1
|
Tran TH, Le TH, Nguyen THT, Vong LB, Nguyen MTT, Nguyen NT, Dang PH. Discovery of Alkyl Triphenylphosphonium Pinostrobin Derivatives as Potent Anti-Breast Cancer Agents. Chem Biodivers 2024; 21:e202400864. [PMID: 38699953 DOI: 10.1002/cbdv.202400864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
Pinostrobin demonstrated anticancer properties, but its hydrophobic feature led to a reduction in bioavailability. The mitochondria-targeted approach successfully synthesized eight new alkyl triphenylphosphonium pinostrobin derivatives (1-8) with good yield in this study. Seven compounds (1-3, 5-8) showed greater cytotoxic potency against the human MCF-7 breast cancer cell line than pinostrobin. Molecular docking studies were performed with two important targets in hormone-dependent anticancer strategies, estrogen receptor α (ERα) ligand binding domains, 3ERT (antagonist recognition and antiproliferative function), and 1GWR (agonist recognition and pro-proliferative function). In addition, the MD simulation study of the two most potent compounds (2 and 3) complexed with both ERα forms suggested that compounds 2 and 3 could serve as favourable antagonists. Furthermore, the in silico ADMET prediction indicated that compounds 2 and 3 could be potential drug candidates.
Collapse
Affiliation(s)
- Tu Hoai Tran
- Faculty of Chemistry, University of Science, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City, 72711, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, 71300, Vietnam
- Research Lab for Drug Discovery and Development, University of Science, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City, 72711, Vietnam
| | - Tho Huu Le
- Faculty of Chemistry, University of Science, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City, 72711, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, 71300, Vietnam
- Research Lab for Drug Discovery and Development, University of Science, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City, 72711, Vietnam
| | - Thu-Ha Thi Nguyen
- School of Biomedical Engineering, International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, 71300, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, 71300, Vietnam
| | - Long Binh Vong
- School of Biomedical Engineering, International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, 71300, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, 71300, Vietnam
| | - Mai Thanh Thi Nguyen
- Faculty of Chemistry, University of Science, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City, 72711, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, 71300, Vietnam
- Research Lab for Drug Discovery and Development, University of Science, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City, 72711, Vietnam
| | - Nhan Trung Nguyen
- Faculty of Chemistry, University of Science, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City, 72711, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, 71300, Vietnam
- Research Lab for Drug Discovery and Development, University of Science, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City, 72711, Vietnam
| | - Phu Hoang Dang
- Faculty of Chemistry, University of Science, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City, 72711, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, 71300, Vietnam
- Research Lab for Drug Discovery and Development, University of Science, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City, 72711, Vietnam
| |
Collapse
|
2
|
Chen PY, Lin CY, Wu CL, Keak PY, Liou JW, Gao WY, Lin LI, Yen JH. Pinostrobin modulates FOXO3 expression, nuclear localization, and exerts antileukemic effects in AML cells and zebrafish xenografts. Chem Biol Interact 2023; 385:110729. [PMID: 37777166 DOI: 10.1016/j.cbi.2023.110729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/30/2023] [Accepted: 09/21/2023] [Indexed: 10/02/2023]
Abstract
Acute myeloid leukemia (AML) is a disease characterized by abnormal cell proliferation in the bone marrow and is the most common quickly progressive leukemia in adults. Pinostrobin, a flavonoid phytochemical, has been reported to exhibit antioxidant, anti-inflammatory, and anticancer properties. In this study, we aimed to investigate the antileukemic effects of pinostrobin and its molecular mechanisms in human AML cells. Our study found that pinostrobin (0-80 μM) significantly reduced the viability of human AML cells, with the pronounced cytotoxic effects observed in MV4-11 > MOLM-13 > HL-60 > U-937 > THP-1 cells. Pinostrobin was found to suppress leukemia cell proliferation, modulate cell cycle progression, promote cell apoptosis, and induce monocytic differentiation in MV4-11 cells. In animal studies, pinostrobin significantly suppressed the growth of leukemia cells in a zebrafish xenograft model. Microarray-based transcriptome analysis showed that the differentially expressed genes (DEGs) in pinostrobin-treated cells were strongly associated with enriched Gene Ontology (GO) terms related to apoptotic process, cell death, cell differentiation, cell cycle progression, and cell division. Combining DisGeNET and STRING database analysis revealed that pinostrobin upregulates forkhead box 3 (FOXO3), a tumor suppressor in cancer development, and plays an essential role in controlling AML cell viability. Our study demonstrated that pinostrobin increases FOXO3 gene expression and promotes its nuclear translocation, leading to the inhibition of cell growth. Finally, the study found that pinostrobin, when combined with cytarabine, synergistically reduces the viability of AML cells. Our current findings shed light on pinostrobin's mechanisms in inhibiting leukemia cell growth, highlighting its potential as a chemotherapeutic agent or nutraceutical supplement for AML prevention or treatment.
Collapse
Affiliation(s)
- Pei-Yi Chen
- Laboratory of Medical Genetics, Genetic Counseling Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970374, Taiwan; Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, 970374, Taiwan
| | - Ching-Yen Lin
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, 970374, Taiwan
| | - Chia-Ling Wu
- Laboratory of Medical Genetics, Genetic Counseling Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970374, Taiwan
| | - Pei Ying Keak
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, 970374, Taiwan
| | - Je-Wen Liou
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, 970374, Taiwan
| | - Wan-Yun Gao
- Institute of Medical Sciences, Tzu Chi University, Hualien, 970374, Taiwan
| | - Liang-In Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 10048, Taiwan
| | - Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, 970374, Taiwan; Institute of Medical Sciences, Tzu Chi University, Hualien, 970374, Taiwan.
| |
Collapse
|
3
|
Mendez-Callejas G, Piñeros-Avila M, Yosa-Reyes J, Pestana-Nobles R, Torrenegra R, Camargo-Ubate MF, Bello-Castro AE, Celis CA. A Novel Tri-Hydroxy-Methylated Chalcone Isolated from Chromolaena tacotana with Anti-Cancer Potential Targeting Pro-Survival Proteins. Int J Mol Sci 2023; 24:15185. [PMID: 37894866 PMCID: PMC10607159 DOI: 10.3390/ijms242015185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Chromolaena tacotana (Klatt) R. M. King and H. Rob (Ch. tacotana) contains bioactive flavonoids that may have antioxidant and/or anti-cancer properties. This study investigated the potential anti-cancer properties of a newly identified chalcone isolated from the inflorescences of the plant Chromolaena tacotana (Klatt) R. M. King and H. Rob (Ch. tacotana). The chalcone structure was determined using HPLC/MS (QTOF), UV, and NMR spectroscopy. The compound cytotoxicity and selectivity were evaluated on prostate, cervical, and breast cancer cell lines using the MTT assay. Apoptosis and autophagy induction were assessed through flow cytometry by detecting annexin V/7-AAD, active Casp3/7, and LC3B proteins. These results were supported by Western blot analysis. Mitochondrial effects on membrane potential, as well as levels of pro- and anti-apoptotic proteins were analyzed using flow cytometry, fluorescent microscopy, and Western blot analysis specifically on a triple-negative breast cancer (TNBC) cell line. Furthermore, molecular docking (MD) and molecular dynamics (MD) simulations were performed to evaluate the interaction between the compounds and pro-survival proteins. The compound identified as 2',3,4-trihydroxy-4',6'-dimethoxy chalcone inhibited the cancer cell line proliferation and induced apoptosis and autophagy. MDA-MB-231, a TNBC cell line, exhibited the highest sensitivity to the compound with good selectivity. This activity was associated with the regulation of mitochondrial membrane potential, activation of the pro-apoptotic proteins, and reduction of anti-apoptotic proteins, thereby triggering the intrinsic apoptotic pathway. The chalcone consistently interacted with anti-apoptotic proteins, particularly the Bcl-2 protein, throughout the simulation period. However, there was a noticeable conformational shift observed with the negative autophagy regulator mTOR protein. Future studies should focus on the molecular mechanisms underlying the anti-cancer potential of the new chalcone and other flavonoids from Ch. tacotana, particularly against predominant cancer cell types.
Collapse
Affiliation(s)
- Gina Mendez-Callejas
- Grupo de Investigaciones Biomédicas y de Genética Humana Aplicada (GIBGA), Laboratorio de Biología Celular y Molecular, Facultad de Ciencias de la Salud, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222 # 55-37, Bogotá 111166, Colombia;
| | - Marco Piñeros-Avila
- Grupo de Investigaciones Biomédicas y de Genética Humana Aplicada (GIBGA), Laboratorio de Biología Celular y Molecular, Facultad de Ciencias de la Salud, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222 # 55-37, Bogotá 111166, Colombia;
| | - Juvenal Yosa-Reyes
- Grupo de Investigación en Ciencias Exactas, Física y Naturales Aplicadas, Facultad de Ciencias Básicas y Biomédicas, Laboratorio de Simulación Molecular y Bioinformática, Universidad Simón Bolívar, Carrera 59 # 59-65, Barranquilla 080002, Colombia; (J.Y.-R.)
| | - Roberto Pestana-Nobles
- Grupo de Investigación en Ciencias Exactas, Física y Naturales Aplicadas, Facultad de Ciencias Básicas y Biomédicas, Laboratorio de Simulación Molecular y Bioinformática, Universidad Simón Bolívar, Carrera 59 # 59-65, Barranquilla 080002, Colombia; (J.Y.-R.)
| | - Ruben Torrenegra
- Grupo de Investigación en Productos Naturales de la U.D.C.A. (PRONAUDCA), Laboratorio de Productos Naturales, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222 # 55-37, Bogotá 111166, Colombia
| | - María F. Camargo-Ubate
- Grupo de Investigación en Productos Naturales de la U.D.C.A. (PRONAUDCA), Laboratorio de Productos Naturales, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222 # 55-37, Bogotá 111166, Colombia
| | - Andrea E. Bello-Castro
- Grupo de Investigación en Productos Naturales de la U.D.C.A. (PRONAUDCA), Laboratorio de Productos Naturales, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222 # 55-37, Bogotá 111166, Colombia
| | - Crispin A. Celis
- Grupo de Investigación en Fitoquímica (GIFUJ), Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Cra. 7 # 40-62, Bogotá 1115511, Colombia
| |
Collapse
|
4
|
Michalkova R, Mirossay L, Kello M, Mojzisova G, Baloghova J, Podracka A, Mojzis J. Anticancer Potential of Natural Chalcones: In Vitro and In Vivo Evidence. Int J Mol Sci 2023; 24:10354. [PMID: 37373500 DOI: 10.3390/ijms241210354] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
There is no doubt that significant progress has been made in tumor therapy in the past decades. However, the discovery of new molecules with potential antitumor properties still remains one of the most significant challenges in the field of anticancer therapy. Nature, especially plants, is a rich source of phytochemicals with pleiotropic biological activities. Among a plethora of phytochemicals, chalcones, the bioprecursors of flavonoid and isoflavonoids synthesis in higher plants, have attracted attention due to the broad spectrum of biological activities with potential clinical applications. Regarding the antiproliferative and anticancer effects of chalcones, multiple mechanisms of action including cell cycle arrest, induction of different forms of cell death and modulation of various signaling pathways have been documented. This review summarizes current knowledge related to mechanisms of antiproliferative and anticancer effects of natural chalcones in different types of malignancies including breast cancers, cancers of the gastrointestinal tract, lung cancers, renal and bladder cancers, and melanoma.
Collapse
Affiliation(s)
- Radka Michalkova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Ladislav Mirossay
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Gabriela Mojzisova
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Janette Baloghova
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Anna Podracka
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| |
Collapse
|
5
|
Yan Z, Zhong L, Zhu W, Chung SK, Hou P. Chinese herbal medicine for the treatment of cardiovascular diseases ─ targeting cardiac ion channels. Pharmacol Res 2023; 192:106765. [PMID: 37075871 DOI: 10.1016/j.phrs.2023.106765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality, imposing an increasing global health burden. Cardiac ion channels (voltage-gated NaV, CaV, KVs, and others) synergistically shape the cardiac action potential (AP) and control the heartbeat. Dysfunction of these channels, due to genetic mutations, transcriptional or post-translational modifications, may disturb the AP and lead to arrhythmia, a major risk for CVD patients. Although there are five classes of anti-arrhythmic drugs available, they can have varying levels of efficacies and side effects on patients, possibly due to the complex pathogenesis of arrhythmias. As an alternative treatment option, Chinese herbal remedies have shown promise in regulating cardiac ion channels and providing anti-arrhythmic effects. In this review, we first discuss the role of cardiac ion channels in maintaining normal heart function and the pathogenesis of CVD, then summarize the classification of Chinese herbal compounds, and elaborate detailed mechanisms of their efficacy in regulating cardiac ion channels and in alleviating arrhythmia and CVD. We also address current limitations and opportunities for developing new anti-CVD drugs based on Chinese herbal medicines.
Collapse
Affiliation(s)
- Zhenzhen Yan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Ling Zhong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Wandi Zhu
- Cardiovascular Medicine Division and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Sookja Kim Chung
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China; Faculty of Medicine & Faculty of Innovation Engineering at Macau University of Science and Technology, Taipa, Macao SAR, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Panpan Hou
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China; Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China.
| |
Collapse
|
6
|
Wu IT, Kuo CY, Su CH, Lan YH, Hung CC. Pinostrobin and Tectochrysin Conquer Multidrug-Resistant Cancer Cells via Inhibiting P-Glycoprotein ATPase. Pharmaceuticals (Basel) 2023; 16:205. [PMID: 37259354 PMCID: PMC9963356 DOI: 10.3390/ph16020205] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 11/19/2023] Open
Abstract
Enhanced drug efflux through ATP-binding cassette transporters, particularly P-glycoprotein (P-gp), is a key mechanism underlying multidrug resistance (MDR). In the present study, we investigated the inhibitory effects of pinostrobin and tectochrysin on P-gp in MDR cancer cells and the underlying mechanisms. Fluorescence substrate efflux assays, multidrug resistance 1 (MDR1) shift assays, P-gp ATPase activity assays, Western blotting, and docking simulation were performed. The potential of the test compounds for MDR reversal and the associated molecular mechanisms were investigated through cell viability assay, cell cycle analysis, apoptosis assay, and further determining the combination index. Results demonstrated that pinostrobin and tectochrysin were not the substrates of P-gp, nor did they affect the expression of this transporter. Both compounds noncompetitively inhibited the efflux of rhodamine 123 and doxorubicin through P-gp. Furthermore, they resensitized MDR cancer cells to chemotherapeutic drugs, such as vincristine, paclitaxel, and docetaxel; thus, they exhibited strong MDR reversal effects. Our findings indicate that pinostrobin and tectochrysin are effective P-gp inhibitors and promising candidates for resensitizing MDR cancer cells.
Collapse
Affiliation(s)
- I-Ting Wu
- Department of Pharmacy, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun District, Taichung 406040, Taiwan
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231405, Taiwan
| | - Ching-Hui Su
- Department of Pharmacy, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun District, Taichung 406040, Taiwan
| | - Yu-Hsuan Lan
- Department of Pharmacy, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun District, Taichung 406040, Taiwan
| | - Chin-Chuan Hung
- Department of Pharmacy, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun District, Taichung 406040, Taiwan
- Department of Pharmacy, China Medical University Hospital, No. 2, Yude Rd., North District, Taichung 404332, Taiwan
- Department of Healthcare Administration, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan
| |
Collapse
|
7
|
Chen PM, Wong CN, Wong CN, Chu PY. Actin-like Protein 6A Expression Correlates with Cancer Stem Cell-like Features and Poor Prognosis in Ovarian Cancer. Int J Mol Sci 2023; 24:ijms24032016. [PMID: 36768349 PMCID: PMC9916576 DOI: 10.3390/ijms24032016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
Ovarian cancer has the highest mortality rate among gynecological cancers, often diagnosed at the late stage and lacking an effective targeted therapy. Although the study of malignant features of cancer, considered to be cancer stem cells (CSCs), is emerging, the aim of this study was to predict and explore the possible mechanism and clinical value of genetic markers in the development of ovarian cancer from a combined database with CSCs features. The common differentially expressed genes (DEGs) were selected in GSE185833 and GSE176246 datasets from the Gene Expression Omnibus (GEO). The GSE185833 dataset was created to reveal gene expression profiles of peritoneal metastasis tissues using single-cell sequencing, and the GSE176246 dataset was determined from gene expression profiles of chemotherapy-refractory ovarian cancer cell lines compared with ovarian cancer cell lines by RNA-seq analysis. By analyzing the correlation between common DEGs and prognosis of ovarian cancer and its possible pathways and functions were predicted by The Cancer Genome Atlas (TCGA) database. The expression levels of 11 genetic markers were significantly elevated in highly invasive and chemoresistant ovarian cancer. The expression of Actin-like protein 6A (ACTL6A) was found to be correlated with survival prognosis, and the total survival time of the patients with high expression of ACTL6A was shorter than those with low expression. Gene set enrichment analysis (GSEA) showed that ACTL6A positively enriched the gene set of 'Cell cycle' and ACTL6A negatively enriched the gene set of focal adhesion. CP724714, a human epidermal growth factor receptor 2 (HER2) inhibitor, could serve as a therapeutic option when ACTL6A levels are high in ovarian cancer cells. The high expression of ACTL6A is a poor prognostic factor in ovarian cancer and may serve as an effective biomarker for predicting treatment-refractory, metastasis, and prognosis of patients with ovarian cancer. The use of HER2 inhibitors is a promising therapeutic strategy against chemoresistant ovarian cancer.
Collapse
Affiliation(s)
- Po-Ming Chen
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan
| | - Chui-Nguk Wong
- Department of Obstetrics and Gynecology, Show Chwan Memorial Hospital, Changhua 500, Taiwan
| | - Chui-Na Wong
- Department of Obstetrics and Gynecology, Show Chwan Memorial Hospital, Changhua 500, Taiwan
| | - Pei-Yi Chu
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 242, Taiwan
- National Institute of Cancer Research, National Health Research Institute, Tainan 704, Taiwan
- Correspondence: ; Tel.: +886-4-7256166
| |
Collapse
|
8
|
Athapaththu AMGK, Sanjaya SS, Lee KT, Karunarathne WAHM, Choi YH, Hur SP, Kim GY. Pinostrobin Suppresses the α-Melanocyte-Stimulating Hormone-Induced Melanogenic Signaling Pathway. Int J Mol Sci 2023; 24:ijms24010821. [PMID: 36614262 PMCID: PMC9821324 DOI: 10.3390/ijms24010821] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
Pinostrobin is a dietary flavonoid found in several plants that possesses pharmacological properties, such as anti-cancer, anti-virus, antioxidant, anti-ulcer, and anti-aromatase effects. However, it is unclear if pinostrobin exerts anti-melanogenic properties and, if so, what the underlying molecular mechanisms comprise. Therefore, we, in this study, investigated whether pinostrobin inhibits melanin biosynthesis in vitro and in vivo, as well as the potential associated mechanism. Pinostrobin reduced mushroom tyrosinase activity in vitro in a concentration-dependent manner, with an IC50 of 700 μM. Molecular docking simulations further revealed that pinostrobin forms a hydrogen bond, as well as other non-covalent interactions, between the C-type lectin-like fold and polyphenol oxidase chain, rather than the previously known copper-containing catalytic center. Additionally, pinostrobin significantly decreased α-melanocyte-stimulating hormone (α-MSH)-induced extracellular and intracellular melanin production, as well as tyrosinase activity, in B16F10 melanoma cells. More specifically, pinostrobin inhibited the α-MSH-induced melanin biosynthesis signaling pathway by suppressing the cAMP-CREB-MITF axis. In fact, pinostrobin also attenuated pigmentation in α-MSH-stimulated zebrafish larvae without causing cardiotoxicity. The findings suggest that pinostrobin effectively inhibits melanogenesis in vitro and in vivo via regulation of the cAMP-CREB-MITF axis.
Collapse
Affiliation(s)
| | | | - Kyoung Tae Lee
- Forest Bioresources Department, Forest Microbiology Division, National Institute of Forest Science, Suwon 16631, Republic of Korea
| | | | - Yung Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Republic of Korea
| | - Sung-Pyo Hur
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea
- Correspondence:
| |
Collapse
|
9
|
Virtual Screening and Network Pharmacology-Based Study to Explore the Pharmacological Mechanism of Clerodendrum Species for Anticancer Treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3106363. [PMID: 36387366 PMCID: PMC9646327 DOI: 10.1155/2022/3106363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND Cancer is a second leading cause of death in the world, killing approximately 3500 per million people each year. Therefore, the drugs with multitarget pharmacology based on biological networks are crucial to investigate the molecular mechanisms of cancer drugs and repurpose the existing drugs to reduce adverse effects. Clerodendrum is a diversified genus with a wide range of economic and pharmacological properties. Limited studies were conducted on the genus's putative anticancer properties and the mechanisms of action based on biological networks remains unknown. This study was aimed to construct the possible compound/target/pathway biological networks for anticancer effect of Clerodendrum sp. using docking weighted network pharmacological approach and to investigate its potential mechanism of action. METHODS A total of 194 natural Clerodendrum sp. Compounds were retrieved from public databases and screened using eight molecular descriptors. The cancer-associated gene targets were retrieved from databases and the function of the target genes with related pathways were examined. Cytoscape v3.7.2 was used to build three major networks: compound-target network, target-target pathway network, and compound-target-pathway network. RESULTS Our finding indicates that the anticancer activity of Clerodendrum sp. involves 6 compounds, 9 targets, and 63 signaling pathways, resulting in multicompounds, multitargets, and multipathways networks. Additionally, molecular dynamics (MD) simulations were used to estimate the binding affinity of the best hit protein-ligand complexes. Conclusion. This study suggests the potential anticancer activity of Clerodendrum sp. which could further contribute to scavenger novel compounds for the development of new alternative anticancer drugs.
Collapse
|
10
|
Hamad Shareef S, Al-Medhtiy MH, Al Rashdi AS, Aziz PY, Abdulla MA. Hepatoprotective Effect of Pinostrobin against Thioacetamide-Induced Liver Cirrhosis in Rats. Saudi J Biol Sci 2022; 30:103506. [DOI: 10.1016/j.sjbs.2022.103506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/23/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
|
11
|
Siswodihardjo S, Pratama MRF, Praditapuspa EN, Kesuma D, Poerwono H, Widiandani T. Boesenbergia Pandurata as an Anti-Breast Cancer Agent: Molecular Docking
and ADMET Study. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666211220111245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Boesenbergia pandurata or fingerroot is known to have various pharmacological
activities, including anticancer properties. Extracts from these plants are known to inhibit the growth of
cancer cells, including breast cancer. Anti-breast cancer activity is significantly influenced by the inhibition
of two receptors: ER-α and HER2. However, it is unknown which metabolites of B. pandurata play
the most crucial role in exerting anticancer activity.
Objective:
This study aimed to determine the metabolites of B. pandurata with the best potential as ER-α
and HER2 inhibitors.
Method:
The method used was molecular docking of several B. pandurata metabolites to ER-α and
HER2 receptors, followed by an ADMET study of several metabolites with the best docking results.
Results:
The docking results showed eight metabolites with the best docking results for the two receptors
based on the docking score and ligand-receptor interactions. Of these eight compounds, compounds 11
((2S)-7,8-dihydro-5-hydroxy-2-methyl-2-(4''-methyl-3''-pentenyl)-8-phenyl-2H,6H-benzo(1,2-b-5,4-
b')dipyran-6-one) and 34 (geranyl-2,4-dihydroxy-6-phenethylbenzoate) showed the potential to inhibit
both receptors. Both ADMET profiles also showed mixed results; however, there is a possibility of further
development.
Conclusion:
In conclusion, the metabolites of B. pandurata, especially compounds 11 and 34, can be
developed as anti-breast cancer agents by inhibiting ER-α and HER2.
Collapse
Affiliation(s)
- Siswandono Siswodihardjo
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya
60115, Indonesia
| | - Mohammad Rizki Fadhil Pratama
- Doctoral Program of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
- Department of Pharmacy, Faculty of Health Science, Universitas Muhammadiyah Palangkaraya, Palangka Raya
73111, Indonesia
| | - Ersanda Nurma Praditapuspa
- Master Program of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Surabaya
60115, Indonesia
| | - Dini Kesuma
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Surabaya, Surabaya
60293, Indonesia
| | - Hadi Poerwono
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya
60115, Indonesia
| | - Tri Widiandani
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya
60115, Indonesia
| |
Collapse
|
12
|
Wei M, Ye C, Huang H, Yang C, Zhang L, Huang Y, Wang Y, Luo X, Luo J. Acacetin inhibits the tumor growth of human osteosarcoma cells through regulating Wnt/β-catenin and JNK signaling pathways. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
13
|
Wang X, Wang N, Zhong LLD, Su K, Wang S, Zheng Y, Yang B, Zhang J, Pan B, Yang W, Wang Z. Development and Validation of a Risk Prediction Model for Breast Cancer Prognosis Based on Depression-Related Genes. Front Oncol 2022; 12:879563. [PMID: 35619902 PMCID: PMC9128552 DOI: 10.3389/fonc.2022.879563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/01/2022] [Indexed: 12/15/2022] Open
Abstract
Background Depression plays a significant role in mediating breast cancer recurrence and metastasis. However, a precise risk model is lacking to evaluate the potential impact of depression on breast cancer prognosis. In this study, we established a depression-related gene (DRG) signature that can predict overall survival (OS) and elucidate its correlation with pathological parameters and sensitivity to therapy in breast cancer. Methods The model training and validation assays were based on the analyses of 1,096 patients from The Cancer Genome Atlas (TCGA) database and 2,969 patients from GSE96058. A risk signature was established through univariate and multivariate Cox regression analyses. Results Ten DRGs were determined to construct the risk signature. Multivariate analysis revealed that the signature was an independent prognostic factor for OS. Receiver operating characteristic (ROC) curves indicated good performance of the model in predicting 1-, 3-, and 5-year OS, particularly for patients with triple-negative breast cancer (TNBC). In the high-risk group, the proportion of immunosuppressive cells, including M0 macrophages, M2 macrophages, and neutrophils, was higher than that in the low-risk group. Furthermore, low-risk patients responded better to chemotherapy and endocrine therapy. Finally, a nomogram integrating risk score, age, tumor-node-metastasis (TNM) stage, and molecular subtypes were established, and it showed good agreement between the predicted and observed OS. Conclusion The 10-gene risk model not only highlights the significance of depression in breast cancer prognosis but also provides a novel gene-testing tool to better prevent the potential adverse impact of depression on breast cancer prognosis.
Collapse
Affiliation(s)
- Xuan Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Neng Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Linda L D Zhong
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Kexin Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shengqi Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yifeng Zheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bowen Yang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Juping Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bo Pan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Yang
- Atrius Health, Harvard Vanguard Medical Associates, Burlington, MA, United States
| | - Zhiyu Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
14
|
Role of Plant-Derived Active Constituents in Cancer Treatment and Their Mechanisms of Action. Cells 2022; 11:cells11081326. [PMID: 35456005 PMCID: PMC9031068 DOI: 10.3390/cells11081326] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 02/07/2023] Open
Abstract
Despite significant technological advancements in conventional therapies, cancer remains one of the main causes of death worldwide. Although substantial progress has been made in the control and treatment of cancer, several limitations still exist, and there is scope for further advancements. Several adverse effects are associated with modern chemotherapy that hinder cancer treatment and lead to other critical disorders. Since ancient times, plant-based medicines have been employed in clinical practice and have yielded good results with few side effects. The modern research system and advanced screening techniques for plants’ bioactive constituents have enabled phytochemical discovery for the prevention and treatment of challenging diseases such as cancer. Phytochemicals such as vincristine, vinblastine, paclitaxel, curcumin, colchicine, and lycopene have shown promising anticancer effects. Discovery of more plant-derived bioactive compounds should be encouraged via the exploitation of advanced and innovative research techniques, to prevent and treat advanced-stage cancers without causing significant adverse effects. This review highlights numerous plant-derived bioactive molecules that have shown potential as anticancer agents and their probable mechanisms of action and provides an overview of in vitro, in vivo and clinical trial studies on anticancer phytochemicals.
Collapse
|
15
|
Zhang G, Li Z, Dong J, Zhou W, Zhang Z, Que Z, Zhu X, Xu Y, Cao N, Zhao A. Acacetin inhibits invasion, migration and TGF-β1-induced EMT of gastric cancer cells through the PI3K/Akt/Snail pathway. BMC Complement Med Ther 2022; 22:10. [PMID: 35000605 PMCID: PMC8744305 DOI: 10.1186/s12906-021-03494-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Epithelial-to-mesenchymal transition (EMT) is a pivotal cellular phenomenon involved in tumour metastasis and progression. In gastric cancer (GC), EMT is the main reason for recurrence and metastasis in postoperative patients. Acacetin exhibits various biological activities. However, the inhibitory effect of acacetin on EMT in GC is still unknown. Herein, we explored the possible mechanism of acacetin on EMT in GC in vitro and in vivo. METHODS In vitro, MKN45 and MGC803 cells were treated with acacetin, after which cell viability was detected by CCK-8 assays, cell migration and invasion were detected by using Transwell and wound healing assays, and protein expression was analysed by western blots and immunofluorescence staining. In vivo, a peritoneal metastasis model of MKN45 GC cells was used to investigate the effects of acacetin. RESULTS Acacetin inhibited the proliferation, invasion and migration of MKN45 and MGC803 human GC cells by regulating the expression of EMT-related proteins. In TGF-β1-induced EMT models, acacetin reversed the morphological changes from epithelial to mesenchymal cells, and invasion and migration were limited by regulating EMT. In addition, acacetin suppressed the activation of PI3K/Akt signalling and decreased the phosphorylation levels of TGF-β1-treated GC cells. The in vivo experiments demonstrated that acacetin delayed the development of peritoneal metastasis of GC in nude mice. Liver metastasis was restricted by altering the expression of EMT-related proteins. CONCLUSION Our study showed that the invasion, metastasis and TGF-β1-induced EMT of GC are inhibited by acacetin, and the mechanism may involve the suppression of the PI3K/Akt/Snail signalling pathway. Therefore, acacetin is a potential therapeutic reagent for the treatment of GC patients with recurrence and metastasis.
Collapse
Affiliation(s)
- Guangtao Zhang
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Zhaoyan Li
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Department of Oncology, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiahuan Dong
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Weili Zhou
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Zhanxia Zhang
- Institute of Traditional Chinese Medicine Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zujun Que
- Institute of Traditional Chinese Medicine Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Oncology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaohong Zhu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yan Xu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Nida Cao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Aiguang Zhao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
16
|
Hong YX, Wu WY, Song F, Wu C, Li GR, Wang Y. Cardiac senescence is alleviated by the natural flavone acacetin via enhancing mitophagy. Aging (Albany NY) 2021; 13:16381-16403. [PMID: 34175838 PMCID: PMC8266317 DOI: 10.18632/aging.203163] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 06/01/2021] [Indexed: 01/10/2023]
Abstract
Cardiac senescence is associated with cardiomyopathy which is a degenerative disease in the aging process of the elderly. The present study investigates using multiple experimental approaches whether the natural flavone acacetin could attenuate myocardial senescence in C57/BL6 mice and H9C2 rat cardiac cells induced by D-galactose. We found that the impaired heart function in D-galactose-induced accelerated aging mice was improved by oral acacetin treatment in a dose-dependent manner. Acacetin significantly countered the increased serum advanced glycation end products, the myocardial telomere length shortening, the increased cellular senescence marker proteins p21 and p53, and the reduced mitophagy signaling proteins PINK1/Parkin and Sirt6 expression in aging mice. In H9C2 rat cardiac cells, acacetin alleviated cell senescence induced by D-galactose in a concentration-dependent manner. Acacetin decreased p21 and p53 expression, up-regulated PINK1/Parkin, LC3II/LC3I ratio, pLKB1, pAMPK and Sirt6, and reversed the depolarized mitochondrial membrane potential in aging cardiac cells. Mitophagy inhibition with 3-methyladenine or silencing Sirt6 abolished the protective effects of acacetin against cardiac senescence. Further analysis revealed that acacetin effect on Sirt6 was mediated by Sirt1 activation and increase of NAD+/NADH ratio. These results demonstrate that acacetin significantly inhibits in vivo and in vitro cardiac senescence induced by D-galactose via Sirt1-mediated activation of Sirt6/AMPK signaling pathway, thereby enhancing mitophagy and preserving mitochondrial function, which suggests that acacetin may be a drug candidate for treating cardiovascular disorders related to aging.
Collapse
Affiliation(s)
- Yi-Xiang Hong
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Wei-Yin Wu
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Fei Song
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Chan Wu
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Gui-Rong Li
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Nanjing Amazigh Pharma Ltd., Nanjing, Jiangsu, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
17
|
Sun X, Liu X, Chen S. The Pharmacokinetics, Tissue Distribution, Metabolism, and Excretion of Pinostrobin in Rats: Ultra-High-Performance Liquid Chromatography Coupled With Linear Trap Quadrupole Orbitrap Mass Spectrometry Studies. Front Pharmacol 2020; 11:574638. [PMID: 33324207 PMCID: PMC7725875 DOI: 10.3389/fphar.2020.574638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/21/2020] [Indexed: 11/25/2022] Open
Abstract
Pinostrobin is a natural flavonoid found in various plants, well known for its wide range of pharmacological activities. However, there are few reports regarding the pharmacokinetics, tissue distribution, metabolism, and excretion of pinostrobin in rats after oral administration as a single compound. Therefore, we established a method using ultra-high-performance liquid chromatography coupled with linear trap quadrupole orbitrap mass spectrometry (UPLC-LTQ orbitrap-MS/MS) to determine pinostrobin and its metabolites in rat plasma, urine, feces, bile, and tissue homogenates. Pharmacokinetic parameters were measured. The large apparent volume of distribution implied that pinostrobin preferentially bound to tissues and preferably remained within the body. Based on previous pharmacological studies of its antiulcer, anti-HP, anti-inflammatory, and antioxidant activities, pinostrobin is mostly distributed in the gastrointestinal tract, indicating its potential as an effective component of traditional Chinese medicines for the treatment of peptic ulcers. Furthermore, 30 flavonoid metabolites were screened using UPLC-LTQ orbitrap-MS/MS. The metabolism pathways (mainly hydroxylation, demethylation, glucuronidation, and sulfation) of pinostrobin in rats have also been proposed. A small amount of pinostrobin in its parent form is excreted through the urine, feces, and bile, indicating that it is mainly metabolized in vivo. In this study, we systemically investigated the pharmacokinetics, tissue distribution, metabolism, and excretion of pinostrobin in rats. Our results provide a significant basis for the clinical development and application of pinostrobin as well as traditional Chinese medicines containing pinostrobin.
Collapse
Affiliation(s)
- Xiaoya Sun
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaojun Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Suiqing Chen
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
18
|
Kis B, Avram S, Pavel IZ, Lombrea A, Buda V, Dehelean CA, Soica C, Yerer MB, Bojin F, Folescu R, Danciu C. Recent Advances Regarding the Phytochemical and Therapeutic Uses of Populus nigra L. Buds. PLANTS 2020; 9:plants9111464. [PMID: 33138272 PMCID: PMC7693997 DOI: 10.3390/plants9111464] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/16/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022]
Abstract
Populus nigra L. (Salicaceae family) is one of the most popular trees that can be found in deciduous forests. Some particularities that characterize the Populus genus refer to the fact that it includes more than 40 species, being widespread especially in Europe and Asia. Many residues, parts of this tree can be used as a bioresource for different extracts as active ingredients in pharmaceuticals next to multiple benefits in many areas of medicine. The present review discusses the latest findings regarding the phytochemical composition and the therapeutic properties of Populus nigra L. buds. The vegetal product has been described mainly to contain phenolic compounds (phenols, phenolic acids and phenylpropanoids), terpenoids (mono and sesquiterpenoids), flavones (e.g., apigenol and crysin), flavanones (e.g., pinocembrin and pinostrombin), caffeic/ferulic acids and their derivates, and more than 48 phytocompounds in the essential oils. The resinous exudates present on the buds have been the major plant source used by bees to form propolis. Several studies depicted its antioxidant, anti-inflammatory, antibacterial, antifungal, antidiabetic, antitumor, hepatoprotective, hypouricemic properties and its effects on melanin production. All these lead to the conclusion that black poplar buds are a valuable and important source of bioactive compounds responsible for a wide range of therapeutic uses, being a promising candidate as a complementary and/or alternative source for a large number of health problems. The aim of the review is to gather the existing information and to bring an up to date regarding the phytochemical and therapeutic uses of Populus nigra L. buds.
Collapse
Affiliation(s)
- Brigitta Kis
- Department of Pharmacognosy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No.2, 300041 Timisoara, Romania; (B.K.); (S.A.); (I.Z.P.); (A.L.); (C.D.)
| | - Stefana Avram
- Department of Pharmacognosy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No.2, 300041 Timisoara, Romania; (B.K.); (S.A.); (I.Z.P.); (A.L.); (C.D.)
| | - Ioana Zinuca Pavel
- Department of Pharmacognosy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No.2, 300041 Timisoara, Romania; (B.K.); (S.A.); (I.Z.P.); (A.L.); (C.D.)
| | - Adelina Lombrea
- Department of Pharmacognosy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No.2, 300041 Timisoara, Romania; (B.K.); (S.A.); (I.Z.P.); (A.L.); (C.D.)
| | - Valentina Buda
- Department of Pharmacology and Clinical Pharmacy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No.2, 300041 Timisoara, Romania
- Correspondence: ; Tel.: +40-755-100-408
| | - Cristina Adriana Dehelean
- Department of Toxicology, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No.2, 300041 Timisoara, Romania;
| | - Codruta Soica
- Department of Pharmaceutical Chemistry, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No.2, 300041 Timisoara, Romania;
| | - Mukerrem Betul Yerer
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Melikgazi, 38039 Kayseri, Turkey;
| | - Florina Bojin
- Department of Functional Sciences, Victor Babeş University of Medicine and Pharmacy, 2, Eftimie Murgu Square, 300041 Timişoara, Romania;
| | - Roxana Folescu
- Department of Anatomy and Embryology, University of Medicine and Pharmacy Victor Babeş, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Corina Danciu
- Department of Pharmacognosy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No.2, 300041 Timisoara, Romania; (B.K.); (S.A.); (I.Z.P.); (A.L.); (C.D.)
| |
Collapse
|