1
|
Patodi V, Soni TP, Singh DK, Patni N, Jakhotia N, Chittappurath V, Kuyyanangadan R, Jenny A, Kanniyappan E, Gupta AK, Gupta TC, Singhal H, Natrajan T, Kather FS. Dosimetric comparison of O-ring versus conventional C-arm linear accelerator for volumetric modulated arc therapy (VMAT) of head and neck cancer and carcinoma cervix patients. RADIATION PROTECTION DOSIMETRY 2024; 200:538-543. [PMID: 38441907 DOI: 10.1093/rpd/ncae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/22/2024] [Accepted: 02/12/2024] [Indexed: 04/23/2024]
Abstract
The objective of this study is dosimetric comparison between the O-ring Halcyon and C-arm Clinac iX linac for volumetric modulated arc therapy (VMAT) plans for head & neck (H&N) cancer and carcinoma cervix patients. Total 60 patients of H&N cancer and carcinoma cervix were enrolled prospectively from March 2021 to March 2023. VMAT plans with 6 MV photons for Halcyon and Clinac iX were generated and compared for each patient by dose volume histogram for planning target volume coverage and organ at risk (OAR) sparing. There were no differences in between both the linacs for PTV D2% and D98%, homogeneity index, conformity index, Dmax (maximum dose) and Dmean (mean dose) of OAR. Halcyon had significantly shorter treatment time compared to Clinac iX. Halcyon delivered higher integral dose and monitor units. O-ring Halcyon produces VMAT plans comparable to other C-arm linacs for H&N and carcinoma cervix patients.
Collapse
Affiliation(s)
- Vibhor Patodi
- Department of Radiation Oncology, Bhagwan Mahaveer Cancer Hospital and Research Centre, Jaipur, Rajasthan, India
| | - Tej P Soni
- Department of Radiation Oncology, Bhagwan Mahaveer Cancer Hospital and Research Centre, Jaipur, Rajasthan, India
| | - Dinesh K Singh
- Department of Radiation Oncology, Bhagwan Mahaveer Cancer Hospital and Research Centre, Jaipur, Rajasthan, India
| | - Nidhi Patni
- Department of Radiation Oncology, Bhagwan Mahaveer Cancer Hospital and Research Centre, Jaipur, Rajasthan, India
| | - Naresh Jakhotia
- Department of Radiation Oncology, Bhagwan Mahaveer Cancer Hospital and Research Centre, Jaipur, Rajasthan, India
| | - Vineeth Chittappurath
- Department of Radiation Oncology, Bhagwan Mahaveer Cancer Hospital and Research Centre, Jaipur, Rajasthan, India
| | - Rajkamal Kuyyanangadan
- Department of Radiation Oncology, Bhagwan Mahaveer Cancer Hospital and Research Centre, Jaipur, Rajasthan, India
| | - Ashna Jenny
- Department of Radiation Oncology, Bhagwan Mahaveer Cancer Hospital and Research Centre, Jaipur, Rajasthan, India
| | - Elumalai Kanniyappan
- Department of Radiation Oncology, Bhagwan Mahaveer Cancer Hospital and Research Centre, Jaipur, Rajasthan, India
| | - Anil K Gupta
- Department of Surgical Oncology, Bhagwan Mahaveer Cancer Hospital and Research Centre, Jaipur, Rajasthan, India
| | - Tara C Gupta
- Department of Medical Oncology, Bhagwan Mahaveer Cancer Hospital and Research Centre, Jaipur, Rajasthan, India
| | - Harish Singhal
- Department of Clinical Trials, Bhagwan Mahaveer Cancer Hospital and Research Centre, Jaipur, Rajasthan, India
| | - Thirumoorthy Natrajan
- Department of Radiation Oncology, Narayana Multispeciality Hospital, Jaipur, Rajasthan, India
| | - Farzana S Kather
- Department of Radiation Oncology, Bhagwan Mahaveer Cancer Hospital and Research Centre, Jaipur, Rajasthan, India
| |
Collapse
|
2
|
Pokhrel D, Smith M, Volk A, Bernard ME. Benchmarking halcyon ring delivery system for hypofractionated breast radiotherapy: Validation and clinical implementation of the fast-forward trial. J Appl Clin Med Phys 2023; 24:e14047. [PMID: 37221949 PMCID: PMC10476987 DOI: 10.1002/acm2.14047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/01/2023] [Accepted: 05/11/2023] [Indexed: 05/25/2023] Open
Abstract
PURPOSE The aim of this study was to demonstrate the feasibility and efficacy of an iterative CBCT-guided breast radiotherapy with Fast-Forward trial of 26 Gy in five fractions on a Halcyon Linac. This study quantifies Halcyon plan quality, treatment delivery accuracy and efficacy by comparison with those of clinical TrueBeam plans. MATERIALS AND METHODS Ten accelerated partial breast irradiation (APBI) patients (four right, six left) who underwent Fast-Forward trial at our institute on TrueBeam (6MV beam) were re-planned on Halcyon (6MV-FFF). Three site-specific partial coplanar VMAT arcs and an Acuros-based dose engine were used. For benchmarking, PTV coverage, organs-at-risk (OAR) doses, beam-on time, and quality assurance (QA) results were compared for both plans. RESULTS The average PTV was 806 cc. Compared to TrueBeam plans, Halcyon provided highly conformal and homogeneous plans with similar mean PTVD95 (25.72 vs. 25.73 Gy), both global maximum hotspot < 110% (p = 0.954) and similar mean GTV dose (27.04 vs. 26.80 Gy, p = 0.093). Halcyon provided lower volume of ipsilateral lung receiving 8 Gy (6.34% vs. 8.18%, p = 0.021), similar heart V1.5 Gy (16.75% vs. 16.92%, p = 0.872), V7Gy (0% vs. 0%), mean heart dose (0.96 vs. 0.9 Gy, p = 0.228), lower maximum dose to contralateral breast (3.2 vs. 3.6 Gy, p = 0.174), and nipple (19.6 vs. 20.1 Gy, p = 0.363). Compared to TrueBeam, Halcyon plans provided similar patient-specific QA pass rates and independent in-house Monte Carlo second check results of 99.6% vs. 97.9% (3%/2 mm gamma criteria) and 98.6% versus 99.2%, respectively, suggesting similar treatment delivery accuracy. Halcyon provided shorter beam-on time (1.49 vs. 1.68 min, p = 0.036). CONCLUSION Compared to the SBRT-dedicated TrueBeam, Halcyon VMAT plans provided similar plan quality and treatment delivery accuracy, yet potentially faster treatment via one-step patient setup and verification with no patient collision issues. Rapid delivery of daily APBI on Fast-Forward trial on Halcyon with door-to-door patient time < 10 min, could reduce intrafraction motion errors, and improve patient comfort and compliance. We have started treating APBI on Halcyon. Clinical follow-up results are warranted. We recommend Halcyon users consider implementing the protocol to remote and underserved APBI patients in Halcyon-only clinics.
Collapse
Affiliation(s)
- Damodar Pokhrel
- Department of Radiation MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Mason Smith
- Department of Radiation MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Alexander Volk
- Department of Radiation MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Mark E. Bernard
- Department of Radiation MedicineUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
3
|
Savanović M, Štrbac B, Jaroš D, Loi M, Huguet F, Foulquier JN. Quantification of Lung Tumor Motion and Optimization of Treatment. J Biomed Phys Eng 2023; 13:65-76. [PMID: 36818005 PMCID: PMC9923245 DOI: 10.31661/jbpe.v0i0.2102-1278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/18/2021] [Indexed: 02/02/2023]
Abstract
Background Mobility of lung tumors is induced by respiration and causes inadequate dose coverage. Objective This study quantified lung tumor motion, velocity, and stability for small (≤5 cm) and large (>5 cm) tumors to adapt radiation therapy techniques for lung cancer patients. Material and Methods In this retrospective study, 70 patients with lung cancer were included that 50 and 20 patients had a small and large gross tumor volume (GTV). To quantify the tumor motion and velocity in the upper lobe (UL) and lower lobe (LL) for the central region (CR) and a peripheral region (PR), the GTV was contoured in all ten respiratory phases, using 4D-CT. Results The amplitude of tumor motion was greater in the LL, with motion in the superior-inferior (SI) direction compared to the UL, with an elliptical motion for small and large tumors. Tumor motion was greater in the CR, rather than in the PR, by 63% and 49% in the UL compared to 50% and 38% in the LL, for the left and right lung. The maximum tumor velocity for a small GTV was 44.1 mm/s in the LL (CR), decreased to 4 mm/s for both ULs (PR), and a large GTV ranged from 0.4 to 9.4 mm/s. Conclusion The tumor motion and velocity depend on the tumor localization and the greater motion was in the CR for both lobes due to heart contribution. The tumor velocity and stability can help select the best technique for motion management during radiation therapy.
Collapse
Affiliation(s)
- Milovan Savanović
- Faculty of Medicine, University of Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
- Department of Radiation Oncology, Tenon Hospital, APHP, Sorbonne University, 75020 Paris, France
| | - Bojan Štrbac
- MATER Private Hospital, Department of Physics, Eccles Street, Dublin 7, Ireland
| | - Dražan Jaroš
- Center for Radiotherapy, International Medical Centers, Affidea, 78000 Banja Luka, Bosnia, and Herzegovina
- Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia, and Herzegovina
| | - Mauro Loi
- Department of Radiation Oncology, Tenon Hospital, APHP, Sorbonne University, 75020 Paris, France
| | - Florence Huguet
- Department of Radiation Oncology, Tenon Hospital, APHP, Sorbonne University, 75020 Paris, France
| | - Jean-Noël Foulquier
- Department of Radiation Oncology, Tenon Hospital, APHP, Sorbonne University, 75020 Paris, France
| |
Collapse
|
4
|
Stroubinis T, Psarras M, Zygogianni A, Protopapa M, Kouloulias V, Platoni K. Craniospinal Irradiation: A Dosimetric Comparison Between O-Ring Linac and Conventional C-arm Linac. Adv Radiat Oncol 2022; 8:101139. [PMID: 36636383 PMCID: PMC9830104 DOI: 10.1016/j.adro.2022.101139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 10/16/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose The aim of this study was to perform a dosimetric evaluation between craniospinal irradiation volumetric modulated arc therapy plans designed for an O-Ring and a conventional C-arm Linac. Methods and Materials Two adult patients were selected for this study. Two plans were designed one for a TrueBeam Edge and one for Halcyon O-ring Linac for each patient. The evaluation of the plans was conducted in terms of dose volume histogram analysis of the target volume and organs at risk (OARs) along with total plan monitor units and beam-on time. Paired sample t test was performed to compare Dmax and Dmean of OARs for each plan's comparison. The delivery of volumetric modulated arc therapy plans was evaluated using Octavius 4D phantom. Results All plans demonstrated dose distributions with sufficient planned target volume conformity and homogeneity. The Homogeneity Index and Conformity Index for all plans were found comparable. The paired sample t test did not demonstrate significant difference in terms of Dmax and Dmean of OARs between plans for both patients. All plans met the threshold of 90%, with Halcyon plans having higher gamma passing rates. Conclusions Craniospinal irradiation plans generated for Halcyon and Edge are equivalent in terms of plan quality and dose sparing at OARs. The small variations may have originated from the differences in beam profile or mean energy, the degree of the modulation for each plan and characteristics of multi leaf collimators for each treatment unit. Halcyon is able to deliver a distinctly faster treatment, but Edge provides an automatic rotational correction for patient positioning.
Collapse
Affiliation(s)
- Theodoros Stroubinis
- Department of Radiation Oncology and Stereotactic Radiosurgery, Mediterraneo Hospital, Athens, Greece,Corresponding author: Theodoros Stroubinis
| | - Michalis Psarras
- Department of Radiation Oncology and Stereotactic Radiosurgery, Mediterraneo Hospital, Athens, Greece
| | - Anna Zygogianni
- Radiation Oncology Unit, 1st Department of Radiology, Aretaieion University Hospital, National & Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Maria Protopapa
- Department of Radiation Oncology and Stereotactic Radiosurgery, Mediterraneo Hospital, Athens, Greece
| | - Vassilis Kouloulias
- Radiation Oncology Unit, 2nd Department of Radiology, Attikon University Hospital, National & Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Kalliopi Platoni
- Medical Physics Unit, 2nd Department of Radiology, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| |
Collapse
|
5
|
Wang GY, Zhu QZ, Zhu HL, Jiang LJ, Zhao N, Liu ZK, Zhang FQ. Clinical performance evaluation of O-Ring Halcyon Linac: A real-world study. World J Clin Cases 2022; 10:7728-7737. [PMID: 36158510 PMCID: PMC9372831 DOI: 10.12998/wjcc.v10.i22.7728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/07/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Radiation therapy, especially the development of linear accelerators, plays a key role in cancer management. The fast-rotating coplanar O-ring Halcyon Linac has demonstrated many advantages. The previous literature has mainly focused on the machine parameters and plan quality of Halcyon, with a lack of relevant research on its clinical application.
AIM To evaluate the clinical performance of the O-ring Halcyon treatment system in a real-world application setting.
METHODS Data from sixty-one patients who were treated with the Halcyon system throughout the entire radiotherapy process in Peking Union Medical College Hospital between August 2019 and September 2020 were retrospectively reviewed. We evaluated the target tumour response to radiotherapy and irradiation toxicity from 1 to 3 mo after treatment. Dosimetric verification of Halcyon plans was performed using a quality assurance procedure, including portal dosimetry, ArcCHECK and point dose measurements for verification of the system delivery accuracy.
RESULTS Of the 61 patients in the five groups, 16, 12, 7 and 26 patients had complete response, partial response, progressive disease and stable disease, respectively. No increase in the irradiated target tumour volume was observed when separately evaluating the local response. Regarding irradiation toxicity, no radiation-induced deaths were observed. Thirty-eight percent (23/61 patients) had no radiation toxicity after radiotherapy, 56% (34/61 patients) experienced radiation toxicity that resolved after treatment, and 6% (4/61 patients) had irreversible adverse reactions. The average gamma passing rates with a 2% dose difference and 2-mm distance to agreement for IMRT/VMAT/SRT plans were ArcCHECK at 96.4% and portal dosimetry at 96.7%, respectively. All of the validated clinical plans were within 3% for point dose measurements, and Halcyon’s ArcCHECK demonstrated a high pass rate of 99.1% ± 1.1% for clinical gamma passing criteria of 3%/3 mm.
CONCLUSION The O-ring Halcyon Linac could achieve a better therapeutic effect on the target volume by providing accurate treatment delivery plans with tolerable irradiation toxicity.
Collapse
Affiliation(s)
- Guang-Yu Wang
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Qi-Zhen Zhu
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - He-Ling Zhu
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Ling-Juan Jiang
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Nan Zhao
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhi-Kai Liu
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Fu-Quan Zhang
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
6
|
Vandewinckele L, Willems S, Lambrecht M, Berkovic P, Maes F, Crijns W. Treatment plan prediction for lung IMRT using deep learning based fluence map generation. Phys Med 2022; 99:44-54. [DOI: 10.1016/j.ejmp.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/09/2022] [Accepted: 05/15/2022] [Indexed: 11/28/2022] Open
|
7
|
Azorín JFP, Saez J, Garcia LIR, Hernandez V. Investigation on the impact of the leaf trailing effect using the Halcyon integrated platform system. Med Phys 2022; 49:6161-6170. [PMID: 35770385 DOI: 10.1002/mp.15833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/25/2022] [Accepted: 06/14/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE The double-stacked design of the Halcyon multileaf collimator (MLC) presents new challenges for treatment planning systems (TPSs). The leaf trailing effect has recently been described as the result of the interplay between the fluence transmitted through the leaf tip ends of each MLC layer. This effect makes the dosimetric leaf gap (DLG) dependent on the distance between the leaves of different layers (trailing distance) and is not adequately modeled by the Eclipse TPS. The purpose of our study was to investigate and report the dose discrepancies produced by these limitations in clinical plans and to explore how these discrepancies can be mitigated and avoided. METHODS The integrated platform with the Halcyon v2 system, Eclipse and Aria v15.6, was used. The dose discrepancies were obtained with EPID images and the portal dosimetry software and validated using radiochromic film dosimetry. The results for the AIDA commissioning test and for nine selected clinical beams with the sliding window intensity modulated radiotherapy (dIMRT) technique were thoroughly analyzed and presented. First, the DICOM RT plans were exported and the fluences were computed using different leaf tip models, and then were compared. Second, the detailed characteristics of the corresponding leaf sequences were investigated. Finally, modified DICOM RT plans were created in which the non-collimating (backup) leaves were retracted 2 mm to increase the leaf trailing distance, the modified plans were imported back into the TPS and the measurements were repeated. Dedicated in-house tools were developed in Python to carry out all analyses. RESULTS Dose discrepancies greater than 10% and regions of gamma failure were found in both the AIDA test and clinical beams using static-gantry dIMRT. Fluence analysis highlighted that the discrepancies were due to limitations in the MLC model implemented in the TPS. Analysis of leaf sequences indicated that regions of failure were associated with very low leaf speeds and virtually motionless leaves within the beam aperture. Some of these discrepancies were mitigated by increasing the trailing distance of the non-collimating leaves without affecting the beam aperture, but this strategy was not possible in regions where the leaves from both layers actively defined the beam aperture. CONCLUSIONS Current limitations of the MLC model in Eclipse produced discrepancies between calculated and delivered doses in clinical beams that caused plan-specific quality assurance failures and interruptions in the clinical workflow. Careful evaluation of the clinical plans produced by Eclipse for the Halcyon is recommended, especially for static gantry dIMRT treatments. Some characteristics of leaf sequences are problematic and should be avoided in clinical plans and, in general, a better leaf tip model is needed. This is particularly important in adaptive radiotherapy treatments, where the accuracy and reliability of TPS dose calculations are of the utmost importance.
Collapse
Affiliation(s)
- José Fernando Pérez Azorín
- Medical Physics and Radiation Protection Department, Gurutzeta-Cruces University Hospital, Barakaldo, E-48903, Spain.,Biocruces Health Research Institute, Barakaldo, E-48903, Spain
| | - Jordi Saez
- Department of Radiation Oncology, Hospital Clínic de Barcelona, Barcelona, 08036, Spain
| | - Luis Isaac Ramos Garcia
- Department of Oncology, Clínica Universidad de Navarra, University of Navarra, Pamplona, E-31008, Spain
| | - Victor Hernandez
- Department of Medical Physics, Hospital Sant Joan de Reus, IISPV, Tarragona, 43204, Spain.,Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
8
|
Intra-fraction motion monitoring during fast modulated radiotherapy delivery in a closed-bore gantry linac. Phys Imaging Radiat Oncol 2021; 20:51-55. [PMID: 34765749 PMCID: PMC8572954 DOI: 10.1016/j.phro.2021.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/25/2022] Open
Abstract
Surface scanning allows for continuous intra fraction monitoring in a closed-bore gantry. Patient baseline drift during fast cone-beam computed tomography imaging is non-negligible. Peak-to-peak breathing amplitude is smaller than baseline drift in 69% of fractions.
Background and purpose New closed-bore linacs allow for highly streamlined workflows and fast treatment delivery resulting in brief treatment sessions. Motion management technology has only recently been integrated inside the bore, yet is required in future online adaptive workflows. We measured patient motion during every step of the workflow: image acquisition, evaluation and treatment delivery using surface scanning. Materials and methods Nineteen patients treated for breast, lung or esophageal cancer were prospectively monitored from the end of setup to the end of treatment delivery in the Halcyon linac (Varian Medical Systems). Motion of the chest was tracked by way of 6 degrees-of-freedom surface tracking. Baseline drift and rate of drift were determined. The influence of fraction number, patient and fraction duration were analyzed with multi-way ANOVA. Results Median fraction duration was 4 min 48 s including the IGRT procedure (kV-CBCT acquisition and evaluation) (N = 221). Baseline drift at the end of the fraction was −1.8 ± 1.5 mm in the anterior-posterior, −0.0 ± 1.7 mm in the cranio-caudal direction and 0.1 ± 1.8 mm in the medio-lateral direction of which 75% occurred during the IGRT procedure. The highest rate of baseline drift was observed between 1 and 2 min after the end of patient setup (-0.62 mm/min). Baseline drift was patient and fraction duration dependent (p < 0.001), but fraction number was not significant (p = 0.33). Conclusion Even during short treatment sessions, patient baseline drift is not negligible. Drift is largest during the initial minutes after completion of patient setup, during verification imaging and evaluation. Patients will need to be monitored during extended contouring and re-planning procedures in online adaptive workflows.
Collapse
|
9
|
Visak J, Webster A, Bernard ME, Kudrimoti M, Randall ME, McGarry RC, Pokhrel D. Fast generation of lung SBRT plans with a knowledge-based planning model on ring-mounted Halcyon Linac. J Appl Clin Med Phys 2021; 22:54-63. [PMID: 34562308 PMCID: PMC8598154 DOI: 10.1002/acm2.13427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/23/2021] [Accepted: 09/07/2021] [Indexed: 12/31/2022] Open
Abstract
Purpose To demonstrate fast treatment planning feasibility of stereotactic body radiation therapy (SBRT) for centrally located lung tumors on Halcyon Linac via a previously validated knowledge‐based planning (KBP) model to support offline adaptive radiotherapy. Materials/methods Twenty previously treated non‐coplanar volumetric‐modulated arc therapy (VMAT) lung SBRT plans (c‐Truebeam) on SBRT‐dedicated C‐arm Truebeam Linac were selected. Patients received 50 Gy in five fractions. c‐Truebeam plans were re‐optimized for Halcyon manually (m‐Halcyon) and with KBP model (k‐Halcyon). Both m‐Halcyon and k‐Halcyon plans were normalized for identical or better target coverage than clinical c‐Truebeam plans and compared for target conformity, dose heterogeneity, dose fall‐off, and dose tolerances to the organs‐at‐risk (OAR). Treatment delivery parameters and planning times were evaluated. Results k‐Halcyon plans were dosimetrically similar or better than m‐Halcyon and c‐Truebeam plans. k‐Halcyon and m‐Halcyon plan comparisons are presented with respect to c‐Truebeam. Differences in conformity index were statistically insignificant in k‐Halcyon and on average 0.02 higher (p = 0.04) in m‐Halcyon plans. Gradient index was on average 0.43 (p = 0.006) lower and 0.27 (p = 0.02) higher for k‐Halcyon and m‐Halcyon, respectively. Maximal dose 2 cm away in any direction from target was statistically insignificant. k‐Halcyon increased maximal target dose on average by 2.9 Gy (p < 0.001). Mean lung dose was on average reduced by 0.10 Gy (p = 0.004) in k‐Halcyon and increased by 0.14 Gy (p < 0.001) in m‐Halcyon plans. k‐Halcyon plans lowered bronchial tree dose on average by 1.2 Gy. Beam‐on‐time (BOT) was increased by 2.85 and 1.67 min, on average for k‐Halcyon and m‐Halcyon, respectively. k‐Halcyon plans were generated in under 30 min compared to estimated dedicated 180 ± 30 min for m‐Halcyon or c‐Truebeam plan. Conclusion k‐Halcyon plans were generated in under 30 min with excellent plan quality. This adaptable KBP model supports high‐volume clinics in the expansion or transfer of lung SBRT patients to Halcyon.
Collapse
Affiliation(s)
- Justin Visak
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Aaron Webster
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Mark E Bernard
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Mahesh Kudrimoti
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Marcus E Randall
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Ronald C McGarry
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Damodar Pokhrel
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
10
|
Tamihardja J, Razinskas G, Exner F, Richter A, Kessler P, Weick S, Kraft J, Mantel F, Flentje M, Polat B. Comparison of treatment plans for hypofractionated high-dose prostate cancer radiotherapy using the Varian Halcyon and the Elekta Synergy platforms. J Appl Clin Med Phys 2021; 22:262-270. [PMID: 34351055 PMCID: PMC8425948 DOI: 10.1002/acm2.13380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/17/2021] [Accepted: 07/16/2021] [Indexed: 01/23/2023] Open
Abstract
Purpose To compare radiotherapy plans between an O‐ring and a conventional C‐arm linac for hypofractionated high‐dose prostate radiotherapy in terms of plan quality, dose distribution, and quality assurance in a multi‐vendor environment. Methods Twenty prostate cancer treatment plans were irradiated on the O‐ring Varian Halcyon linac and were re‐optimized for the C‐arm Elekta Synergy Agility linac. Dose‐volume histogram metrics for target coverage and organ at risk dose, quality assurance, and monitor units were retrospectively compared. Patient‐specific quality assurance with ion chamber measurements, gamma index analysis, and portal dosimetry was performed using the Varian Portal Dosimetry system and the ArcCHECK® phantom (Sun Nuclear Corporation). Prostate‐only radiotherapy was delivered with simultaneous integrated boost (SIB) volumetric modulated arc therapy (VMAT) in 20 fractions of 2.5/3.0 Gy each. Results For both linacs, target coverage was excellent and plan quality comparable. Homogeneity in PTVBoost was high for Synergy as well as Halcyon with a mean homogeneity index of 0.07 ± 0.01 and 0.05 ± 0.01, respectively. Mean dose for the organs at risk rectum and bladder differed not significantly between the linacs but were higher for the femoral heads and penile bulb for Halcyon. Quality assurance showed no significant differences in terms of ArcCHECK gamma pass rates. Median pass rate for 3%/2 mm was 99.3% (96.7 to 99.8%) for Synergy and 99.8% (95.6 to 100%) for Halcyon. Agreement between calculated and measured dose was high with a median deviation of −0.6% (−1.7 to 0.8%) for Synergy and 0.2% (−0.6 to 2.3%) for Halcyon. Monitor units were higher for the Halcyon by approximately 20% (p < 0.001). Conclusion Hypofractionated high‐dose prostate cancer SIB VMAT on the Halcyon system is feasible with comparable plan quality in reference to a standard C‐arm Elekta Synergy linac.
Collapse
Affiliation(s)
- Jörg Tamihardja
- Department of Radiation Oncology, University of Würzburg, Würzburg, Germany
| | - Gary Razinskas
- Department of Radiation Oncology, University of Würzburg, Würzburg, Germany
| | - Florian Exner
- Department of Radiation Oncology, University of Würzburg, Würzburg, Germany
| | - Anne Richter
- Department of Radiation Oncology, University of Würzburg, Würzburg, Germany
| | - Patrick Kessler
- Department of Radiation Oncology, University of Würzburg, Würzburg, Germany
| | - Stefan Weick
- Department of Radiation Oncology, University of Würzburg, Würzburg, Germany
| | - Johannes Kraft
- Department of Radiation Oncology, University of Würzburg, Würzburg, Germany
| | - Frederick Mantel
- Department of Radiation Oncology, University of Würzburg, Würzburg, Germany
| | - Michael Flentje
- Department of Radiation Oncology, University of Würzburg, Würzburg, Germany
| | - Bülent Polat
- Department of Radiation Oncology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
11
|
Pokhrel D, Webster A, Stephen J, St Clair W. SBRT treatment of abdominal and pelvic oligometastatic lymph nodes using ring-mounted Halcyon Linac. J Appl Clin Med Phys 2021; 22:162-171. [PMID: 34032367 PMCID: PMC8200515 DOI: 10.1002/acm2.13268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/18/2021] [Accepted: 04/14/2021] [Indexed: 12/31/2022] Open
Abstract
PURPOSE/OBJECTIVES This work seeks to evaluate the plan quality, treatment delivery efficiency, and accuracy of single-isocenter volumetric modulated arc therapy (VMAT) of abdominal/pelvic oligometastatic lymph nodes (LNs) stereotactic body radiation therapy (SBRT) on Halcyon Linac. MATERIALS AND METHODS After completing the in-house multitarget end-to-end phantom testing and independent dose verification using MD Anderson's single-isocenter/multi-target (lung and spine target inserts) thorax phantom, eight patients with two to three abdominal/pelvic oligometastatic LNs underwent highly conformal single-isocenter VMAT-SBRT treatment using the Halcyon Linac 6MV flattening filter free (FFF) beam. Targets were identified using an Axumin PET/CT scan co-registered with planning CT images and a single-isocenter was placed between/among the targets. Doses between 25 and 36.25 Gy in 5 fractions were delivered. Patients were treated every other day. Plans were calculated in Eclipse with advanced AcurosXB algorithm for heterogeneity corrections. For comparison, Halcyon VMAT-SBRT plans were retrospectively generated for SBRT-dedicated TrueBeam with a 6MV-FFF beam using identical planning geometry and objectives. Target coverage, conformity index (CI), dose to 2 cm away from each target (D2cm) and dose to adjacent organs-at-risk (OAR) were evaluated. Additionally, various treatment delivery parameters including beam-on time were recorded. RESULTS Phantom measurements showed acceptable spatial accuracy of conebeam CT-guided Halcyon SBRT treatments including compliance with MD Anderson's single-isocenter/multi-targets phantom credentialing results. For patients, the mean isocenter to tumor center distance was 3.4 ± 1.2 cm (range, 1.5-4.8 cm). The mean combined PTV was 18.9 ± 10.9 cc (range, 5.6-39.5 cc). There was no clinically significant difference in dose to LNs, CI, D2cm and maximal doses to OAR between single-isocenter Halcyon and Truebeam VMAT-SBRT plans, although, Halcyon plans provided preferably lower maximal dose to adjacent OAR. Additionally, total monitor units, beam-on time and overall treatment time was lower with Halcyon plans. Halcyon's portal dosimetry demonstrated a high pass rate of 98.1 ± 1.6% for clinical gamma passing criteria of 2%/2 mm. CONCLUSION SBRT treatment of abdominal/pelvic oligometastatic LNs with single-isocenter VMAT on Halcyon was dosimetrically equivalent to TrueBeam. Faster treatment delivery to oligometastatic LNs via single-isocenter Halcyon VMAT can improve clinic workflow and patient compliance, potentially reducing intrafraction motion errors for well-suited patients. Clinical follow-up of these patients is ongoing.
Collapse
Affiliation(s)
- Damodar Pokhrel
- Medical Physics Graduate ProgramDepartment of Radiation MedicineUniversity of KentuckyLexingtonKYUSA
| | - Aaron Webster
- Medical Physics Graduate ProgramDepartment of Radiation MedicineUniversity of KentuckyLexingtonKYUSA
| | - Joseph Stephen
- Medical Physics Graduate ProgramDepartment of Radiation MedicineUniversity of KentuckyLexingtonKYUSA
| | - William St Clair
- Medical Physics Graduate ProgramDepartment of Radiation MedicineUniversity of KentuckyLexingtonKYUSA
| |
Collapse
|
12
|
Costa E, Richir T, Robilliard M, Bragard C, Logerot C, Kirova Y, Fourquet A, De Marzi L. Assessment of a conventional volumetric-modulated arc therapy knowledge-based planning model applied to the new Halcyon© O-ring linac in locoregional breast cancer radiotherapy. Phys Med 2021; 86:32-43. [PMID: 34051551 DOI: 10.1016/j.ejmp.2021.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/31/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022] Open
Abstract
INTRODUCTION The aim of this study was to evaluate the performance of a knowledge-based planning (KBP) model for breast cancer trained on plans performed on a conventional linac with 6 MV FF (flattening filter) beams and volumetric-modulated arc therapy (VMAT) for plans performed on the new jawless Halcyon© system with 6 MV FFF (flattening filter-free) beams. MATERIALS AND METHODS Based on the RapidPlan© (RP) KBP optimization engine, a DVH Estimation Model was first trained using 56 VMAT left-sided breast cancer treatment plans performed on a conventional linac, and validated on another 20 similar cases (without manual intervention). To determine the capacity of the model for Halcyon©, an additional cohort of 20 left-sided breast cancer plans was generated with RP and analyzed for both TrueBeam© and Halcyon© machines. Plan qualities between manual vs RP (followed by manual intervention) Halcyon© plans set were compared qualitatively by blinded review by radiation oncologists for 10 new independent plans. RESULTS Halcyon© plans generated with the VMAT model trained with conventional linac plans showed comparable target dose distribution compared to TrueBeam© plans. Organ sparingwas comparable between the 2 devices with a slight decrease in heart dose for Halcyon© plans. Nine out of ten automatically generated Halcyon© plans were preferentially chosen by the radiation oncologists over the manually generated Halcyon© plans. CONCLUSION A VMAT KBP model driven by plans performed on a conventional linac with 6 MV FF beams provides high quality plans performed with 6 MV FFF beams on the new Halcyon© linac.
Collapse
Affiliation(s)
- Emilie Costa
- Institut Curie, Radiation Oncology Department, 26 rue d'Ulm, Paris 75005, France.
| | - Thomas Richir
- Institut Curie, Radiation Oncology Department, 26 rue d'Ulm, Paris 75005, France
| | - Magalie Robilliard
- Institut Curie, Radiation Oncology Department, 26 rue d'Ulm, Paris 75005, France
| | - Christel Bragard
- Institut Curie, Radiation Oncology Department, 26 rue d'Ulm, Paris 75005, France
| | - Christelle Logerot
- Institut Curie, Radiation Oncology Department, 26 rue d'Ulm, Paris 75005, France
| | - Youlia Kirova
- Institut Curie, Radiation Oncology Department, 26 rue d'Ulm, Paris 75005, France
| | - Alain Fourquet
- Institut Curie, Radiation Oncology Department, 26 rue d'Ulm, Paris 75005, France
| | - Ludovic De Marzi
- Institut Curie, Radiation Oncology Department, 26 rue d'Ulm, Paris 75005, France; Institut Curie, University Paris Saclay, PSL Research University, Inserm LITO, Orsay, France
| |
Collapse
|
13
|
Hernandez V, Saez J, Angerud A, Cayez R, Khamphan C, Nguyen D, Vieillevigne L, Feygelman V. Dosimetric leaf gap and leaf trailing effect in a double-stacked multileaf collimator. Med Phys 2021; 48:3413-3424. [PMID: 33932237 DOI: 10.1002/mp.14914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/02/2021] [Accepted: 04/23/2021] [Indexed: 01/21/2023] Open
Abstract
PURPOSE To investigate (i) the dosimetric leaf gap (DLG) and the effect of the "trailing distance" between leaves from different multileaf collimator (MLC) layers in Halcyon systems and (ii) the ability of the currently available treatment planning systems (TPSs) to approximate this effect. METHODS DICOM plans with transmission beams and sweeping gap tests were created in Python for measuring the DLG for each MLC layer independently and for both layers combined. In clinical Halcyon plans both MLC layers are interchangeably used and leaves from different layers are offset, thus forming a trailing pattern. To characterize the impact of such configuration, new tests called "trailing sweeping gaps" were designed and created where the leaves from one layer follow the leaves from the other layer at a fixed "trailing distance" t between the tips. Measurements were carried out on five Halcyons SX2 from different institutions and calculations from both the Eclipse and RayStation TPSs were compared with measurements. RESULTS The dose accumulated during a sweeping gap delivery progressively increased with the trailing distance t . We call this "the trailing effect." It is most pronounced for t between 0 and 5 mm, although some changes were obtained up to 20 mm. The dose variation was independent of the gap size. The measured DLG values also increased with t up to 20 mm, again with the steepest variation between 0 and 5 mm. Measured DLG values were negative at t = 0 (the leaves from both layers at the same position) but changed sign for t ≥ 1 mm, in line with the positive DLG sign usually observed with single-layer rounded-end MLCs. The Eclipse TPS does not explicitly model the leaf tip and, as a consequence, could not predict the dose reduction due to the trailing effect. This resulted in dose discrepancies up to +10% and -8% for the 5 mm sweeping gap and up to ±5% for the 10 mm one depending on the distance t . RayStation implements a simple model of the leaf tip that was able to approximate the trailing effect and improved the agreement with measured doses. In particular, with a prototype version of RayStation that assigned a higher transmission at the leaf tip the agreement with measured doses was within ±3% even for the 5 mm gap. The five Halcyon systems behaved very similarly but differences in the DLG around 0.2 mm were found across different treatment units and between MLC layers from the same system. The DLG for the proximal layer was consistently higher than for the distal layer, with differences ranging between 0.10 mm and 0.24 mm. CONCLUSIONS The trailing distance between the leaves from different layers substantially affected the doses delivered by sweeping gaps and the measured DLG values. Stacked MLCs introduce a new level of complexity in TPSs, which ideally need to implement an explicit model of the leaf tip in order to reproduce the trailing effect. Dynamic tests called "trailing sweeping gaps" were designed that are useful for characterizing and commissioning dual-layer MLC systems.
Collapse
Affiliation(s)
- Victor Hernandez
- Department of Medical Physics, Hospital Sant Joan de Reus, IISPV, 43204, Tarragona, Spain
| | - Jordi Saez
- Department of Radiation Oncology, Hospital Clínic de Barcelona, 08036, Barcelona, Spain
| | | | - Romain Cayez
- Department of Medical Physics, Oscar Lambret Center, 59000, Lille, France
| | - Catherine Khamphan
- Medical Physics Department, Institut Sainte-Catherine, 84000, Avignon, France
| | - Daniel Nguyen
- Centre de Radiothérapie de Mâcon, 71000, Mâcon, France
| | - Laure Vieillevigne
- Department of Medical Physics, Institut Claudius Regaud-Institut Universitaire du Cancer de Toulouse, 31059, Toulouse, France.,Centre de Recherche en Cancérologie de Toulouse UMR1037 INSERM, Université Toulouse 3-ERL5294 CNRS, Oncopole, 31037, Toulouse, France
| | - Vladimir Feygelman
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, 12902, Florida, USA
| |
Collapse
|
14
|
Quintero P, Cheng Y, Benoit D, Moore C, Beavis A. Effect of treatment planning system parameters on beam modulation complexity for treatment plans with single-layer multi-leaf collimator and dual-layer stacked multi-leaf collimator. Br J Radiol 2021; 94:20201011. [PMID: 33882242 PMCID: PMC8173683 DOI: 10.1259/bjr.20201011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE High levels of beam modulation complexity (MC) and monitor units (MU) can compromise the plan deliverability of intensity-modulated radiotherapy treatments. Our study evaluates the effect of three treatment planning system (TPS) parameters on MC and MU using different multi-leaf collimator (MLC) architectures. METHODS 192 volumetric modulated arc therapy plans were calculated using one virtual prostate phantom considering three main settings: (1) three TPS-parameters (Convergence; Aperture Shape Controller, ASC; and Dose Calculation Resolution, DCR) selected from Eclipse v15.6, (2) four levels of dose-sparing priority for organs at risk (OAR), and (3) two treatment units with same nominal conformity resolution and different MLC architectures (Halcyon-v2 dual-layer MLC, DL-MLC & TrueBeam single-layer MLC, SL-MLC). We use seven complexity metrics to evaluate the MC, including two new metrics for DL-MLC, assessed by their correlation with γ passing rate (GPR) analysis. RESULTS DL-MLC plans demonstrated lower dose-sparing values than SL-MLC plans (p<0.05). TPS-parameters did not change significantly the complexity metrics for either MLC architectures. However, for SL-MLC, significant variations of MU, target volume dose-homogeneity, and dose spillage were associated with ASC and DCR (p<0.05). MU were found to be correlated (highly or moderately) with all complexity metrics (p<0.05) for both MLC plans. Additionally, our new complexity metrics presented a moderate correlation with GPR (r<0.65). An important correlation was demonstrated between MC (plan deliverability) and dose-sparing priority level for DL-MLC. CONCLUSIONS TPS-parameters selected do not change MC for DL-MLC architecture, but they might have a potential use to control the MU, PTV homogeneity or dose spillage for SL-MLC. Our new DL-MLC complexity metrics presented important information to be considered in future pre-treatment quality assurance programs. Finally, the prominent dependence between plan deliverability and priority applied to OAR dose sparing for DL-MLC needs to be analyzed and considered as an additional predictor of GPRs in further studies. ADVANCES IN KNOWLEDGE Dose-sparing priority might influence in modulation complexity of DL-MLC.
Collapse
Affiliation(s)
- Paulo Quintero
- Medical Physics Service, Castle Hill Hospital, Hull University Teaching Hospitals NHS Trust, Hull, UK.,Department of Physics and Mathematics, University of Hull, Hull, UK
| | - Yongqiang Cheng
- Department of Computer Science and Technology, University of Hull, Hull, UK
| | - David Benoit
- Department of Physics and Mathematics, University of Hull, Hull, UK
| | - Craig Moore
- Medical Physics Service, Castle Hill Hospital, Hull University Teaching Hospitals NHS Trust, Hull, UK
| | - Andrew Beavis
- Medical Physics Service, Castle Hill Hospital, Hull University Teaching Hospitals NHS Trust, Hull, UK.,Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield, UK.,Faculty of Health Sciences, University of Hull, Hull, UK
| |
Collapse
|
15
|
Delombaerde L, Petillion S, Weltens C, Depuydt T. Spirometer-guided breath-hold breast VMAT verified with portal images and surface tracking. Radiother Oncol 2021; 157:78-84. [PMID: 33515669 DOI: 10.1016/j.radonc.2021.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND AND PURPOSE Fast rotating closed-bore gantry linacs are ideally suited for breath-hold treatments due to reduced imaging and delivery times. We evaluated the reproducibility and stability of spirometer-guided breath-hold breast treatments, using intra-bore surface monitoring and portal imaging on Halcyon (Varian Medical Systems). MATERIALS AND METHODS Seven left-sided breast cancer patients were treated in breath-hold using the SDX spirometer (Dyn'R) with an integrated boost volumetric arc protocol on Halcyon. A dual depth-camera surface scanning system monitored the left breast. The interfraction, intrafraction and intrabreath-hold motion was determined in the anterior-posterior (AP) and superior-inferior (SI) direction. Portal images (PI), acquired at a tangential gantry angle were manually registered to the planning-CT to determine inter- and intrafraction breath-hold errors for the SI and tangential-anterior-posterior ("AP") axis. Correlations between PI and surface imaging deviations were investigated. To evaluate workflow efficiency, the total time and the number of breath-holds were recorded. RESULTS Systematic and random variability of breath-hold amplitude was below 0.7 mm for the AP and below 1.2 mm for the SI component as detected by surface monitoring (N = 130). Systematic and random errors retrieved from portal images (N = 140) were below 1.2 mm for the "AP" and 2.1 mm for SI axis. A limited correlation was found between PI and surface monitoring deviations for both the SI and "AP" axes (R2 = 0.27/0.38, p < 0.01). 75% of fractions were completed using four breath-holds and 82% within 10 min. CONCLUSION Surface imaging indicated spirometer-guided breath-hold VMAT breast radiotherapy can be accurately and quickly performed on a closed-bore gantry linac. Intra-bore surface scanning proved a valuable technique for monitoring breathing motion in closed-bore systems.
Collapse
Affiliation(s)
- Laurence Delombaerde
- Department of Oncology, KU Leuven, Herestraat 49, Belgium; Department of Radiation Oncology, University Hospitals Leuven, Belgium.
| | - Saskia Petillion
- Department of Radiation Oncology, University Hospitals Leuven, Belgium
| | - Caroline Weltens
- Department of Oncology, KU Leuven, Herestraat 49, Belgium; Department of Radiation Oncology, University Hospitals Leuven, Belgium
| | - Tom Depuydt
- Department of Oncology, KU Leuven, Herestraat 49, Belgium; Department of Radiation Oncology, University Hospitals Leuven, Belgium.
| |
Collapse
|
16
|
Pokhrel D, Visak J, Critchfield LC, Stephen J, Bernard ME, Randall M, Kudrimoti M. Clinical validation of ring-mounted halcyon linac for lung SBRT: comparison to SBRT-dedicated C-arm linac treatments. J Appl Clin Med Phys 2020; 22:261-270. [PMID: 33342070 PMCID: PMC7856490 DOI: 10.1002/acm2.13146] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/19/2020] [Accepted: 12/04/2020] [Indexed: 12/31/2022] Open
Abstract
Stereotactic body radiotherapy (SBRT) of lung tumors via the ring‐mounted Halcyon Linac, a fast kilovoltage cone beam CT‐guided treatment with coplanar geometry, a single energy 6MV flattening filter free (FFF) beam and volumetric modulated arc therapy (VMAT) is a fast, safe, and feasible treatment modality for selected lung cancer patients. Four‐dimensional (4D) CT‐based treatment plans were generated using advanced AcurosXB algorithm with heterogeneity corrections using an SBRT board and Halcyon couch insert. Halcyon VMAT‐SBRT plans with stacked and staggered multileaf collimators produced highly conformal radiosurgical dose distribution to the target, lower intermediate dose spillage, and similar dose to adjacent organs at risks (OARs) compared to SBRT‐dedicated highly conformal clinical noncoplanar Truebeam VMAT plans following the RTOG‐0813 requirements. Due to low monitor units per fraction and less multileaf collimator (MLC) modulation, the Halcyon VMAT plan can deliver lung SBRT fractions with an overall treatment time of less than 15 min (for 50 Gy in five fractions), significantly improving patient comfort and clinic workflow. Higher pass rates of quality assurance results demonstrate a more accurate treatment delivery on Halcyon. We have implemented Halcyon for lung SBRT treatment in our clinic. We suggest others use Halcyon for lung SBRT treatments using abdominal compression or 4D CT‐based treatment planning, thus expanding the access of curative ultra‐hypofractionated treatments to other centers with only a Halcyon Linac. Clinical follow‐up results for patients treated on Halcyon Linac with lung SBRT is ongoing.
Collapse
Affiliation(s)
- Damodar Pokhrel
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, KY, USA
| | - Justin Visak
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, KY, USA
| | - Lana C Critchfield
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, KY, USA
| | - Joseph Stephen
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, KY, USA
| | - Mark E Bernard
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, KY, USA
| | - Marcus Randall
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, KY, USA
| | - Mahesh Kudrimoti
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
17
|
Pokhrel D, Tackett T, Stephen J, Visak J, Amin-Zimmerman F, McGregor A, Strup SE, St Clair W. Prostate SBRT using O-Ring Halcyon Linac - Plan quality, delivery efficiency, and accuracy. J Appl Clin Med Phys 2020; 22:68-75. [PMID: 33340388 PMCID: PMC7856496 DOI: 10.1002/acm2.13105] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/20/2020] [Accepted: 11/02/2020] [Indexed: 12/31/2022] Open
Abstract
Cone beam CT‐guided prostate stereotactic body radiotherapy (SBRT) treatment on the recently installed novel O‐ring coplanar geometry Halcyon Linac with a single energy 6MV‐flattening filter free (FFF) beam and volumetric modulated arc therapy (VMAT) is a fast, safe, and feasible treatment modality for early stage low‐ and intermediate‐risk prostate cancer patients. Following the RTOG‐0938 compliance criteria and utilizing two‐full arc geometry, VMAT prostate SBRT plans were generated for ten consecutive patients using advanced Acuros‐based algorithm for heterogeneity corrections with Halcyon couch insert. Halcyon VMAT plans with the stacked and staggered multileaf collimators (MLC) produced highly conformal SBRT dose distributions to the prostate, lower intermediate dose spillage and similar dose to adjacent organs‐at‐risks (OARs) compared to SBRT‐dedicated Truebeam VMAT plans. Due to lower monitor units per fraction and less MLC modulation through the target, the Halcyon VMAT plan can deliver prostate SBRT fractions in and overall treatment time of less than 10 minutes (for 36.25 Gy in five fractions), significantly improving patient compliance and clinic workflow. Pretreatment quality assurance results were similar to Truebeam VMAT plans. We have implemented Halcyon Linac for prostate SBRT treatment in our institution. We recommend that others use Halcyon for prostate SBRT treatments to expand the access of curative hypofractionated treatments to other clinics only equipped with a Halcyon Linac. Clinical follow‐up results for patients who underwent prostate SBRT treatment on our Halcyon Linac is underway.
Collapse
Affiliation(s)
- Damodar Pokhrel
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, KY, USA
| | - Tanner Tackett
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, KY, USA
| | - Joseph Stephen
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, KY, USA
| | - Justin Visak
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, KY, USA
| | | | - Andrew McGregor
- Lexington Clinic, University of Kentucky, Lexington, KY, USA
| | - Stephen E Strup
- Department of Urology, University of Kentucky, Lexington, KY, USA
| | - William St Clair
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
18
|
Barsky AR, Kim MM, Dreyfuss A, Dong L, Metz JM, Anamalayil S, Li T, Taunk NK. Initial Clinical Experience Treating Patients With Gynecologic Cancers on a 6MV Flattening Filter Free O-Ring Linear Accelerator. Adv Radiat Oncol 2020; 5:920-928. [PMID: 33083654 PMCID: PMC7557142 DOI: 10.1016/j.adro.2020.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/26/2020] [Accepted: 01/26/2020] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Radiation therapy (RT) is commonly used in the treatment of gynecologic cancers. Intensity-modulated RT (IMRT) has been shown to reduce gastrointestinal toxicity compared with 2-dimensional and 3-dimensional RT modalities. We report the initial clinical experience using IMRT for gynecologic cancers with a novel 6MV flattening filter free O-ring linear accelerator (6X-FFF ORL). METHODS AND MATERIALS We retrospectively identified consecutive women with uterine or cervical cancer who received pelvic RT on Halcyon (Varian Medical Systems, Palo Alto, CA), a novel 6X-FFF ORL. We report their clinicopathologic data, RT details, early disease-control outcomes, acute toxicities, dose-volume histogram data, couch corrections, and treatment times. RESULTS Seventeen women received RT on a 6X-FFF ORL for uterine cancer (76%) or cervical cancer (24%) between January 2017 and September 2019. RT was delivered postoperatively (82%) or to intact disease (18%), to a median dose of 50.4 Gy (range, 19.8-55.0 Gy) in 25 fractions (range, 11-28), with 12% receiving extended-field RT and 65% receiving chemotherapy. Target and organ-at-risk constraints were met in all plans. The 3-dimensional vector couch correction average was 0.90 ± 0.37 cm. The mean beam-on time was 2.9 ± 0.4 min and mean treatment time, from imaging start to beam-off, was 3.6 ± 0.4 min. Grade 2 fatigue, anorexia, diarrhea, bloating, and nausea occurred in 41%, 12%, 12%, 6%, and 6% of patients, respectively. There were no grade ≥3 toxicities. CONCLUSIONS In the initial clinical report of pelvic RT for gynecologic cancers using a 6X-FFF ORL, the linac showed versatility in treatment; comparability to flattening-filtered IMRT for early disease-control, toxicity, and dosimetry; and treatment speed that compared favorably to IMRT on a C-arm gantry. Accordingly, a 6X-FFF ORL may increase throughput or reduce day length in departments with high gynecologic cancer volumes, without compromising clinical outcomes.
Collapse
Affiliation(s)
- Andrew R Barsky
- Department of Radiation Oncology, Perelman School of Medicine of the University of Pennsylvania, Perelman Center for Advanced Medicine, Philadelphia, Pennsylvania
| | - Michele M Kim
- Department of Radiation Oncology, Perelman School of Medicine of the University of Pennsylvania, Perelman Center for Advanced Medicine, Philadelphia, Pennsylvania
| | - Alexandra Dreyfuss
- Department of Radiation Oncology, Perelman School of Medicine of the University of Pennsylvania, Perelman Center for Advanced Medicine, Philadelphia, Pennsylvania
| | - Lei Dong
- Department of Radiation Oncology, Perelman School of Medicine of the University of Pennsylvania, Perelman Center for Advanced Medicine, Philadelphia, Pennsylvania
| | - James M Metz
- Department of Radiation Oncology, Perelman School of Medicine of the University of Pennsylvania, Perelman Center for Advanced Medicine, Philadelphia, Pennsylvania
| | - Shibu Anamalayil
- Department of Radiation Oncology, Perelman School of Medicine of the University of Pennsylvania, Perelman Center for Advanced Medicine, Philadelphia, Pennsylvania
| | - Taoran Li
- Department of Radiation Oncology, Perelman School of Medicine of the University of Pennsylvania, Perelman Center for Advanced Medicine, Philadelphia, Pennsylvania
| | - Neil K Taunk
- Department of Radiation Oncology, Perelman School of Medicine of the University of Pennsylvania, Perelman Center for Advanced Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
19
|
Tamura M, Matsumoto K, Otsuka M, Monzen H. Plan complexity quantification of dual-layer multi-leaf collimator for volumetric modulated arc therapy with Halcyon linac. Phys Eng Sci Med 2020; 43:947-957. [DOI: 10.1007/s13246-020-00891-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/23/2020] [Indexed: 12/31/2022]
|
20
|
Fogliata A, Cayez R, Garcia R, Khamphan C, Reggiori G, Scorsetti M, Cozzi L. Technical Note: Flattening filter free beam from Halcyon linac: Evaluation of the profile parameters for quality assurance. Med Phys 2020; 47:3669-3674. [PMID: 32367534 DOI: 10.1002/mp.14217] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION The use of flattening filter free (FFF) beams generated by standard linear accelerators is increasing in the clinical practice. The radiation intensity peaked toward the beam central axis is properly managed in the optimization process of treatment planning through intensity modulation. Specific FFF parameters for profile analysis, as unflatness and slope for FFF beams, based on the renormalization factor concept has been introduced for quality assurance purposes. Recently, Halcyon, an O-ring based linear accelerator equipped with a 6 MV FFF beam only has been introduced by Varian. METHODS Renormalization factors and related fit parameters according to Fogliata et al. ["Definition of parameters for quality assurance of FFF photon beams in radiation therapy," Med. Phys. 39, 6455-6464 (2012)] have been evaluated for the 6 MV FFF beam generated by Halcyon units. The Halcyon representative beam data provided by Varian were used. Dose fall-off at the field edges was matched with an unflattened beam generated by a 6 MV from a TrueBeam linac. Consistency of the results was evaluated against measurements on a clinical Halcyon unit, as well as a TrueBeam 6 MV FFF for comparison. RESULTS The five parameters in the analytical equation for estimating the renormalization factor were determined with an R2 of 0.997. The comparison of the unflatness parameters between the Halcyon representative and hospital beam data was consistent within a range of 0.6%. Consistently with the computed parameters, the Halcyon profiles resulted in a less pronounced peak than TrueBeam. CONCLUSION Renormalization factors and related fit parameters from the 6 MV FFF beam generated by the Varian Halcyon unit are provided.
Collapse
Affiliation(s)
- A Fogliata
- Humanitas Clinical and Research Center - IRCCS, Radiotherapy Dept, via Manzoni 56, 20089, Milan, Rozzano, Italy
| | - R Cayez
- Oscar Lambret Center, rue Frédéric Combemale, Radiotherapy, 59000, Lille, France
| | - R Garcia
- Medical Physics Department, Institut Sainte-Catherine, 250 Chemin de Baigne Pieds, 84000, Avignon, France
| | - C Khamphan
- Medical Physics Department, Institut Sainte-Catherine, 250 Chemin de Baigne Pieds, 84000, Avignon, France
| | - G Reggiori
- Humanitas Clinical and Research Center - IRCCS, Radiotherapy Dept, via Manzoni 56, 20089, Milan, Rozzano, Italy
| | - M Scorsetti
- Humanitas Clinical and Research Center - IRCCS, Radiotherapy Dept, via Manzoni 56, 20089, Milan, Rozzano, Italy.,Department of Biomedical Science, Humanitas University, via Rita Levi Montalcini 4, 20090, Milan, Pieve Emanuele, Italy
| | - L Cozzi
- Humanitas Clinical and Research Center - IRCCS, Radiotherapy Dept, via Manzoni 56, 20089, Milan, Rozzano, Italy.,Department of Biomedical Science, Humanitas University, via Rita Levi Montalcini 4, 20090, Milan, Pieve Emanuele, Italy
| |
Collapse
|
21
|
Laugeman E, Heermann A, Hilliard J, Watts M, Roberson M, Morris R, Goddu S, Sethi A, Zoberi I, Kim H, Mutic S, Hugo G, Cai B. Comprehensive validation of halcyon 2.0 plans and the implementation of patient specific QA with multiple detector platforms. J Appl Clin Med Phys 2020; 21:39-48. [PMID: 32368862 PMCID: PMC7386180 DOI: 10.1002/acm2.12881] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 01/01/2023] Open
Abstract
Purpose To perform a comprehensive validation of plans generated on a preconfigured Halcyon 2.0 with preloaded beam model, including evaluations of new features and implementing the patient specific quality assurance (PSQA) process with multiple detectors. Methods A total of 56 plans were generated in Eclipse V15.6 (Varian Medical System) with a preconfigured Halcyon treatment machine. Ten plans were developed via the AAPM TG‐119 test suite with both IMRT and VMAT techniques. 34 clinically treated plans using C‐arm LINAC from 24 patients were replanned on Halcyon using IMRT or VMAT techniques for a variety of sites including: brain, head and neck, lung, breast, abdomen, and pelvis. Six of those plans were breast VMAT plans utilizing the extended treatment field technique available with Halcyon 2.0. The dynamically flattened beam (DFB), another new feature on Halcyon 2.0, was also used for an AP/PA spine and four field box pelvis, as well as ten 3D breast plans. All 56 plans were measured with an ion chamber (IC), film, portal dosimetry (PD), ArcCHECK, and Delta4. Tolerance and action limits were calculated and compared to the recommendations of TG‐218. Results TG‐119 IC and film confidence limits met those set by the task group, except for IMRT target point dose. Forty‐four of 46 clinical plans were within 3% for IC measurements. Average gamma passing rates with 3% dose difference and 2mm distance‐to‐agreement for IMRT/VMAT plans were: Film – 96.8%, PD – 99.9%, ArcCHECK – 99.1%, and Delta4 – 99.2%. Calculated action limits were: Film – 86.3%, PD – 98.4%, ArcCHECK – 96.1%, and Delta4 – 95.7%. Extended treatment field technique was fully validated and 3D plans with DFB had similar results to IMRT/VMAT plans. Conclusion Halcyon plan deliveries were verified with multiple measurement devices. New features of Halcyon 2.0 were also validated. Traditional PSQA techniques and process specific tolerance and action limits were successfully implemented.
Collapse
Affiliation(s)
- Eric Laugeman
- Department of Radiation Oncology, Washington University, St. Louis, MO, USA
| | - Ana Heermann
- Department of Radiation Oncology, Washington University, St. Louis, MO, USA
| | - Jessica Hilliard
- Department of Radiation Oncology, Washington University, St. Louis, MO, USA
| | - Michael Watts
- Department of Radiation Oncology, Washington University, St. Louis, MO, USA
| | - Marshia Roberson
- Department of Radiation Oncology, Washington University, St. Louis, MO, USA
| | - Robert Morris
- Department of Radiation Oncology, Washington University, St. Louis, MO, USA
| | - Sreekrishna Goddu
- Department of Radiation Oncology, Washington University, St. Louis, MO, USA
| | - Abhishek Sethi
- Department of Radiation Oncology, Washington University, St. Louis, MO, USA
| | - Imran Zoberi
- Department of Radiation Oncology, Washington University, St. Louis, MO, USA
| | - Hyun Kim
- Department of Radiation Oncology, Washington University, St. Louis, MO, USA
| | - Sasa Mutic
- Department of Radiation Oncology, Washington University, St. Louis, MO, USA
| | - Geoffrey Hugo
- Department of Radiation Oncology, Washington University, St. Louis, MO, USA
| | - Bin Cai
- Department of Radiation Oncology, Washington University, St. Louis, MO, USA
| |
Collapse
|
22
|
Panda S, Swamidas J, Chopra S, Mangaj A, Fogliata A, Kupelian P, Agarwal JP, Cozzi L. Treatment planning comparison of volumetric modulated arc therapy employing a dual-layer stacked multi-leaf collimator and helical tomotherapy for cervix uteri. Radiat Oncol 2020; 15:22. [PMID: 32000832 PMCID: PMC6990476 DOI: 10.1186/s13014-020-1473-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/19/2020] [Indexed: 12/26/2022] Open
Abstract
Purpose To ascertain the dosimetric performance of a new delivery system (the Halcyon system, H) equipped with dual-layer stacked multi-leaf collimator (MLC) for risk-adapted targets in cervix uteri cancer patients compared to another ring-based system in clinical operation (Helical Tomotherapy, HT). Methods Twenty patients were retrospectively included in a treatment planning study (10 with positive lymph nodes and 10 without). The dose prescription (45Gy to the primary tumour volume and a simultaneously integrated boost up to 55Gy for the positive patients) and the clinical planning objectives were defined consistently as recommended by an ongoing multicentric clinical trial. Halcyon plans were optimised for the volumetric modulated arc therapy. The plan comparison was performed employing the quantitative analysis of the dose-volume histograms. Results The coverage of the primary and nodal target volumes was comparable for both techniques and both subsets of patients. The primary planning target volume (PTV) receiving at least 95% of the prescription isodose ranged from 97.2 ± 1.1% (node-negative) to 99.1 ± 1.2% (node-positive) for H and from 96.5 ± 1.9% (node-negative) to 98.3 ± 0.9% (node-positive) for HT. The uncertainty is expressed at one standard deviation from the cohort of patient per each group. For the nodal clinical target volumes, the dose received by 98% of the planning target volume ranged 55.5 ± 0.1 to 56.0 ± 0.8Gy for H and HT, respectively. The only significant and potentially relevant differences were observed for the bowels. In this case, V40Gy resulted 226.3 ± 35.9 and 186.9 ± 115.9 cm3 for the node-positive and node-negative patients respectively for Halcyon. The corresponding findings for HT were: 258.9 ± 60.5 and 224.9 ± 102.2 cm3. On the contrary, V15Gy resulted 1279.7 ± 296.5 and 1557.2 ± 359.9 cm3 for HT and H respectively for node-positive and 1010.8 ± 320.9 versus 1203.8 ± 332.8 cm3 for node-negative. Conclusion This retrospective treatment planning study, based on the dose constraints derived from the Embrace II study protocol, suggested the essential equivalence between Halcyon based and Helical Tomotherapy based plans for the intensity-modulated rotational treatment of cervix uteri cancer. Different levels of sparing were observed for the bowels with H better protecting in the high-dose region and HT in the mid-low dose regions. The clinical impact of these differences should be further addressed.
Collapse
Affiliation(s)
- S Panda
- Department of Radiation Oncology, Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Homi Bhabha National Institute, Kharghar, Navi Mumbai, Maharashtra, India
| | - J Swamidas
- Department of Radiation Oncology, Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Homi Bhabha National Institute, Kharghar, Navi Mumbai, Maharashtra, India
| | - S Chopra
- Department of Radiation Oncology, Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Homi Bhabha National Institute, Kharghar, Navi Mumbai, Maharashtra, India
| | - A Mangaj
- Department of Radiation Oncology and Medical Physics, Tata Memorial Hospital, Tata Memorial Centre, Homi Bhabha National Institute, Parel, Mumbai, Maharashtra, India
| | - A Fogliata
- Humanitas Research Hospital, Radiotherapy and Cancer Center Radiosurgery Dept, Via Manzoni 56, 20089, Milan-Rozzano, Italy
| | - P Kupelian
- Varian Medical Systems, Palo Alto, CA, USA.,Radiation Oncology Dept., University of California, Los Angeles, USA
| | - J P Agarwal
- Department of Radiation Oncology and Medical Physics, Tata Memorial Hospital, Tata Memorial Centre, Homi Bhabha National Institute, Parel, Mumbai, Maharashtra, India
| | - L Cozzi
- Humanitas Research Hospital, Radiotherapy and Cancer Center Radiosurgery Dept, Via Manzoni 56, 20089, Milan-Rozzano, Italy. .,Dept. of Biomedical Sciences, Humanitas University, Milan-Rozzano, Italy.
| |
Collapse
|
23
|
Intracranial Stereotactic Radiation Therapy With a Jawless Ring Gantry Linear Accelerator Equipped With New Dual Layer Multileaf Collimator. Adv Radiat Oncol 2020; 5:482-489. [PMID: 32529144 PMCID: PMC7276691 DOI: 10.1016/j.adro.2020.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/27/2019] [Accepted: 01/22/2020] [Indexed: 12/31/2022] Open
Abstract
Purpose To test the feasibility of a simplified, robust, workflow for intracranial stereotactic radiation therapy (SRT) using a ring gantry linear accelerator (RGLA) equipped with a dual-layer stacked, staggered, and interdigitating multileaf collimator. Materials and Methods Twenty recent clinical SRT cases treated using a radiosurgery c-arm linear accelerator were anonymized. From these data sets, a new planning workflow was developed and used to replan these cases, which then were compared to their clinical counterparts. Population-based dose-volume histograms were analyzed for target coverage and sparing of healthy brain. All plans underwent plan review and quality assurance and were delivered on an end-to-end verification phantom using image guidance to simulate treatment. Results The RGLA plans were able to meet departmental standards for target coverage and organ-at-risk sparing and showed plan quality similar to the clinical plans. RGLA plans showed increases in the 50% isodose in the axial plane but decreases in the sagittal and coronal planes. There were no statistically significant differences in the homogeneity index or number of monitor units between the 2 systems. There were statistically significant increases in conformity and gradient indices, with median values of 1.09 versus 1.11 and 2.82 versus 3.13, respectively, for the c-arm versus RGLA plans. These differences were not believed to be clinically significant because they met clinical goals. The population-based dose-volume histograms showed target coverage and organ-at-risk sparing similar to that of the clinical plans. All plans were able to meet the departmental quality assurance requirements and were delivered under image guidance on an end-to-end phantom with measurements agreeing within 3% of the expected value. RGLA plans showed a median reduction in delivery time of ≈50%. Conclusions This work describes a simplified and efficient workflow that could reduce treatment times and expand access to SRT to centers using an RGLA.
Collapse
|
24
|
Matsumoto K, Otsuka M, Tamura M, Monzen H, Okumura M. [Comparison of O-ring and General Linacs for Treatment Planning of Volumetric Modulated Arc Therapy]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2020; 76:339-345. [PMID: 32307361 DOI: 10.6009/jjrt.2020_jsrt_76.4.339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
PURPOSE Novel linac improvements in speed of gantry, collimator, leaf and dose rate may increase the time-efficiency of volumetric modulated arc therapy (VMAT) delivery, however remains to be investigated. In this study, a fast-rotating O-ring linac (Halcyon) with fast moving leaves is compared with a general linac (TrueBeam: TB) in terms of plan quality for VMAT of C-shape, prostate, multi target and, head and neck (H&N) cases from AAPM TG-119. MATERIALS AND METHODS For the four test cases, VMAT planning was performed using single to four-arc VMAT on a Halcyon and using single to three-arc VMAT on a TrueBeam. Same conditions for optimization were used in each test case. Target coverage metrics and organ at risks (OAR) dose were compared. Monitor unit (MU) and irradiation time in each plan were also compared. RESULTS In all cases, single-arc plans of Halcyon were inferior to TB plans on dose objectives. Conformity index (CI) to outer target of C-shape case was better for Halcyon (1-arc: 1.242, 2-arc: 1.202, 3-arc: 1.198, 4-arc: 1.181) than for TB (1-arc: 1.247, 2-arc: 1.211, 3-arc: 1.211) except to single arc. D5 (Gy) of core for C-shape case was better for halcyon (1-arc: 23.29, 2-arc: 21.01, 3-arc: 20.64, 4-arc: 20.47) than for TB (1-arc: 24.04, 2-arc: 22.94, 3-arc: 23.04). Calculated MU was smaller for Halcyon than for TB. In addition, Halcyon is more faster than TB because mechanical movements were improved. CONCLUSION For VMAT plan in each case, Halcyon as well or better at the plan quality of two or three arcs on TB while reducing the delivery time.
Collapse
Affiliation(s)
| | | | - Mikoto Tamura
- Department of Medical Physics, Graduate School of Medical Science, Kindai University
| | - Hajime Monzen
- Department of Medical Physics, Graduate School of Medical Science, Kindai University
| | | |
Collapse
|
25
|
Kim H, Huq MS, Lalonde R, Houser CJ, Beriwal S, Heron DE. Early clinical experience with varian halcyon V2 linear accelerator: Dual-isocenter IMRT planning and delivery with portal dosimetry for gynecological cancer treatments. J Appl Clin Med Phys 2019; 20:111-120. [PMID: 31660682 PMCID: PMC6839386 DOI: 10.1002/acm2.12747] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 08/12/2019] [Accepted: 09/12/2019] [Indexed: 11/12/2022] Open
Abstract
PURPOSE Varian Halcyon linear accelerator version 2 (The Halcyon 2.0) was recently released with new upgraded features. The aim of this study was to report our clinical experience with Halcyon 2.0 for a dual-isocenter intensity-modulated radiation therapy (IMRT) planning and delivery for gynecological cancer patients and examine the feasibility of in vivo portal dosimetry. METHODS Twelve gynecological cancer patients were treated with extended-field IMRT technique using two isocenters on Halcyon 2.0 to treat pelvis and pelvic/or para-aortic nodes region. The prescription dose was 45 Gy in 25 fractions (fxs) with simultaneous integrated boost (SIB) dose of 55 or 57.5 Gy in 25 fxs to involved nodes. All treatment plans, pretreatment patient-specific QA and treatment delivery records including daily in vivo portal dosimetry were retrospectively reviewed. For in vivo daily portal dosimetry analysis, each fraction was compared to the reference baseline (1st fraction) using gamma analysis criteria of 4 %/4 mm with 90% of total pixels in the portal image planar dose. RESULTS All 12 extended-field IMRT plans met the planning criteria and delivered as planned (a total of 300 fractions). Conformity Index (CI) for the primary target was achieved with the range of 0.99-1.14. For organs at risks, most were well within the dose volume criteria. Treatment delivery time was from 5.0 to 6.5 min. Interfractional in vivo dose variation exceeded gamma analysis threshold for 8 fractions out of total 300 (2.7%). These eight fractions were found to have a relatively large difference in small bowel filling and SSD change at the isocenter compared to the baseline. CONCLUSION Halcyon 2.0 is effective to create complex extended-field IMRT plans using two isocenters with efficient delivery. Also Halcyon in vivo dosimetry is feasible for daily treatment monitoring for organ motion, internal or external anatomy, and body weight which could further lead to adaptive radiation therapy.
Collapse
Affiliation(s)
- Hayeon Kim
- Department of Radiation OncologyUPMC Hillman Cancer CenterUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - M. Saiful Huq
- Department of Radiation OncologyUPMC Hillman Cancer CenterUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Ron Lalonde
- Department of Radiation OncologyUPMC Hillman Cancer CenterUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Christopher J. Houser
- Department of Radiation OncologyUPMC Hillman Cancer CenterUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Sushil Beriwal
- Department of Radiation OncologyUPMC Hillman Cancer CenterUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Dwight E. Heron
- Department of Radiation OncologyUPMC Hillman Cancer CenterUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| |
Collapse
|
26
|
Pawlicki T, Atwood T, McConnell K, Kim GY. Clinical safety assessment of the Halcyon system. Med Phys 2019; 46:4340-4345. [PMID: 31350914 DOI: 10.1002/mp.13736] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/19/2019] [Accepted: 07/21/2019] [Indexed: 11/09/2022] Open
Abstract
PURPOSE The Halcyon consists of precommissioned linear accelerator and treatment planning algorithms that were designed to simplify the acceptance, commissioning, and clinical workflow for image-guided intensity-modulated radiotherapy. The purpose of this work was to perform a comprehensive safety assessment for the clinical use of the Halcyon. METHODS Systems-Theoretic Process Analysis was used as the safety assessment tool. As part of the analysis, a number of control loops and control actions are created to describe system function. Safety is assessed by determining unsafe control actions and a corresponding list of causal scenarios that leads to accidents. The scope of the analysis was from the acceptance of the Halcyon to routine patient treatments. All aspects of treating patients were considered including the roles of physicians, physicists, dosimetrists, and therapists. The analysis was completed by four physicists with input from other members of the radiation therapy team. The causal scenarios were summarized using the causality categories from the consensus recommendations for incident learning database structures in radiation oncology (Med Phys, Vol. 39, No. 12, Dec 2012). RESULTS Twenty-three (23) control loops containing 52 control actions were created for the clinical use of the Halcyon. One hundred forty-four (144) unsafe control actions were identified with 385 associated causal scenarios. Twenty-seven percent (27%) of the causal scenarios were related to equipment technical issues, while 73% of the causal scenarios were predominantly related to procedural issues, human behavior, and organizational management. CONCLUSIONS For routine clinical use of closed or largely automated radiation therapy equipment, the majority of safety concerns is related to nontechnical issues. The Halcyon and other similar systems may present opportunities to streamline, reduce, or eliminate some traditional equipment commissioning and routine quality assurance activities in exchange for an increased focus on issues related to organizational management, procedures, and human behavior.
Collapse
Affiliation(s)
- Todd Pawlicki
- Department of Radiation Medicine & Applied Sciences, UC San Diego, La Jolla, CA, 92093, USA
| | - Todd Atwood
- Department of Radiation Medicine & Applied Sciences, UC San Diego, La Jolla, CA, 92093, USA
| | - Kristen McConnell
- Department of Radiation Medicine & Applied Sciences, UC San Diego, La Jolla, CA, 92093, USA
| | - Gwe-Ya Kim
- Department of Radiation Medicine & Applied Sciences, UC San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
27
|
Yu Q, Liu QY, Wei DM, Luo DZ. Metachronous Sigmoid Carcinoma and Mantle Cell Lymphoma in Intestines. Case Rep Gastroenterol 2019; 13:17-24. [PMID: 30792619 PMCID: PMC6381904 DOI: 10.1159/000495781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/20/2018] [Indexed: 01/17/2023] Open
Abstract
It is rare that colon carcinoma and mantle cell lymphoma (MCL) occur one after another in intestines. We found two malignancies of sigmoid carcinoma and MCL in a single patient, who had initially been diagnosed with sigmoid carcinoma and treated with radical resection in our hospital. Good postoperative recovery was reported without recurrence signs, which lasted for 7 years and 5 months until polyps of sigmoid colon were found by colonoscopy. Biopsy and immunohistochemistry revealed MCL, but the patient refused treatment. One year later, MCL was diagnosed again in the transverse colon. The patient is currently under observation and has not received treatment for MCL.
Collapse
Affiliation(s)
- Qiao Yu
- Department of Pathology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qiu-Yan Liu
- Department of Anesthesiology, the Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dan-Ming Wei
- Department of Pathology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dian-Zhong Luo
- Department of Pathology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|