone use on sleep and declarative memory consolidation in male adolescents and young adults. Brain Commun 2024; 6:fcae173. [PMID: 38846535 PMCID: PMC11154150 DOI: 10.1093/braincomms/fcae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/08/2024] [Accepted: 05/16/2024] [Indexed: 06/09/2024] Open
Abstract
Exposure to short-wavelength light before bedtime is known to disrupt nocturnal melatonin secretion and can impair subsequent sleep. However, while it has been demonstrated that older adults are less affected by short-wavelength light, there is limited research exploring differences between adolescents and young adults. Furthermore, it remains unclear whether the effects of evening short-wavelength light on sleep architecture extend to sleep-related processes, such as declarative memory consolidation. Here, we recorded polysomnography from 33 male adolescents (15.42 ± 0.97 years) and 35 male young adults (21.51 ± 2.06 years) in a within-subject design during three different nights to investigate the impact of reading for 90 min either on a smartphone with or without a blue-light filter or from a printed book. We measured subjective sleepiness, melatonin secretion, sleep physiology and sleep-dependent memory consolidation. While subjective sleepiness remained unaffected, we observed a significant melatonin attenuation effect in both age groups immediately after reading on the smartphone without a blue-light filter. Interestingly, adolescents fully recovered from the melatonin attenuation in the following 50 min before bedtime, whereas adults still, at bedtime, exhibited significantly reduced melatonin levels. Sleep-dependent memory consolidation and the coupling between sleep spindles and slow oscillations were not affected by short-wavelength light in both age groups. Nevertheless, adults showed a reduction in N3 sleep during the first night quarter. In summary, avoiding smartphone use in the last hour before bedtime is advisable for adolescents and young adults to prevent sleep disturbances. Our research empirically supports general sleep hygiene advice and can inform future recommendations regarding the use of smartphones and other screen-based devices before bedtime.
Collapse
Affiliation(s)
- Christopher Höhn
- Laboratory for Sleep, Cognition and Consciousness Research, Department of Psychology, Paris Lodron University of Salzburg, 5020 Salzburg, Austria
- Centre for Cognitive Neuroscience Salzburg (CCNS), Paris Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Michael A Hahn
- Hertie-Institute for Clinical Brain Research, University Medical Center Tübingen, 72076 Tübingen, Germany
| | - Georg Gruber
- The Siesta Group Schlafanalyse GmbH, 1210 Vienna, Austria
| | - Belinda Pletzer
- Centre for Cognitive Neuroscience Salzburg (CCNS), Paris Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, 4002 Basel, Switzerland
- Research Cluster Molecular and Cognitive Neuroscience (MCN), University of Basel, 4055 Basel, Switzerland
| | - Kerstin Hoedlmoser
- Laboratory for Sleep, Cognition and Consciousness Research, Department of Psychology, Paris Lodron University of Salzburg, 5020 Salzburg, Austria
- Centre for Cognitive Neuroscience Salzburg (CCNS), Paris Lodron University of Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
6
|
Rodríguez Ferrante G, Leone MJ. Solar clock and school start time effects on adolescents' chronotype and sleep: A review of a gap in the literature. J Sleep Res 2024; 33:e13974. [PMID: 37370220 DOI: 10.1111/jsr.13974] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/11/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023]
Abstract
Circadian rhythms are entrained by external factors such as sunlight and social cues, but also depend on internal factors such as age. Adolescents exhibit late chronotypes, but worldwide school starts early in the morning leading to unhealthy sleep habits. Several studies reported that adolescents benefit from later school start times. However, the effect of later school start time on different outcomes varies between studies, and most previous literature only takes into consideration the social clock (i.e. local time of school starting time) but not the solar clock (e.g. the distance between school start time and sunrise). Thus, there is an important gap in the literature: when assessing the effect of a school start time on chronotype and sleep of adolescents at different locations and/or seasons, the solar clock might differ and, consistently, the obtained results. For example, the earliest school start time for adolescents has been suggested to be 08:30 hours, but this school start time might correspond to different solar times at different times of the year, longitudes and latitudes. Here, we describe the available literature comparing different school start times, considering important factors such as geographic position, nationality, and the local school start time and its distance to sunrise. Then, we described and contrasted the relative role of both social and solar clocks on the chronotype and sleep of adolescents. As a whole, we point and discuss a gap in literature, suggesting that both clocks are relevant when addressing the effect of school start time on adolescents' chronotype and sleep.
Collapse
Affiliation(s)
- Guadalupe Rodríguez Ferrante
- Laboratorio de Neurociencia, Universidad Torcuato Di Tella, CONICET, Buenos Aires, Argentina
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Buenos Aires, Argentina
| | - María Juliana Leone
- Laboratorio de Neurociencia, Universidad Torcuato Di Tella, CONICET, Buenos Aires, Argentina
- Área de Educación, Escuela de Gobierno, Universidad Torcuato Di Tella, Buenos Aires, Argentina
| |
Collapse
|
7
|
Miller S, Cajochen C, Green A, Hanifin J, Huss A, Karipidis K, Loughran S, Oftedal G, O'Hagan J, Sliney DH, Croft R, van Rongen E, Cridland N, d'Inzeo G, Hirata A, Marino C, Röösli M, Watanabe S. ICNIRP Statement on Short Wavelength Light Exposure from Indoor Artificial Sources and Human Health. HEALTH PHYSICS 2024; 126:241-248. [PMID: 38381972 DOI: 10.1097/hp.0000000000001790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
ABSTRACT Concerns have been raised about the possibility of effects from exposure to short wavelength light (SWL), defined here as 380-550 nm, on human health. The spectral sensitivity of the human circadian timing system peaks at around 480 nm, much shorter than the peak sensitivity of daytime vision (i.e., 555 nm). Some experimental studies have demonstrated effects on the circadian timing system and on sleep from SWL exposure, especially when SWL exposure occurs in the evening or at night. The International Commission on Non-Ionizing Radiation Protection (ICNIRP) has identified a lack of consensus among public health officials regarding whether SWL from artificial sources disrupts circadian rhythm, and if so, whether SWL-disrupted circadian rhythm is associated with adverse health outcomes. Systematic reviews of studies designed to examine the effects of SWL on sleep and human health have shown conflicting results. There are many variables that can affect the outcome of these experimental studies. One of the main problems in earlier studies was the use of photometric quantities as a surrogate for SWL exposure. Additionally, the measurement of ambient light may not be an accurate measure of the amount of light impinging on the intrinsically photosensitive retinal ganglion cells, which are now known to play a major role in the human circadian timing system. Furthermore, epidemiological studies of long-term effects of chronic SWL exposure per se on human health are lacking. ICNIRP recommends that an analysis of data gaps be performed to delineate the types of studies needed, the parameters that should be addressed, and the methodology that should be applied in future studies so that a decision about the need for exposure guidelines can be made. In the meantime, ICNIRP supports some recommendations for how the quality of future studies might be improved.
Collapse
Affiliation(s)
| | - Christian Cajochen
- ICNIRP SEG and Centre for Chronobiology at the University of Basel, Switzerland
| | - Adele Green
- ICNIRP SEG and QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Anke Huss
- ICNIRP and Institute for Risk Assessment Sciences (IRAS) at Utrecht University, The Netherlands
| | - Ken Karipidis
- ICNIRP and Australian Radiation Protection and Nuclear Safety Authority (ARPANSA)
| | - Sarah Loughran
- ICNIRP SEG and Australian Radiation Protection and Nuclear Safety Authority (ARPANSA)
| | - Gunnhild Oftedal
- ICNIRP and Norwegian University of Science and Technology (NTNU)
| | - John O'Hagan
- ICNIRP SEG and Public Health England, United Kingdom
| | | | - Rodney Croft
- ICNIRP and Australian Centre for Electromagnetic Bioeffects Research, Illawarra Health & Medical Research Institute, University of Wollongong, Australia
| | | | | | | | | | - Carmela Marino
- ICNIRP and formerly Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Italy
| | - Martin Röösli
- ICNIRP and Swiss Tropical and Public Health Institute, Switzerland
| | - Soichi Watanabe
- ICNIRP and National Institute of Information and Communications Technology (NICT), Japan
| |
Collapse
|
8
|
Eto T, Higuchi S. Review on age-related differences in non-visual effects of light: melatonin suppression, circadian phase shift and pupillary light reflex in children to older adults. J Physiol Anthropol 2023; 42:11. [PMID: 37355647 DOI: 10.1186/s40101-023-00328-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/15/2023] [Indexed: 06/26/2023] Open
Abstract
Physiological effects of light exposure in humans are diverse. Among them, the circadian rhythm phase shift effect in order to maintain a 24-h cycle of the biological clock is referred to as non-visual effects of light collectively with melatonin suppression and pupillary light reflex. The non-visual effects of light may differ depending on age, and clarifying age-related differences in the non-visual effects of light is important for providing appropriate light environments for people of different ages. Therefore, in various research fields, including physiological anthropology, many studies on the effects of age on non-visual functions have been carried out in older people, children and adolescents by comparing the effects with young adults. However, whether the non-visual effects of light vary depending on age and, if so, what factors contribute to the differences have remained unclear. In this review, results of past and recent studies on age-related differences in the non-visual effects of light are presented and discussed in order to provide clues for answering the question of whether non-visual effects of light actually vary depending on age. Some studies, especially studies focusing on older people, have shown age-related differences in non-visual functions including differences in melatonin suppression, circadian phase shift and pupillary light reflex, while other studies have shown no differences. Studies showing age-related differences in the non-visual effects of light have suspected senile constriction and crystalline lens opacity as factors contributing to the differences, while studies showing no age-related differences have suspected the presence of a compensatory mechanism. Some studies in children and adolescents have shown that children's non-visual functions may be highly sensitive to light, but the studies comparing with other age groups seem to have been limited. In order to study age-related differences in non-visual effects in detail, comparative studies should be conducted using subjects having a wide range of ages and with as much control as possible for intensity, wavelength component, duration, circadian timing, illumination method of light exposure, and other factors (mydriasis or non-mydriasis, cataracts or not in the older adults, etc.).
Collapse
Affiliation(s)
- Taisuke Eto
- Research Fellow of the Japan Society for the Promotion of Science, Kodaira, Japan
- Department of Sleep-Wake Disorders, National Center of Neurology and Psychiatry, National Institute of Mental Health, Kodaira, Japan
| | - Shigekazu Higuchi
- Department of Human Life Design and Science, Faculty of Design, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
9
|
Screen use before sleep and emotional problems among adolescents: Preliminary evidence of mediating effect of chronotype and social jetlag. J Affect Disord 2023; 328:175-182. [PMID: 36806592 DOI: 10.1016/j.jad.2023.02.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/28/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND Screen use before sleep is shown to be positively related to emotional problems. However, whether this relationship was mediated by circadian phenotypes (i.e., chronotype and social jetlag) remains unclear. METHODS Data from two independent adolescent surveys among 2685 and 1368 adolescents, respectively, were used. Adolescents reported screen use before sleep (yes/no and screen time), chronotype, social jetlag, and emotional problems using questionnaires. Serial mediation analyses were performed. RESULTS Adolescents who reported screen use before sleep showed later chronotype and greater social jetlag, which was further associated with a higher level of emotional problems. Such relationships held for screen use as a yes/no variable and screen time. The serial indirect effect of chronotype and social jetlag accounted for 6.2%-16.7% of the total effect of screen use before sleep on emotional problems. LIMITATIONS The use of a cross-sectional design did not allow the establishment of causal links between the variables. All data were self-reported by adolescents, and might be subject to report bias and recall bias. CONCLUSIONS These findings contributed to the existing literature by examining the mediating effect of chronotype and social jetlag in the relationship between screen use before sleep and emotional problems from a circadian rhythm perspective. Healthy media use habits and interventions targeting circadian characteristics may work towards promoting emotional health in adolescents.
Collapse
|
10
|
Gauthier-Gagné G, Saha S, Jensen J, Sommerville G, Gruber R. Associations Between Multidimensional Sleep Health Parameters and Adolescents' Self-reported Light Exposure in the Free-living Environment. J Biol Rhythms 2023:7487304231152987. [PMID: 36843359 DOI: 10.1177/07487304231152987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
The objective of this study was to characterize the associations between light exposure in the free-living environment and multiple dimensions of sleep health of typically developing adolescents. Fifty-six (29 girls, 27 boys) typically developing adolescents (mean age = 13.59, SD = 0.89, range = 12-17 years) participated. For six consecutive nights, sleep was assessed in the home environment using actigraphy. During the same period, participants were asked to fill out a daily sleep log and a daily light exposure log, and to complete questionnaires regarding their alertness and subjective sleep satisfaction. Longer self-reported exposure to daylight in the morning was associated with longer objectively measured sleep duration. Longer self-reported exposures to electronic devices in the evening were associated with later objectively measured sleep onset and offset times, shorter sleep duration, and greater day-to-day sleep variability. Longer morning exposure to outdoor light was associated with a longer sleep duration. Self-reported light exposure was not associated with sleep satisfaction, alertness/sleepiness, or sleep efficiency. Among the covariates, circadian preference accounted for the highest percentage of variance. Adolescents' sleep health is associated with the self-reported duration of exposure to daylight in the morning and to electronic devices in the evening.
Collapse
Affiliation(s)
- Gabrielle Gauthier-Gagné
- Attention, Behaviour and Sleep Lab, Douglas Mental Health University Institute, Montreal, QC, Canada.,Faculty of Medicine, Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Sujata Saha
- Riverside School Board, Saint-Hubert, QC, Canada
| | - Jana Jensen
- Riverside School Board, Saint-Hubert, QC, Canada
| | - Gail Sommerville
- Attention, Behaviour and Sleep Lab, Douglas Mental Health University Institute, Montreal, QC, Canada.,Riverside School Board, Saint-Hubert, QC, Canada
| | - Reut Gruber
- Attention, Behaviour and Sleep Lab, Douglas Mental Health University Institute, Montreal, QC, Canada.,Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
11
|
Zhang R, Volkow ND. Seasonality of brain function: role in psychiatric disorders. Transl Psychiatry 2023; 13:65. [PMID: 36813773 PMCID: PMC9947162 DOI: 10.1038/s41398-023-02365-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
Seasonality patterns are reported in various psychiatric disorders. The current paper summarizes findings on brain adaptations associated with seasonal changes, factors that contribute to individual differences and their implications for psychiatric disorders. Changes in circadian rhythms are likely to prominently mediate these seasonal effects since light strongly entrains the internal clock modifying brain function. Inability of circadian rhythms to accommodate to seasonal changes might increase the risk for mood and behavior problems as well as worse clinical outcomes in psychiatric disorders. Understanding the mechanisms that account for inter-individual variations in seasonality is relevant to the development of individualized prevention and treatment for psychiatric disorders. Despite promising findings, seasonal effects are still understudied and only controlled as a covariate in most brain research. Rigorous neuroimaging studies with thoughtful experimental designs, powered sample sizes and high temporal resolution alongside deep characterization of the environment are needed to better understand the seasonal adaptions of the human brain as a function of age, sex, and geographic latitude and to investigate the mechanisms underlying the alterations in seasonal adaptation in psychiatric disorders.
Collapse
Affiliation(s)
- Rui Zhang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892-1013, USA.
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892-1013, USA.
| |
Collapse
|
12
|
Ricketts EJ, Joyce DS, Rissman AJ, Burgess HJ, Colwell CS, Lack LC, Gradisar M. Electric lighting, adolescent sleep and circadian outcomes, and recommendations for improving light health. Sleep Med Rev 2022; 64:101667. [PMID: 36064209 PMCID: PMC10693907 DOI: 10.1016/j.smrv.2022.101667] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 01/26/2023]
Abstract
Light is a potent circadian entraining agent. For many people, daily light exposure is fundamentally dysregulated with reduced light during the day and increased light into the late evening. This lighting schedule promotes chronic disruption to circadian physiology resulting in a myriad of impairments. Developmental changes in sleep-wake physiology suggest that such light exposure patterns may be particularly disruptive for adolescents and further compounded by lifestyle factors such as early school start times. This narrative review describes evidence that reduced light exposure during the school day delays the circadian clock, and longer exposure durations to light-emitting electronic devices in the evening suppress melatonin. While home lighting in the evening can suppress melatonin secretion and delay circadian phase, the patterning of light exposure across the day and evening can have moderating effects. Photic countermeasures may be flexibly and scalably implemented to support sleep-wake health; including manipulations of light intensity, spectra, duration and delivery modality across multiple contexts. An integrative approach addressing physiology, attitudes, and behaviors will support optimization of light-driven sleep-wake outcomes in adolescents.
Collapse
Affiliation(s)
- Emily J Ricketts
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, United States.
| | - Daniel S Joyce
- Department of Psychology, University of Nevada, Reno, NV, United States; School of Psychology and Wellbeing, The University of Southern Queensland, Ipswich, QLD, Australia
| | - Ariel J Rissman
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, United States
| | - Helen J Burgess
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Christopher S Colwell
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, United States
| | - Leon C Lack
- Adelaide Institute for Sleep Health, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia; College of Education, Psychology and Social Work, Flinders University, Adelaide, SA, Australia
| | - Michael Gradisar
- WINK Sleep Pty Ltd, Adelaide, SA, Australia; Sleep Cycle AB, Gothenburg, Sweden
| |
Collapse
|
13
|
Giménez MC, Stefani O, Cajochen C, Lang D, Deuring G, Schlangen LJM. Predicting melatonin suppression by light in humans: Unifying photoreceptor-based equivalent daylight illuminances, spectral composition, timing and duration of light exposure. J Pineal Res 2022; 72:e12786. [PMID: 34981572 PMCID: PMC9285453 DOI: 10.1111/jpi.12786] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 12/23/2022]
Abstract
Light-induced melatonin suppression data from 29 peer-reviewed publications was analysed by means of a machine-learning approach to establish which light exposure characteristics (ie photopic illuminance, five α-opic equivalent daylight illuminances [EDIs], duration and timing of the light exposure, and the dichotomous variables pharmacological pupil dilation and narrowband light source) are the main determinants of melatonin suppression. Melatonin suppression in the data set was dominated by four light exposure characteristics: (1) melanopic EDI, (2) light exposure duration, (3) pupil dilation and (4) S-cone-opic EDI. A logistic model was used to evaluate the influence of each of these parameters on the melatonin suppression response. The final logistic model was only based on the first three parameters, since melanopic EDI was the best single (photoreceptor) predictor that was only outperformed by S-cone-opic EDI for (photopic) illuminances below 21 lux. This confirms and extends findings on the importance of the metric melanopic EDI for predicting biological effects of light in integrative (human-centric) lighting applications. The model provides initial and general guidance to lighting practitioners on how to combine spectrum, duration and amount of light exposure when controlling non-visual responses to light, especially melatonin suppression. The model is a starting tool for developing hypotheses on photoreceptors' contributions to light's non-visual responses and helps identifying areas where more data are needed, like on the S-cone contribution at low illuminances.
Collapse
Affiliation(s)
- Marina C. Giménez
- Chronobiology UnitGroningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Oliver Stefani
- Centre for Chronobiology and Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN)Psychiatric Hospital of the University of Basel (UPK) and University of BaselBaselSwitzerland
| | - Christian Cajochen
- Centre for Chronobiology and Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN)Psychiatric Hospital of the University of Basel (UPK) and University of BaselBaselSwitzerland
| | | | - Gunnar Deuring
- Forensic DepartmentUniversity Psychiatric Clinics BaselBaselSwitzerland
| | - Luc J. M. Schlangen
- Department of Industrial Engineering and Innovation SciencesHuman‐Technology Interaction Group and Intelligent Lighting InstituteEindhoven University of TechnologyEindhovenThe Netherlands
| |
Collapse
|
14
|
Processing RGB Color Sensors for Measuring the Circadian Stimulus of Artificial and Daylight Light Sources. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The three main tasks of modern lighting design are to support the visual performance, satisfy color emotion (color quality), and promote positive non-visual outcomes. In view of large-scale applications, the use of simple and inexpensive RGB color sensors to monitor related visual and non-visual illumination parameters seems to be of great promise for the future development of human-centered lighting control systems. In this context, the present work proposes a new methodology to assess the circadian effectiveness of the prevalent lighting conditions for daylight and artificial light sources in terms of the physiologically relevant circadian stimulus (CS) metric using such color sensors. In the case of daylight, the raw sensor readouts were processed in such a way that the CIE daylight model can be applied as an intermediate step to estimate its spectral composition, from which CS can eventually be calculated straightforwardly. Maximal CS prediction errors of less than 0.0025 were observed when tested on real data. For artificial light sources, on the other hand, the CS approximation method of Truong et al. was applied to estimate its circadian effectiveness from the sensor readouts. In this case, a maximal CS prediction error of 0.028 must be reported, which is considerably larger compared to daylight, but still in an acceptable range for typical indoor lighting applications. The use of RGB color sensors is thus shown to be suitable for estimating the circadian effectiveness of both types of illumination with sufficient accuracy for practical applications.
Collapse
|
15
|
Fernandez FX. Current Insights into Optimal Lighting for Promoting Sleep and Circadian Health: Brighter Days and the Importance of Sunlight in the Built Environment. Nat Sci Sleep 2022; 14:25-39. [PMID: 35023979 PMCID: PMC8747801 DOI: 10.2147/nss.s251712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
This perspective considers the possibility that daytime's intrusion into night made possible by electric lighting may not be as pernicious to sleep and circadian health as the encroachment of nighttime into day wrought by 20th century architectural practices that have left many people estranged from sunlight.
Collapse
|
16
|
Measurement of Circadian Effectiveness in Lighting for Office Applications. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11156936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
As one factor among others, circadian effectiveness depends on the spatial light distribution of the prevalent lighting conditions. In a typical office context focusing on computer work, the light that is experienced by the office workers is usually composed of a direct component emitted by the room luminaires and the computer monitors as well as by an indirect component reflected from the walls, surfaces, and ceiling. Due to this multi-directional light pattern, spatially resolved light measurements are required for an adequate prediction of non-visual light-induced effects. In this work, we therefore propose a novel methodological framework for spatially resolved light measurements that allows for an estimate of the circadian effectiveness of a lighting situation for variable field of view (FOV) definitions. Results of exemplary in-field office light measurements are reported and compared to those obtained from standard spectral radiometry to validate the accuracy of the proposed approach. The corresponding relative error is found to be of the order of 3–6%, which denotes an acceptable range for most practical applications. In addition, the impact of different FOVs as well as non-zero measurement angles will be investigated.
Collapse
|
17
|
Nagare R, Rea MS, Figueiro MG. Spatial sensitivity of human circadian response: Melatonin suppression from on-axis and off-axis light exposures. Neurobiol Sleep Circadian Rhythms 2021; 11:100071. [PMID: 34286162 PMCID: PMC8278206 DOI: 10.1016/j.nbscr.2021.100071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/17/2021] [Accepted: 07/01/2021] [Indexed: 12/24/2022] Open
Abstract
A better understanding of the spatial sensitivity of the human circadian system to photic stimulation can provide practical solutions for optimized circadian light exposures. Two psychophysical experiments, involving 25 adult participants in Experiment 1 (mean age = 34.0 years [SD 15.5]; 13 females) and 15 adult participants in Experiment 2 (mean age = 43.0 years [SD 12.6]; 12 females), were designed to investigate whether varying only the spatial distribution of luminous stimuli in the environment while maintaining a constant spectrally weighted irradiance at the eye could influence nocturnal melatonin suppression. Two spatial distributions were employed, one where the luminous stimulus was presented On-axis (along the line of sight) and one where two luminous stimuli were both presented Off-axis (laterally displaced at center by 14°). Two narrowband LED light sources, blue (λmax = 451 nm) for first experiment and green (λmax = 522 nm) for second experiment, were used in both the On-axis and the Off-axis spatial distributions. The blue luminous stimulus targeting the fovea and parafovea (On-axis) was about three times more effective for suppressing melatonin than the photometrically and spectrally matched stimulus targeting the more peripheral retina (Off-axis). The green luminous stimulus targeting the fovea and parafovea (On-axis) was about two times more effective for suppressing melatonin than the photometrically and spectrally matched stimulus targeting the more peripheral retina (Off-axis).
Collapse
Affiliation(s)
- Rohan Nagare
- Light and Health Research Center, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mark S Rea
- Light and Health Research Center, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mariana G Figueiro
- Light and Health Research Center, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
18
|
Eto T, Ohashi M, Nagata K, Shin N, Motomura Y, Higuchi S. Crystalline lens transmittance spectra and pupil sizes as factors affecting light-induced melatonin suppression in children and adults. Ophthalmic Physiol Opt 2021; 41:900-910. [PMID: 33772847 DOI: 10.1111/opo.12809] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/27/2021] [Indexed: 12/23/2022]
Abstract
PURPOSE To investigate the contributions of ocular crystalline lens transmittance spectra and pupil size on age-related differences in the magnitude of light-induced melatonin suppression at night. The first aim was to demonstrate that spectral lens transmittance in children can be measured in vivo with a Purkinje image-based system. The second aim was to test the hypothesis that the magnitude of melatonin suppression in children is enhanced by larger pupils and higher lens transmittance of short wavelengths. METHODS Fourteen healthy children and 14 healthy adults participated in this study. The experiment was conducted for two nights in our laboratory. On the first night, the participants spent time under dim light conditions (<10 lux) until one hour after their habitual bedtime (BT+1.0). On the second night, the participants spent time under dim light conditions until 30 min before their habitual bedtime (BT-0.5). They were then exposed to LED light for 90 min up to BT+1.0. Individual pupil sizes were measured between BT and BT+1.0 for both conditions. Lens transmittance spectra were measured in vivo using the Purkinje image-based system during the daytime. Non-visual photoreception was calculated from lens transmittance and pupil size. This was taken as an index of the influence of age-related ocular changes on the non-visual photopigment melanopsin. RESULTS Measured lens transmittance in children was found to be higher than for adults, especially in the short wavelength region (p < 0.001). Pupil size in children was significantly larger than that of adults under both dim (p = 0.003) and light (p < 0.001) conditions. Children's non-visual photoreception was 1.48 times greater than that of adults, which was very similar to the finding that melatonin suppression was 1.52 times greater in children (n = 9) than adults (n = 9). CONCLUSIONS Our Purkinje image-based system can measure children's lens transmittance spectra in vivo. Lens transmittance and pupil size may contribute to differences in melatonin suppression between primary school children and middle-aged adults.
Collapse
Affiliation(s)
- Taisuke Eto
- Graduate School of Integrated Frontier Sciences, Kyushu University, Fukuoka, Japan.,Research Fellow of Japan Society for the Promotion of Science, Fukuoka, Japan
| | - Michihiro Ohashi
- Graduate School of Integrated Frontier Sciences, Kyushu University, Fukuoka, Japan.,Research Fellow of Japan Society for the Promotion of Science, Fukuoka, Japan
| | - Kotaro Nagata
- Graduate School of Integrated Frontier Sciences, Kyushu University, Fukuoka, Japan
| | - Nakyeong Shin
- Graduate School of Integrated Frontier Sciences, Kyushu University, Fukuoka, Japan
| | - Yuki Motomura
- Department of Human Science, Faculty of Design, Kyushu University, Fukuoka, Japan
| | - Shigekazu Higuchi
- Department of Human Science, Faculty of Design, Kyushu University, Fukuoka, Japan
| |
Collapse
|
19
|
Cavalli E, Anders R, Chaussoy L, Herbillon V, Franco P, Putois B. Screen exposure exacerbates ADHD symptoms indirectly through increased sleep disturbance. Sleep Med 2021; 83:241-247. [PMID: 34049043 DOI: 10.1016/j.sleep.2021.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/01/2021] [Accepted: 03/06/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The aim of this study was twofold. First, to confirm the deleterious aspect of evening screen exposure in school-aged children, in particular the effect of screens in the bedroom. Second, to explore the three-way association between degree of screen exposure, sleep disturbance, and ADHD symptoms. Solid evidence exists on the link between sleep disturbance and ADHD symptoms, and screen exposure and sleep disturbance. However, no studies have formally assessed the impact of screen exposure on ADHD symptoms in children, as a function of sleep disturbance. METHODS Parents of 374 French children (201 girls, 173 boys, mean age of 10.8 ± 2.8 years old) completed the Sleep Disturbance Scale for Children (SDSC), the Attention-Deficit/Hyperactivity Disorder (ADHD) Rating Scale, and a questionnaire about their children's screen habits (total hours in the morning, afternoon, and evening per day). Correlational analyses between evening screen exposure, sleep quality and behavioral problems were conducted. Then, formal mediation analyses were run in order to quantify the relationship between variables. RESULTS School-aged children with screens in their bedrooms demonstrated more sleep and behavioral problems. Evening TV exposure was associated with higher SDSC and ADHD scores. Furthermore, the Structural Equation Modelling approach confirmed that evening screen exposure is directly associated with more disrupted sleep, which in turn is directly associated with behavioral problems. CONCLUSIONS These findings encourage families to avoid putting screens in their children's bedrooms, and limit evening screen exposure. They furthermore demonstrate the importance of taking into account screen exposure time (morning, afternoon, evening) and location (bedroom or elsewhere) in future studies.
Collapse
Affiliation(s)
- Eddy Cavalli
- EMC (Etude des Mécanismes Cognitifs) Laboratory, University of Lyon 2, Lyon, France
| | - Royce Anders
- EMC (Etude des Mécanismes Cognitifs) Laboratory, University of Lyon 2, Lyon, France
| | - Louise Chaussoy
- EMC (Etude des Mécanismes Cognitifs) Laboratory, University of Lyon 2, Lyon, France; Centre de Recherches sur la Cognition et l'Apprentissage (CeRCA), UMR CNRS 7295, Poitiers, France
| | - Vania Herbillon
- Pediatric Sleep Unit, Department of Pediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, University Lyon 1, Lyon, France
| | - Patricia Franco
- Pediatric Sleep Unit, Department of Pediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, University Lyon 1, Lyon, France; Swiss Distance Learning University, Faculty of Psychology, Brig, Switzerland
| | - Benjamin Putois
- Pediatric Sleep Unit, Department of Pediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, University Lyon 1, Lyon, France; Lyon Neuroscience Research Centre, CNRS UMR 5292, INSERM U1028, Lyon 1 University, France; Swiss Distance Learning University, Faculty of Psychology, Brig, Switzerland.
| |
Collapse
|
20
|
Chellappa SL. Individual differences in light sensitivity affect sleep and circadian rhythms. Sleep 2021; 44:zsaa214. [PMID: 33049062 PMCID: PMC7879412 DOI: 10.1093/sleep/zsaa214] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
Artificial lighting is omnipresent in contemporary society with disruptive consequences for human sleep and circadian rhythms because of overexposure to light, particularly in the evening/night hours. Recent evidence shows large individual variations in circadian photosensitivity, such as melatonin suppression, due to artificial light exposure. Despite the emerging body of research indicating that the effects of light on sleep and circadian rhythms vary dramatically across individuals, recommendations for appropriate light exposure in real-life settings rarely consider such individual effects. This review addresses recently identified links among individual traits, for example, age, sex, chronotype, genetic haplotypes, and the effects of evening/night light on sleep and circadian hallmarks, based on human laboratory and field studies. Target biological mechanisms for individual differences in light sensitivity include differences occurring within the retina and downstream, such as the central circadian clock. This review also highlights that there are wide gaps of uncertainty, despite the growing awareness that individual differences shape the effects of evening/night light on sleep and circadian physiology. These include (1) why do certain individual traits differentially affect the influence of light on sleep and circadian rhythms; (2) what is the translational value of individual differences in light sensitivity in populations typically exposed to light at night, such as night shift workers; and (3) what is the magnitude of individual differences in light sensitivity in population-based studies? Collectively, the current findings provide strong support for considering individual differences when defining optimal lighting specifications, thus allowing for personalized lighting solutions that promote quality of life and health.
Collapse
Affiliation(s)
- Sarah L Chellappa
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA
- Division of Sleep Medicine, Department of Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
21
|
Rea MS, Nagare R, Figueiro MG. Modeling Circadian Phototransduction: Quantitative Predictions of Psychophysical Data. Front Neurosci 2021; 15:615322. [PMID: 33613181 PMCID: PMC7893103 DOI: 10.3389/fnins.2021.615322] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/08/2021] [Indexed: 01/29/2023] Open
Abstract
A revised computational model of circadian phototransduction is presented. The first step was to characterize the spectral sensitivity of the retinal circuit using suppression of the synthesis of melatonin by the pineal gland at night as the outcome measure. From the spectral sensitivity, circadian light was defined. Circadian light, thereby rectifies any spectral power distribution into a single, instantaneous photometric quantity. The second step was to characterize the circuit’s response characteristic to different amounts of circadian light from threshold to saturation. By doing so a more complete instantaneous photometric quantity representing the circadian stimulus was defined in terms of both the spectral sensitivity and the response magnitude characteristic of the circadian phototransduction circuit. To validate the model of the circadian phototransduction circuit, it was necessary to augment the model to account for different durations of the circadian stimulus and distribution of the circadian stimulus across the retina. Two simple modifications to the model accounted for the duration and distribution of continuous light exposure during the early biological night. A companion paper (https://www.frontiersin.org/articles/10.3389/fnins.2020.615305/full) provides a neurophysiological foundation for the model parameters.
Collapse
Affiliation(s)
- Mark S Rea
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, United States.,Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Rohan Nagare
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, United States.,Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mariana G Figueiro
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, United States.,Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
22
|
Bais B, Kamperman AM, Bijma HH, Hoogendijk WJ, Souman JL, Knijff E, Lambregtse-van den Berg MP. Effects of bright light therapy for depression during pregnancy: a randomised, double-blind controlled trial. BMJ Open 2020; 10:e038030. [PMID: 33115894 PMCID: PMC7594358 DOI: 10.1136/bmjopen-2020-038030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Approximately 11%-13% of pregnant women suffer from depression. Bright light therapy (BLT) is a promising treatment, combining direct availability, sufficient efficacy, low costs and high safety for both mother and child. Here, we examined the effects of BLT on depression during pregnancy. DESIGN Randomised, double-blind controlled trial. SETTING Primary and secondary care in The Netherlands, from November 2016 to March 2019. PARTICIPANTS 67 pregnant women (12-32 weeks gestational age) with a DSM-5 diagnosis of depressive disorder (Diagnostic and Statistical Manual of Mental Disorders). INTERVENTIONS Participants were randomly allocated to treatment with either BLT (9000 lux, 5000 K) or dim red light therapy (DRLT, 100 lux, 2700 K), which is considered placebo. For 6 weeks, both groups were treated daily at home for 30 min on awakening. Follow-up took place weekly during the intervention, after 6 weeks of therapy, 3 and 10 weeks after treatment and 2 months postpartum. PRIMARY AND SECONDARY OUTCOME MEASURES Depressive symptoms were measured primarily with the Structured Interview Guide for the Hamilton Depression Scale-Seasonal Affective Disorder. Secondary measures were the Hamilton Rating Scale for Depression and the Edinburgh Postnatal Depression Scale. Changes in rating scale scores of these questionnaires over time were analysed using generalised linear mixed models. RESULTS Median depression scores decreased by 40.6%-53.1% in the BLT group and by 50.9%-66.7% in the DRLT group. We found no statistically significant difference in symptom change scores between BLT and DRLT. Sensitivity and post-hoc analyses did not change our findings. CONCLUSIONS Depressive symptoms of pregnant women with depression improved in both treatment arms. More research is necessary to determine whether these responses represent true treatment effects, non-specific treatment responses, placebo effects or a combination hereof. TRIAL REGISTRATION NUMBER NTR5476.
Collapse
Affiliation(s)
- Babette Bais
- Psychiatry, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Astrid M Kamperman
- Psychiatry, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Hilmar H Bijma
- Obstetrics and Gynaecology, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Witte Jg Hoogendijk
- Psychiatry, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Jan L Souman
- Lighting Applications, Signify NV, Eindhoven, Noord-Brabant, The Netherlands
| | - Esther Knijff
- Psychiatry, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Mijke P Lambregtse-van den Berg
- Psychiatry, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands
- Child and Adolescent Psychiatry/Psychology, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| |
Collapse
|
23
|
Nie J, Zhou T, Chen Z, Dang W, Jiao F, Zhan J, Chen Y, Chen Y, Pan Z, Kang X, Wang Y, Wang Q, Dong W, Zhou S, Yu X, Zhang G, Shen B. Investigation on entraining and enhancing human circadian rhythm in closed environments using daylight-like LED mixed lighting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139334. [PMID: 32438188 DOI: 10.1016/j.scitotenv.2020.139334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
Humans can undergo circadian disruption and misalignment when living in closed environments without sufficient daylight. Therefore, it is of great significance to investigate the effects of artificial light on the circadian rhythm. In this work, the red, green, blue, warm white, and cool white (RGBWW) five-channel light-emitting diodes (LEDs) were fabricated as the only light sources in the closed environment. The LED mixed lighting showed a high color rendering index (CRI) all the time. During the day, the light simulated the daylight and increased the tunability of the circadian action factor (CAF) and correlated color temperature (CCT). At night, it maintained low CAF and CCT. Three subjects did irregular shift work in the closed environment for 38 days. Their plasma melatonin and daily activity were measured to assess the circadian rhythm. After 38 days, the subjects' peak melatonin times did not shift significantly (p = 0.676), while their peak melatonin concentrations increased apparently (p = 0.005). The start times of the least active 5-h period (L5) in one day fluctuated in a small range. The standard deviation (SD) was <15.11 min in most times. These results demonstrated that the subjects' rhythms maintained stable and were enhanced. The periods of circular cross-correlation between activity and CAF oscillated around 24 h (SD = 15.4 min), indicating the entrainment of light on the stable 24-h rhythm. It was concluded that the daylight-like LED lighting effectively entrained and enhanced the circadian rhythm in the closed environment.
Collapse
Affiliation(s)
- Jingxin Nie
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Tianhang Zhou
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing 100191, China
| | - Zhizhong Chen
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China.
| | - Weimin Dang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing 100191, China
| | - Fei Jiao
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China; State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Jinglin Zhan
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Yifan Chen
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Yiyong Chen
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Zuojian Pan
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Xiangning Kang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Yongzhi Wang
- Dongguan Institute of Optoelectronics, Peking University, Dongguan 523808, Guangdong, China
| | - Qi Wang
- Dongguan Institute of Optoelectronics, Peking University, Dongguan 523808, Guangdong, China
| | - Wentian Dong
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing 100191, China
| | - Shuzhe Zhou
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing 100191, China
| | - Xin Yu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing 100191, China
| | - Guoyi Zhang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China; Dongguan Institute of Optoelectronics, Peking University, Dongguan 523808, Guangdong, China
| | - Bo Shen
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| |
Collapse
|
24
|
Predictions of melatonin suppression during the early biological night and their implications for residential light exposures prior to sleeping. Sci Rep 2020; 10:14114. [PMID: 32839489 PMCID: PMC7445277 DOI: 10.1038/s41598-020-70619-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022] Open
Abstract
The magnitude of nocturnal melatonin suppression depends upon the spectrum, amount, and duration of light exposure. The functional relationship between melatonin suppression and the light spectrum and amount have been previously described. Only one duration-dependent parameter was needed to extend this functional relationship to predict nocturnal melatonin suppression during the early biological night from a variety of published studies. Those predictions suggest that ambient lighting commonly found in North American homes will not suppress melatonin for durations up to 3 h, whereas extended use of self-luminous displays in the home prior to sleep can.
Collapse
|
25
|
Mantle D, Smits M, Boss M, Miedema I, van Geijlswijk I. Efficacy and safety of supplemental melatonin for delayed sleep-wake phase disorder in children: an overview. Sleep Med X 2020; 2:100022. [PMID: 33870175 PMCID: PMC8041131 DOI: 10.1016/j.sleepx.2020.100022] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 02/03/2023] Open
Abstract
Delayed sleep–wake phase disorder (DSPD) is the most frequently occurring intrinsic circadian rhythm sleep–wake disorder, with the highest prevalence in adolescence. Melatonin is the first-choice drug treatment. However, to date melatonin (in a controlled-release formulation) is only authorised for the treatment of insomnia in children with autism or Smiths-Magenis syndrome. Concerns have been raised with respect to the safety and efficacy of melatonin for more general use in children, as melatonin has not undergone the formal safety testing required for a new drug, especially long-term safety in children. Melatonin is known to have profound effects on the reproductive systems of rodents, sheep and primates, as well as effects on the cardiovascular, immune and metabolic systems. The objective of the present article was therefore to establish the efficacy and safety of exogenous melatonin for use in children with DSPD, based on in vitro, animal model and clinical studies by reviewing the relevant literature in the Medline database using PubMed. Acute toxicity studies in rats and mice showed toxic effects only at extremely high melatonin doses (>400 mg/kg), some tens of thousands of times more than the recommended dose of 3–6 mg in a person weighing 70 kg. Longer-term administration of melatonin improved the general health and survival of ageing rats or mice. A full range of in vitro/in vivo genotoxicity tests consistently found no evidence that melatonin is genotoxic. Similarly long term administration of melatonin in rats or mice did not have carcinogenic effects, or negative effects on cardiovascular, endocrine and reproductive systems. With regard to clinical studies, in 19 randomised controlled trials comprising 841 children and adolescents with DSPD, melatonin treatment (usually of 4 weeks duration) consistently improved sleep latency by 22–60 min, without any serious adverse effects. Similarly, 17 randomised controlled trials, comprising 1374 children and adolescents, supplementing melatonin for indications other than DSPD, reported no relevant adverse effects. In addition, 4 long-term safety studies (1.0–10.8 yr) supplementing exogenous melatonin found no substantial deviation of the development of children with respect to sleep quality, puberty development and mental health scores. Finally, post-marketing data for an immediate-release melatonin formulation (Bio-melatonin), used in the UK since 2008 as an unlicensed medicine for sleep disturbance in children, recorded no adverse events to date on sales of approximately 600,000 packs, equivalent to some 35 million individual 3 mg tablet doses (MHRA yellow card adverse event recording scheme). In conclusion, evidence has been provided that melatonin is an efficacious and safe chronobiotic drug for the treatment of DSPD in children, provided that it is administered at the correct time (3–5 h before endogenous melatonin starts to rise in dim light (DLMO)), and in the correct (minimal effective) dose. As the status of circadian rhythmicity may change during long-time treatment, it is recommended to stop melatonin treatment at least once a year (preferably during the summer holidays). Melatonin improves sleep onset without serious adverse effects in youths with DSPD. Change th text after the fourth bullet into: Melatonin is an efficacious and safe chronobiotic drug for the treatment of DSPD in youths. Melatonin for indications other than DSPD, dose not cause relevant adverse effects. Long term melatonin treatment does not impair sleep, puberty, and mental health. Melatonin is an efficacious and safe chronobiotic drug for the treatment of DSPD in youths. Melatonin should be administered at the correct time and in the minimal effective dose.
Collapse
Affiliation(s)
| | - Marcel Smits
- Multidisciplinary Expertise Centre for Sleep-Wake Disorders and Chronobiology, Gelderse Valley Hospital Ede, The Netherlands
| | - Myrthe Boss
- Multidisciplinary Expertise Centre for Sleep-Wake Disorders and Chronobiology, Gelderse Valley Hospital Ede, The Netherlands
| | - Irene Miedema
- Multidisciplinary Expertise Centre for Sleep-Wake Disorders and Chronobiology, Gelderse Valley Hospital Ede, The Netherlands
| | - Inge van Geijlswijk
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Department of Pharmacoepidemiology and Clinical Pharmacology, Faculty of Science, and Faculty of Veterinary Medicine, Pharmacy Department Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
26
|
Lai KY, Sarkar C, Ni MY, Gallacher J, Webster C. Exposure to light at night (LAN) and risk of obesity: A systematic review and meta-analysis of observational studies. ENVIRONMENTAL RESEARCH 2020; 187:109637. [PMID: 32497902 DOI: 10.1016/j.envres.2020.109637] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/18/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND There is emerging evidence of the association between light at night (LAN) exposure and weight gain. OBJECTIVE We aim to conduct a systematic review and meta-analysis of observational studies on the association between LAN exposure and risk of obesity in human subjects. METHODS Peer-reviewed observational studies were systematically searched from MEDLINE (EBSCO), Academic Search Complete (EBSCO), CINAHL Plus (EBSCO) and PubMed up to December 24, 2019. Random-effects models were developed to estimate the associations between LAN exposure and weight-related outcomes of overweight and obesity as measured by body mass index (BMI), waist circumference, waist-hip-ratio and waist-to-height-ratio. The I2 statistic was used to assess the degree of heterogeneity across studies. The National Toxicology Program's Office of Health Assessment and Translation (OHAT) risk of bias rating tool and the Grading of Recommendations Assessment, Development and Evaluation (GRADE) guideline were respectively employed to assess the risk of bias and to appraise the quality of the generated evidence. RESULTS A total of 12 studies (three with longitudinal and nine of cross-sectional design) published between 2003 and 2019 were included for systematic review, while seven of them fulfilling the inclusion/exclusion criteria were included in the meta-analysis. A higher LAN exposure was significantly associated with 13% higher odds of overweight (BMI≥25 kg/m2) (Summary Odds Ratio; SOR: 1.13, 95% CI: 1.10-1.16) with low heterogeneity (I2 = 27.27%), and 22% higher odds of obesity (BMI≥30 kg/m2) (SOR: 1.22, 95% CI: 1.07-1.38) with substantial heterogeneity (I2 = 85.96%). Stratifying analyses by the levels of measurement of LAN exposures (macro-, meso- and micro-levels) and time of LAN measurement (including before and while sleeping) consistently produced robust estimates, with higher exposure to LAN being positively associated with poorer weight outcomes. Assessment of risk of bias identified substantial detection bias for exposure, with over half of the pooled studies employing subjective LAN measures. The overall evidence of the association between LAN exposure and risk of obesity was rated as 'moderate' as per the GRADE guideline. CONCLUSIONS Exposure to LAN was reported to be a significant risk factor for overweight and obesity. Prospectively designed future studies with objectively measured multi-level LAN exposures and weight outcomes are required.
Collapse
Affiliation(s)
- Ka Yan Lai
- Healthy High Density Cities Lab, HKUrbanLab, The University of Hong Kong, Knowles Building, Pokfulam Road, Pokfulam, Hong Kong Special Administrative Region, China
| | - Chinmoy Sarkar
- Healthy High Density Cities Lab, HKUrbanLab, The University of Hong Kong, Knowles Building, Pokfulam Road, Pokfulam, Hong Kong Special Administrative Region, China; School of Public Health, The University of Hong Kong, Patrick Manson Building, Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, China.
| | - Michael Y Ni
- Healthy High Density Cities Lab, HKUrbanLab, The University of Hong Kong, Knowles Building, Pokfulam Road, Pokfulam, Hong Kong Special Administrative Region, China; School of Public Health, The University of Hong Kong, Patrick Manson Building, Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, China; The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - John Gallacher
- Department of Psychiatry, Oxford University, Warneford Hospital, Oxford, UK
| | - Chris Webster
- Healthy High Density Cities Lab, HKUrbanLab, The University of Hong Kong, Knowles Building, Pokfulam Road, Pokfulam, Hong Kong Special Administrative Region, China
| |
Collapse
|
27
|
Reiter RJ, Sharma R, Ma Q, Rorsales-Corral S, de Almeida Chuffa LG. Melatonin inhibits Warburg-dependent cancer by redirecting glucose oxidation to the mitochondria: a mechanistic hypothesis. Cell Mol Life Sci 2020; 77:2527-2542. [PMID: 31970423 PMCID: PMC11104865 DOI: 10.1007/s00018-019-03438-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/16/2019] [Accepted: 12/23/2019] [Indexed: 12/16/2022]
Abstract
Melatonin has the ability to intervene in the initiation, progression and metastasis of some experimental cancers. A large variety of potential mechanisms have been advanced to describe the metabolic and molecular events associated with melatonin's interactions with cancer cells. There is one metabolic perturbation that is common to a large number of solid tumors and accounts for the ability of cancer cells to actively proliferate, avoid apoptosis, and readily metastasize, i.e., they use cytosolic aerobic glycolysis (the Warburg effect) to rapidly generate the necessary ATP required for the high metabolic demands of the cancer cells. There are several drugs, referred to as glycolytic agents, that cause cancer cells to abandon aerobic glycolysis and shift to the more conventional mitochondrial oxidative phosphorylation for ATP synthesis as in normal cells. In doing so, glycolytic agents also inhibit cancer growth. Herein, we hypothesize that melatonin also functions as an inhibitor of cytosolic glycolysis in cancer cells using mechanisms, i.e., downregulation of the enzyme (pyruvate dehydrogenase kinase) that interferes with the conversion of pyruvate to acetyl CoA in the mitochondria, as do other glycolytic drugs. In doing so, melatonin halts the proliferative activity of cancer cells, reduces their metastatic potential and causes them to more readily undergo apoptosis. This hypothesis is discussed in relation to the previously published reports. Whereas melatonin is synthesized in the mitochondria of normal cells, we hypothesize that this synthetic capability is not present in cancer cell mitochondria because of the depressed acetyl CoA; acetyl CoA is necessary for the rate limiting enzyme in melatonin synthesis, arylalkylamine-N-acetyltransferase. Finally, the ability of melatonin to switch glucose oxidation from the cytosol to the mitochondria also explains how tumors that become resistant to conventional chemotherapies are re-sensitized to the same treatment when melatonin is applied.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA.
| | - Ramaswamy Sharma
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Qiang Ma
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Sergio Rorsales-Corral
- Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Mexico
| | | |
Collapse
|
28
|
Abstract
Artificial light at night (ALAN) is increasing exponentially worldwide, accelerated by the transition to new efficient lighting technologies. However, ALAN and resulting light pollution can cause unintended physiological consequences. In vertebrates, production of melatonin—the “hormone of darkness” and a key player in circadian regulation—can be suppressed by ALAN. In this paper, we provide an overview of research on melatonin and ALAN in vertebrates. We discuss how ALAN disrupts natural photic environments, its effect on melatonin and circadian rhythms, and different photoreceptor systems across vertebrate taxa. We then present the results of a systematic review in which we identified studies on melatonin under typical light-polluted conditions in fishes, amphibians, reptiles, birds, and mammals, including humans. Melatonin is suppressed by extremely low light intensities in many vertebrates, ranging from 0.01–0.03 lx for fishes and rodents to 6 lx for sensitive humans. Even lower, wavelength-dependent intensities are implied by some studies and require rigorous testing in ecological contexts. In many studies, melatonin suppression occurs at the minimum light levels tested, and, in better-studied groups, melatonin suppression is reported to occur at lower light levels. We identify major research gaps and conclude that, for most groups, crucial information is lacking. No studies were identified for amphibians and reptiles and long-term impacts of low-level ALAN exposure are unknown. Given the high sensitivity of vertebrate melatonin production to ALAN and the paucity of available information, it is crucial to research impacts of ALAN further in order to inform effective mitigation strategies for human health and the wellbeing and fitness of vertebrates in natural ecosystems.
Collapse
|
29
|
Chronotype-Dependent Changes in Sleep Habits Associated with Dim Light Melatonin Onset in the Antarctic Summer. Clocks Sleep 2019; 1:352-366. [PMID: 33089174 PMCID: PMC7445856 DOI: 10.3390/clockssleep1030029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 08/05/2019] [Indexed: 12/31/2022] Open
Abstract
Dim light melatonin onset (DLMO) is the most reliable measure of human central circadian timing. Its modulation by light exposure and chronotype has been scarcely approached. We evaluated the impact of light changes on the interaction between melatonin, sleep, and chronotype in university students (n = 12) between the Antarctic summer (10 days) and the autumn equinox in Montevideo, Uruguay (10 days). Circadian preferences were tested by validated questionnaires. A Morningness–Eveningness Questionnaire average value (47 ± 8.01) was used to separate late and early participants. Daylight exposure (measured by actimetry) was significantly higher in Antarctica versus Montevideo in both sensitive time windows (the morning phase-advancing and the evening phase-delaying). Melatonin was measured in hourly saliva samples (18–24 h) collected in dim light conditions (<30 lx) during the last night of each study period. Early and late participants were exposed to similar amounts of light in both sites and time windows, but only early participants were significantly more exposed during the late evening in Antarctica. Late participants advanced their DLMO with no changes in sleep onset time in Antarctica, while early participants delayed their DLMO and sleep onset time. This different susceptibility to respond to light may be explained by a subtle difference in evening light exposure between chronotypes.
Collapse
|
30
|
Cherrie JW. Shedding Light on the Association between Night Work and Breast Cancer. Ann Work Expo Health 2019; 63:608-611. [PMID: 31175355 DOI: 10.1093/annweh/wxz036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Shift work that involves circadian disruption has been classified as probably carcinogenic to humans by the International Agency for Research on Cancer, although more recent epidemiological evidence is not consistent. Several mechanisms have been postulated to explain an association between night work and female breast cancer, but the most likely is suppression of the hormone melatonin by light exposure at night. Three articles recently published in this journal describe aspects of exposure to light during night work. These articles and other evidence suggest that nighttime light levels may not always be sufficient to affect melatonin production, which could in part explain the inconsistencies in the epidemiological data. There is need to improve the specificity and reliability of exposure assessments in future epidemiological studies of night shift workers.
Collapse
Affiliation(s)
- John W Cherrie
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot Watt University, Riccarton, Edinburgh, UK.,Institute of Occupational Medicine, Edinburgh, UK
| |
Collapse
|
31
|
Nagare R, Rea MS, Plitnick B, Figueiro MG. Effect of White Light Devoid of "Cyan" Spectrum Radiation on Nighttime Melatonin Suppression Over a 1-h Exposure Duration. J Biol Rhythms 2019; 34:195-204. [PMID: 30821188 DOI: 10.1177/0748730419830013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The intrinsically photosensitive retinal ganglion cells are the main conduit of the light signal emanating from the retina to the biological clock located in the suprachiasmatic nuclei of the hypothalamus. Lighting manufacturers are developing white light sources that are devoid of wavelengths around 480 nm ("cyan gap") to reduce their impact on the circadian system. The present study was designed to investigate whether exposure to a "cyan-gap," 3000 K white light source, spectrally tuned to reduce radiant power between 475 and 495 nm (reducing stimulation of the melanopsin-containing photoreceptor), would suppress melatonin less than a conventional 3000 K light source. The study's 2 phases employed a within-subjects experimental design involving the same 16 adult participants. In Phase 1, participants were exposed for 1 h to 3 experimental conditions over the course of 3 consecutive weeks: 1) dim light control (<5 lux at the eyes); 2) 800 lux at the eyes of a 3000 K light source; and 3) 800 lux at the eyes of a 3000 K, "cyan-gap" modified (3000 K mod) light source. The same protocol was repeated in Phase 2, but light levels were reduced to 400 lux at the eyes. As hypothesized, there were significant main effects of light level ( F1,12 = 9.1, p < 0.05, ηp² = 0.43) and exposure duration ( F1,12 = 47.7, p < 0.05, ηp² = 0.80) but there was no significant main effect of spectrum ( F1,12 = 0.16, p > 0.05, ηp² = 0.01). There were no significant interactions with spectrum. Contrary to our model predictions, our results showed that short-term exposures (≤ 1 h) to "cyan-gap" light sources suppressed melatonin similarly to conventional light sources of the same CCT and photopic illuminance at the eyes.
Collapse
Affiliation(s)
- Rohan Nagare
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Mark S Rea
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Barbara Plitnick
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Mariana G Figueiro
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
32
|
Nagare R, Rea MS, Plitnick B, Figueiro MG. Nocturnal Melatonin Suppression by Adolescents and Adults for Different Levels, Spectra, and Durations of Light Exposure. J Biol Rhythms 2019; 34:178-194. [PMID: 30803301 DOI: 10.1177/0748730419828056] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The human circadian system is primarily regulated by the 24-h LD cycle incident on the retina, and nocturnal melatonin suppression is a primary outcome measure for characterizing the biological clock's response to those light exposures. A limited amount of data related to the combined effects of light level, spectrum, and exposure duration on nocturnal melatonin suppression has impeded the development of circadian-effective lighting recommendations and light-treatment methods. The study's primary goal was to measure nocturnal melatonin suppression for a wide range of light levels (40 to 1000 lux), 2 white light spectra (2700 K and 6500 K), and an extended range of nighttime light exposure durations (0.5 to 3.0 h). The study's second purpose was to examine whether differences existed between adolescents' and adults' circadian sensitivity to these lighting characteristics. The third purpose was to provide an estimate of the absolute threshold for the impact of light on acute melatonin suppression. Eighteen adolescents (age range, 13 to 18 years) and 23 adults (age range, 24 to 55 years) participated in the study. Results showed significant main effects of light level, spectrum, and exposure duration on melatonin suppression. Moreover, the data also showed that the relative suppressing effect of light on melatonin diminishes with increasing exposure duration for both age groups and both spectra. The present results do not corroborate our hypothesis that adolescents exhibit greater circadian sensitivity to short-wavelength radiation compared with adults. As for threshold, it takes longer to observe significant melatonin suppression at lower CS levels than at higher CS levels. Dose-response curves (amount and duration) for both white-light spectra and both age groups can guide lighting recommendations when considering circadian-effective light in applications such as offices, schools, residences, and healthcare facilities.
Collapse
Affiliation(s)
- Rohan Nagare
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Mark S Rea
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Barbara Plitnick
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Mariana G Figueiro
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|