1
|
Hilgers RH, Das KC. Redox Regulation of K + Channel: Role of Thioredoxin. Antioxid Redox Signal 2024; 41:818-844. [PMID: 39099341 PMCID: PMC11631806 DOI: 10.1089/ars.2023.0416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 08/06/2024]
Abstract
Significance: Potassium channels regulate the influx and efflux of K+ ions in various cell types that generate and propagate action potential associated with excitation, contraction, and relaxation of various cell types. Although redox active cysteines are critically important for channel activity, the redox regulation of K+ channels by thioredoxin (Trx) has not been systematically reviewed. Recent Advances: Redox regulation of K+ channel is now increasingly recognized as drug targets in the pathological condition of several cardiovascular disease processes. The role of Trx in regulation of these channels and its implication in pathological conditions have not been adequately reviewed. This review specifically focuses on the redox-regulatory role of Trx on K+ channel structure and function in physiological and pathophysiological conditions. Critical Issues: Ion channels, including K+ channel, have been implicated in the functioning of cardiomyocyte excitation-contraction coupling, vascular hyperpolarization, cellular proliferation, and neuronal stimulation in physiological and pathophysiological conditions. Although oxidation-reduction of ion channels is critically important in their function, the role of Trx, redox regulatory protein in regulation of these channels, and its implication in pathological conditions need to be studied to gain further insight into channel function. Future Directions: Future studies need to map all redox regulatory pathways in channel structure and function using novel mouse models and redox proteomic and signal transduction studies, which modulate various currents and altered excitability of relevant cells implicated in a pathological condition. We are yet at infancy of studies related to redox control of various K+ channels and structured and focused studies with novel animal models. Antioxid. Redox Signal. 41, 818-844.
Collapse
Affiliation(s)
- Rob H.P. Hilgers
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Kumuda C. Das
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| |
Collapse
|
2
|
Awata WMC, Alves JV, Costa RM, Bruder-Nascimento A, Singh S, Barbosa GS, Tirapelli CR, Bruder-Nascimento T. Vascular injury associated with ethanol intake is driven by AT1 receptor and mitochondrial dysfunction. Biomed Pharmacother 2023; 169:115845. [PMID: 37951022 DOI: 10.1016/j.biopha.2023.115845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 11/13/2023] Open
Abstract
BACKGROUND Renin-angiotensin (Ang II)-aldosterone system (RAAS) is crucial for the cardiovascular risk associated with excessive ethanol consumption. Disturbs in mitochondria have been implicated in multiple cardiovascular diseases. However, if mitochondria dysfunction contributes to ethanol-induced vascular dysfunction is still unknown. We investigated whether ethanol leads to vascular dysfunction via RAAS activation, mitochondria dysfunction, and mitochondrial reactive oxygen species (mtROS). METHODS Male C57/BL6J or mt-keima mice (6-8-weeks old) were treated with ethanol (20% vol./vol.) for 12 weeks with or without Losartan (10 mg/kg/day). RESULTS Ethanol induced aortic hypercontractility in an endothelium-dependent manner. PGC1α (a marker of biogenesis), Mfn2, (an essential protein for mitochondria fusion), as well as Pink-1 and Parkin (markers of mitophagy), were reduced in aortas from ethanol-treated mice. Disturb in mitophagy flux was further confirmed in arteries from mt-keima mice. Additionally, ethanol increased mtROS and reduced SOD2 expression. Strikingly, losartan prevented vascular hypercontractility, mitochondrial dysfunction, mtROS, and restored SOD2 expression. Both MnTMPyP (SOD2 mimetic) and CCCP (a mitochondrial uncoupler) reverted ethanol-induced vascular dysfunction. Moreover, L-NAME (NOS inhibitor) and EUK 134 (superoxide dismutase/catalase mimetic) did not affect vascular response in ethanol group, suggesting that ethanol reduces aortic nitric oxide (NO) and H2O2 bioavailability. These responses were prevented by losartan. CONCLUSION AT1 receptor modulates ethanol-induced vascular hypercontractility by promoting mitochondrial dysfunction, mtROS, and reduction of NO and H2O2 bioavailability. Our findings shed a new light in our understanding of ethanol-induced vascular toxicity and open perspectives of new therapeutic approaches for patients with disorder associated with abusive ethanol drinking.
Collapse
Affiliation(s)
- Wanessa M C Awata
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA; Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Juliano V Alves
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA; Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Rafael M Costa
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA; Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Ariane Bruder-Nascimento
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA; Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA
| | - Shubhnita Singh
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA; Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA
| | - Gabriela S Barbosa
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA; Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA; UNIPEX, Medical School, Sao Paulo State University (UNESP), Botucatu, Brazil
| | | | - Thiago Bruder-Nascimento
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA; Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA; Endocrinology Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA; Vascular Medicine, Institute (VMI), University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Tong Y, Zuo Z, Li X, Li M, Wang Z, Guo X, Wang X, Sun Y, Chen D, Zhang Z. Protective role of perivascular adipose tissue in the cardiovascular system. Front Endocrinol (Lausanne) 2023; 14:1296778. [PMID: 38155947 PMCID: PMC10753176 DOI: 10.3389/fendo.2023.1296778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
This review provides an overview of the key role played by perivascular adipose tissue (PVAT) in the protection of cardiovascular health. PVAT is a specific type of adipose tissue that wraps around blood vessels and has recently emerged as a critical factor for maintenance of vascular health. Through a profound exploration of existing research, this review sheds light on the intricate structural composition and cellular origins of PVAT, with a particular emphasis on combining its regulatory functions for vascular tone, inflammation, oxidative stress, and endothelial function. The review then delves into the intricate mechanisms by which PVAT exerts its protective effects, including the secretion of diverse adipokines and manipulation of the renin-angiotensin complex. The review further examines the alterations in PVAT function and phenotype observed in several cardiovascular diseases, including atherosclerosis, hypertension, and heart failure. Recognizing the complex interactions of PVAT with the cardiovascular system is critical for pursuing breakthrough therapeutic strategies that can target cardiovascular disease. Therefore, this review aims to augment present understanding of the protective role of PVAT in cardiovascular health, with a special emphasis on elucidating potential mechanisms and paving the way for future research directions in this evolving field.
Collapse
Affiliation(s)
- Yi Tong
- Center for Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Zheng Zuo
- Center for Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xinqi Li
- Center for Cardiovascular Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Minghua Li
- Center for Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Zhenggui Wang
- Center for Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xiaoxue Guo
- Center for Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xishu Wang
- Center for Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Ying Sun
- Center for Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Dongmei Chen
- Center for Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Zhiguo Zhang
- Center for Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Man AWC, Zhou Y, Xia N, Li H. Perivascular Adipose Tissue Oxidative Stress in Obesity. Antioxidants (Basel) 2023; 12:1595. [PMID: 37627590 PMCID: PMC10451984 DOI: 10.3390/antiox12081595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Perivascular adipose tissue (PVAT) adheres to most systemic blood vessels in the body. Healthy PVAT exerts anticontractile effects on blood vessels and further protects against cardiovascular and metabolic diseases. Healthy PVAT regulates vascular homeostasis via secreting an array of adipokine, hormones, and growth factors. Normally, homeostatic reactive oxygen species (ROS) in PVAT act as secondary messengers in various signalling pathways and contribute to vascular tone regulation. Excessive ROS are eliminated by the antioxidant defence system in PVAT. Oxidative stress occurs when the production of ROS exceeds the endogenous antioxidant defence, leading to a redox imbalance. Oxidative stress is a pivotal pathophysiological process in cardiovascular and metabolic complications. In obesity, PVAT becomes dysfunctional and exerts detrimental effects on the blood vessels. Therefore, redox balance in PVAT emerges as a potential pathophysiological mechanism underlying obesity-induced cardiovascular diseases. In this review, we summarise new findings describing different ROS, the major sources of ROS and antioxidant defence in PVAT, as well as potential pharmacological intervention of PVAT oxidative stress in obesity.
Collapse
Affiliation(s)
| | | | | | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany; (A.W.C.M.); (Y.Z.); (N.X.)
| |
Collapse
|
5
|
Huang K, Luo X, Liao B, Li G, Feng J. Insights into SGLT2 inhibitor treatment of diabetic cardiomyopathy: focus on the mechanisms. Cardiovasc Diabetol 2023; 22:86. [PMID: 37055837 PMCID: PMC10103501 DOI: 10.1186/s12933-023-01816-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/27/2023] [Indexed: 04/15/2023] Open
Abstract
Among the complications of diabetes, cardiovascular events and cardiac insufficiency are considered two of the most important causes of death. Experimental and clinical evidence supports the effectiveness of SGLT2i for improving cardiac dysfunction. SGLT2i treatment benefits metabolism, microcirculation, mitochondrial function, fibrosis, oxidative stress, endoplasmic reticulum stress, programmed cell death, autophagy, and the intestinal flora, which are involved in diabetic cardiomyopathy. This review summarizes the current knowledge of the mechanisms of SGLT2i for the treatment of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Keming Huang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Xianling Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Bin Liao
- Department of Cardiovascular Surgery, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Guang Li
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China.
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
6
|
de Oliveira TF, Rossi EM, da Costa CS, Graceli JB, Krause M, Carneiro MTWD, Almenara CCP, Padilha AS. Sex-dependent vascular effects of cadmium sub-chronic exposure on rats. Biometals 2023; 36:189-199. [PMID: 36418808 DOI: 10.1007/s10534-022-00470-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022]
Abstract
Cadmium exposure is related to several cardiovascular diseases, such as hypertension, atherosclerosis and endothelial dysfunction. However, the toxic effect of cadmium can be dependent on the sex when examined sex in experimental models. The aim of this study was to analyze the effects of cadmium exposure on the cardiovascular system of male and female rodents. The experiments were carried out on both-sexes Wistar at 4 months of age, where from 3 months onwards, cadmium (CdCl2 100 mg/l in placed the drinking water for 30 days) or vehicle delivered (distilled water) was ingested. Before and after 30 days of exposure to cadmium, systolic blood pressure was regularly measured. After exposure, blood was collected to measure dosage of cadmium, in male and female, and estrogen in females. Vascular reactivity to phenylephrine (Phe), acetylcholine (ACh), and sodium nitroprusside (SNP) was studied at respective isolated aortic segments. After the period to Cd-exposure, systolic blood pressure was increased only in the male rats. Males also had higher levels of plasma cadmium than those of female rats, and exposure to the metal did not affect the amount of estrogen produced in the female rats. Increased myeloperoxidase (MPO) activity was also observed in both the males and females that had been exposed to the metal. Moreover, exposure to the cadmium reduced the ACh relaxation and increased vascular reactivity to Phe, resulting in an imbalance between nitric oxide superoxide anion in the isolated aorta of male rats. In female rats, sub-chronic cadmium exposure did not modify the vascular reactivity to Phe and neither to the ACh. The present study revealed that the Cd exposure for 30 days induced sex-dependent cardiovascular abnormalities.
Collapse
Affiliation(s)
| | - Emily Martineli Rossi
- Department of Physiological Sciences, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Charles Santos da Costa
- Department of Morphology, Health Sciences Center, Universidade Federal do Espirito Santo, Vitória, ES, Brazil
| | - Jones Bernardes Graceli
- Department of Morphology, Health Sciences Center, Universidade Federal do Espirito Santo, Vitória, ES, Brazil
| | - Maiara Krause
- Department of Chemistry, Universidade Federal do Espirito Santo, Vitória, ES, Brazil
| | | | | | - Alessandra Simão Padilha
- Department of Physiological Sciences, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| |
Collapse
|
7
|
The Role of Obesity-Induced Perivascular Adipose Tissue (PVAT) Dysfunction in Vascular Homeostasis. Nutrients 2021; 13:nu13113843. [PMID: 34836100 PMCID: PMC8621306 DOI: 10.3390/nu13113843] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
Perivascular adipose tissue (PVAT) is an additional special type of adipose tissue surrounding blood vessels. Under physiological conditions, PVAT plays a significant role in regulation of vascular tone, intravascular thermoregulation, and vascular smooth muscle cell (VSMC) proliferation. PVAT is responsible for releasing adipocytes-derived relaxing factors (ADRF) and perivascular-derived relaxing factors (PDRF), which have anticontractile properties. Obesity induces increased oxidative stress, an inflammatory state, and hypoxia, which contribute to PVAT dysfunction. The exact mechanism of vascular dysfunction in obesity is still not well clarified; however, there are some pathways such as renin-angiotensin-aldosterone system (RAAS) disorders and PVAT-derived factor dysregulation, which are involved in hypertension and endothelial dysfunction development. Physical activity has a beneficial effect on PVAT function among obese patients by reducing the oxidative stress and inflammatory state. Diet, which is the second most beneficial non-invasive strategy in obesity treatment, may have a positive impact on PVAT-derived factors and may restore the balance in their concentration.
Collapse
|
8
|
Barp CG, Bonaventura D, Assreuy J. NO, ROS, RAS, and PVAT: More Than a Soup of Letters. Front Physiol 2021; 12:640021. [PMID: 33643076 PMCID: PMC7902489 DOI: 10.3389/fphys.2021.640021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/22/2021] [Indexed: 12/11/2022] Open
Abstract
Perivascular adipose tissue (PVAT) has recently entered in the realm of cardiovascular diseases as a putative target for intervention. Notwithstanding its relevance, there is still a long way before the role of PVAT in physiology and pathology is fully understood. The general idea that PVAT anti-contractile effect is beneficial and its pro-contractile effect is harmful is being questioned by several reports. The role of some PVAT important products or systems such as nitric oxide (NO), reactive oxygen species (ROS), and RAS may vary depending on the context, disease, place of production, etc., which adds doubts on how mediators of PVAT anti- and pro-contractile effects are called to action and their final result. This short review will address some points regarding NO, ROS, and RAS in the beneficial and harmful roles of PVAT.
Collapse
Affiliation(s)
- Clarissa Germano Barp
- Department of Pharmacology, Centre of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Daniella Bonaventura
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jamil Assreuy
- Department of Pharmacology, Centre of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
9
|
Costa TJ, Barros PR, Arce C, Santos JD, da Silva-Neto J, Egea G, Dantas AP, Tostes RC, Jiménez-Altayó F. The homeostatic role of hydrogen peroxide, superoxide anion and nitric oxide in the vasculature. Free Radic Biol Med 2021; 162:615-635. [PMID: 33248264 DOI: 10.1016/j.freeradbiomed.2020.11.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/08/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023]
Abstract
Reactive oxygen and nitrogen species are produced in a wide range of physiological reactions that, at low concentrations, play essential roles in living organisms. There is a delicate equilibrium between formation and degradation of these mediators in a healthy vascular system, which contributes to maintaining these species under non-pathological levels to preserve normal vascular functions. Antioxidants scavenge reactive oxygen and nitrogen species to prevent or reduce damage caused by excessive oxidation. However, an excessive reductive environment induced by exogenous antioxidants may disrupt redox balance and lead to vascular pathology. This review summarizes the main aspects of free radical biochemistry (formation, sources and elimination) and the crucial actions of some of the most biologically relevant and well-characterized reactive oxygen and nitrogen species (hydrogen peroxide, superoxide anion and nitric oxide) in the physiological regulation of vascular function, structure and angiogenesis. Furthermore, current preclinical and clinical evidence is discussed on how excessive removal of these crucial responses by exogenous antioxidants (vitamins and related compounds, polyphenols) may perturb vascular homeostasis. The aim of this review is to provide information of the crucial physiological roles of oxidation in the endothelium, vascular smooth muscle cells and perivascular adipose tissue for developing safer and more effective vascular interventions with antioxidants.
Collapse
Affiliation(s)
- Tiago J Costa
- Pharmacology Department, Ribeirao Preto Medical School, University of São Paulo, Brazil.
| | | | - Cristina Arce
- Department of Biomedical Sciences, University of Barcelona School of Medicine and Health Sciences, Barcelona, Spain; Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS)-University of Barcelona, Barcelona, Spain; Institut de Nanociencies i Nanotecnologia (IN2UB), University of Barcelona, Barcelona, Spain
| | | | - Júlio da Silva-Neto
- Pharmacology Department, Ribeirao Preto Medical School, University of São Paulo, Brazil
| | - Gustavo Egea
- Department of Biomedical Sciences, University of Barcelona School of Medicine and Health Sciences, Barcelona, Spain; Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS)-University of Barcelona, Barcelona, Spain; Institut de Nanociencies i Nanotecnologia (IN2UB), University of Barcelona, Barcelona, Spain
| | - Ana Paula Dantas
- Institut Clínic del Tòrax, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Rita C Tostes
- Pharmacology Department, Ribeirao Preto Medical School, University of São Paulo, Brazil
| | - Francesc Jiménez-Altayó
- Department of Pharmacology, Therapeutics and Toxicology, Neuroscience Institute, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
10
|
Chen Y, Zhao X, Wu H. Arterial Stiffness: A Focus on Vascular Calcification and Its Link to Bone Mineralization. Arterioscler Thromb Vasc Biol 2020; 40:1078-1093. [PMID: 32237904 DOI: 10.1161/atvbaha.120.313131] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review focuses on the association between vascular calcification and arterial stiffness, highlighting the important genetic factors, systemic and local microenvironmental signals, and underlying signaling pathways and molecular regulators of vascular calcification. Elevated oxidative stress appears to be a common procalcification factor that induces osteogenic differentiation and calcification of vascular cells in a variety of disease conditions such as atherosclerosis, diabetes mellitus, and chronic kidney disease. Thus, the role of oxidative stress and oxidative stress-regulated signals in vascular smooth muscle cells and their contributions to vascular calcification are highlighted. In relation to diabetes mellitus, the regulation of both hyperglycemia and increased protein glycosylation, by AGEs (advanced glycation end products) and O-linked β-N-acetylglucosamine modification, and its role in enhancing intracellular pathophysiological signaling that promotes osteogenic differentiation and calcification of vascular smooth muscle cells are discussed. In the context of chronic kidney disease, this review details the role of calcium and phosphate homeostasis, parathyroid hormone, and specific calcification inhibitors in regulating vascular calcification. In addition, the impact of the systemic and microenvironmental factors on respective intrinsic signaling pathways that promote osteogenic differentiation and calcification of vascular smooth muscle cells and osteoblasts are compared and contrasted, aiming to dissect the commonalities and distinctions that underlie the paradoxical vascular-bone mineralization disorders in aging and diseases.
Collapse
Affiliation(s)
- Yabing Chen
- From the Departments of Pathology (Y.C.), The University of Alabama at Birmingham.,Birmingham Veterans Affairs Medical Center, Research Department, AL (Y.C.)
| | - Xinyang Zhao
- Biochemistry (X.Z.), The University of Alabama at Birmingham
| | - Hui Wu
- Pediatric Dentistry (H.W.), The University of Alabama at Birmingham
| |
Collapse
|
11
|
Antonopoulos AS, Papanikolaou P, Tousoulis D. The Role of Perivascular Adipose Tissue in Microvascular Function and Coronary Atherosclerosis. Microcirculation 2020. [DOI: 10.1007/978-3-030-28199-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Gonzaga NA, do Vale GT, da Silva CB, Pinheiro LC, Leite LN, Carneiro FS, Tanus-Santos JE, Tirapelli CR. Treatment with nitrite prevents reactive oxygen species generation in the corpora cavernosa and restores intracavernosal pressure in hypertensive rats. Nitric Oxide 2020; 94:19-26. [DOI: 10.1016/j.niox.2019.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/23/2019] [Accepted: 10/08/2019] [Indexed: 12/29/2022]
|
13
|
Nox1/Ref-1-mediated activation of CREB promotes Gremlin1-driven endothelial cell proliferation and migration. Redox Biol 2019; 22:101138. [PMID: 30802716 PMCID: PMC6395885 DOI: 10.1016/j.redox.2019.101138] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/25/2019] [Accepted: 02/05/2019] [Indexed: 01/21/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a complex degenerative disorder marked by aberrant vascular remodeling associated with hyperproliferation and migration of endothelial cells (ECs). Previous reports implicated bone morphogenetic protein antagonist Gremlin 1 in this process; however, little is known of the molecular mechanisms involved. The current study was designed to test whether redox signaling initiated by NADPH oxidase 1 (Nox1) could promote transcription factor CREB activation by redox factor 1 (Ref-1), transactivation of Gremlin1 transcription, EC migration, and proliferation. Human pulmonary arterial EC (HPAECs) exposed in vitro to hypoxia to recapitulate PAH signaling displayed induced Nox1 expression, reactive oxygen species (ROS) production, PKA activity, CREB phosphorylation, and CREB:CRE motif binding. These responses were abrogated by selective Nox1 inhibitor NoxA1ds and/or siRNA Nox1. Nox1-activated CREB migrated to the nucleus and bound to Ref-1 leading to CREB:CRE binding and Gremlin1 transcription. CHiP assay and CREB gene-silencing illustrated that CREB is pivotal for hypoxia-induced Gremlin1, which, in turn, stimulates EC proliferation and migration. In vivo, participation of Nox1, CREB, and Gremlin1, as well as CREB:CRE binding was corroborated in a rat PAH model. Activation of a previously unidentified Nox1-PKA-CREB/Ref-1 signaling pathway in pulmonary endothelial cells leads to Gremlin1 transactivation, proliferation and migration. These findings reveal a new signaling pathway by which Nox1 via induction of CREB and Gremlin1 signaling contributes to vascular remodeling and provide preclinical indication of its significance in PAH.
Collapse
|
14
|
Cao C, Dai L, Mu J, Wang X, Hong Y, Zhu C, Jin L, Li S. S1PR2 antagonist alleviates oxidative stress-enhanced brain endothelial permeability by attenuating p38 and Erk1/2-dependent cPLA 2 phosphorylation. Cell Signal 2018; 53:151-161. [PMID: 30290210 DOI: 10.1016/j.cellsig.2018.09.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 09/19/2018] [Accepted: 09/25/2018] [Indexed: 12/18/2022]
Abstract
Both sphingosine-1-phosphate receptor-2 (S1PR2) and cytosolic phospholipase A2 (cPLA2) are implicated in the disruption of cerebrovascular integrity in experimental stroke. However, the role of S1PR2 in induction of cPLA2 phosphorylation during cerebral ischemia-induced endothelial dysfunction remains unknown. This study investigated the effect of S1PR2 blockade on oxidative stress-induced cerebrovascular endothelial barrier impairment and explored the possible mechanisms. In bEnd3 cells, cPLA2 inhibitor CAY10502 as well as S1PR2 antagonist JTE013 profoundly suppressed hydrogen peroxide (H2O2)-induced changes of paracellular permeability and ZO-1 localization. Besides p38, extracellular signal-regulated kinase (Erk) 1/2 is required for H2O2-increased cPLA2 phosphorylation and endothelial permeability. Pharmacological and genetic inhibition of S1PR2 significantly suppressed their phosphorylation in response to H2O2. Especially lentivirus-mediated knockdown of S1PR2 inhibited H2O2-induced ZO-1 redistribution and paracellular hyperpermeability. Using the permanent middle cerebral artery occlusion (pMCAO) mouse model, we found JTE013 pretreatment markedly reduced Evans blue dye (EBD) extravasation and reversed the decrease in VE-cadherin, occludin, claudin-5 and CD31 expression in infarcted hemisphere. Lentivirus-mediated S1PR2 knockdown also attenuated EBD extravasation. Furthermore, JTE013 pretreatment attenuated neurological deficit, brain edema and infarction volume. Therefore, our findings suggest the protective effect of JTE013 on brain endothelial barrier integrity is likely mediated by suppressing p38 and Erk1/2-dependent cPLA2 phosphorylation under oxidative stress.
Collapse
Affiliation(s)
- Changchun Cao
- Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211116, Jiangsu, China; Jiangsu College of Nursing, 9 Science and Technology Avenue, Huaian, 223005, Jiangsu, China
| | - Li Dai
- Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211116, Jiangsu, China
| | - Junyu Mu
- Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211116, Jiangsu, China
| | - Xiaofei Wang
- Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211116, Jiangsu, China
| | - Yali Hong
- Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211116, Jiangsu, China
| | - Chao Zhu
- Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211116, Jiangsu, China
| | - Lai Jin
- Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211116, Jiangsu, China
| | - Shengnan Li
- Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211116, Jiangsu, China.
| |
Collapse
|
15
|
Gonzaga NA, Awata WMC, do Vale GT, Marchi KC, Muniz JJ, Tanus-Santos JE, Tirapelli CR. Perivascular adipose tissue protects against the vascular dysfunction induced by acute ethanol intake: Role of hydrogen peroxide. Vascul Pharmacol 2018; 111:44-53. [PMID: 30157459 DOI: 10.1016/j.vph.2018.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/04/2018] [Accepted: 08/25/2018] [Indexed: 01/04/2023]
Abstract
AIM We investigated the consequences of acute ethanol intake on the anti-contractile effect of perivascular adipose tissue (PVAT). METHODS The effects of a single dose of ethanol (1 g/kg; p.o. gavage) on the vascular function were assessed within 30 min in male Wistar rats. RESULTS Ethanol decreased the relaxation induced by acetylcholine and increased the contraction induced by phenylephrine in endothelium-intact, but not in endothelium-denuded aortas without PVAT. The vascular dysfunction induced by ethanol was not observed in aortic rings with PVAT. Nω-Nitro-l-arginine methyl ester (L-NAME), NG-nitro-l-arginine (L-NNA) and 1H-(1,2,4)oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), but not tiron or tempol, increased the contraction induced by phenylephrine in endothelium-intact aortas with PVAT from control and ethanol-treated rats. Catalase increased phenylephrine-induced contraction in aortas with PVAT from ethanol-treated rats, but not from control rats. Conversely, inhibition of catalase with aminotriazole decreased phenylephrine-induced contraction in aortas from ethanol-treated rats. Treatment with ethanol increased hydrogen peroxide (H2O2) levels and decreased catalase activity in aortas with PVAT. Ethanol increased superoxide anion (O2-) generation in aortas with or without PVAT. Superoxide dismutase (SOD) activity was not affected by ethanol intake. In situ quantification of H2O2 using 2'7'dichlorodihydrofluorescein diacetate (DCFH-DA) revealed increased levels of H2O2 in periaortic PVAT from ethanol-treated rats. However, in situ evaluation of nitric oxide (NO) in both aorta and PVAT showed no differences between groups. CONCLUSIONS Our study provides novel evidence that the periaortic PVAT protects against the vascular dysfunction induced by acute ethanol intake through a mechanism that involves increased generation of H2O2.
Collapse
Affiliation(s)
- Natália A Gonzaga
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil; Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Wanessa M C Awata
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil; Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Gabriel T do Vale
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil; Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Katia C Marchi
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil; Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Jaqueline J Muniz
- Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Jose E Tanus-Santos
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Carlos R Tirapelli
- Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
16
|
Wall shear stress promotes intimal hyperplasia through the paracrine H 2O 2-mediated NOX-AKT-SVV axis. Life Sci 2018; 207:61-71. [PMID: 29847774 DOI: 10.1016/j.lfs.2018.05.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/21/2018] [Accepted: 05/26/2018] [Indexed: 12/24/2022]
Abstract
AIMS Oscillatory wall shear stress (WSS)-linked oxidative stress promotes intimal hyperplasia (IH) development, but the underlying mechanisms are not completely understood. MATERIALS AND METHODS We used an in vivo rabbit carotid arterial stenosis model representing different levels of WSS and found that WSS was increased at 1 month with 50% stenosis and was accompanied by VSMCs proliferation and interstitial collagen accumulation. Increased WSS promoted the expression of NOX, AKT, and survivin (SVV) and the proliferation/migration of VSMCs and reduced apoptosis. KEY FINDINGS Our in vitro study suggested that H2O2 promoted proliferation and migration while suppressing apoptosis in cultured human umbilical vascular endothelial cells. SIGNIFICANCE We demonstrated that the elevation of WSS promotes VSMC proliferation and migration through the H2O2-mediated NOX-AKT-SVV axis, thereby accelerating IH development.
Collapse
|
17
|
Zhang S, Huang Q, Wang Q, Wang Q, Cao X, Zhao L, Xu N, Zhuge Z, Mao J, Fu X, Liu R, Wilcox CS, Patzak A, Li L, Lai EY. Enhanced Renal Afferent Arteriolar Reactive Oxygen Species and Contractility to Endothelin-1 Are Associated with Canonical Wnt Signaling in Diabetic Mice. Kidney Blood Press Res 2018; 43:860-871. [PMID: 29870994 PMCID: PMC6050514 DOI: 10.1159/000490334] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 05/24/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND/AIMS Canonical Wnt signaling is involved in oxidative stress, vasculopathy and diabetes mellitus but its role in diabetic renal microvascular dysfunction is unclear. We tested the hypothesis that enhanced canonical Wnt signaling in renal afferent arterioles from diabetic mice increases reactive oxygen species (ROS) and contractions to endothelin-1 (ET-1). METHODS Streptozotocin-induced diabetes or control C57Bl/6 mice received vehicle or sulindac (40 mg·kg-1·day-1) to block Wnt signaling for 4 weeks. ET-1 contractions were measured by changes of afferent arteriolar diameter. Arteriolar H2O2, O2 -, protein expression and enzymatic activity were assessed using sensitive fluorescence probes, immunoblotting and colorimetric assay separately. RESULTS Compared to control, diabetic mouse afferent arteriole had increased O2- (+ 84%) and H2O2 (+ 91%) and enhanced responses to ET-1 at 10-8 mol·l-1 (-72±4% of versus -43±4%, P< 0.05) accompanied by reduced protein expressions and activities for catalase and superoxide dismutase 2 (SOD2). Arteriolar O2 - was increased further by ET-1 and contractions to ET-1 reduced by PEG-SOD in both groups whereas H2O2 unchanged by ET-1 and contractions were reduced by PEG-catalase selectively in diabetic mice. The Wnt signaling protein β-catenin was upregulated (3.3-fold decrease in p-β-catenin/β-catenin) while the glycogen synthase kinase-3β (GSK-3β) was downregulated (2.6-fold increase in p-GSK-3β/ GSK-3β) in preglomerular vessels of diabetic mice. Sulindac normalized the Wnt signaling proteins, arteriolar O2 -, H2O2 and ET-1 contractions while doubling microvascular catalase and SOD2 expression in diabetic mice. CONCLUSION Increased ROS, notably H2O2 contributes to enhanced afferent arteriolar responses to ET-1 in diabetes, which is closely associated with Wnt signaling. Antioxidant pharmacological strategies targeting Wnt signaling may improve vascular function in diabetic nephropathy.
Collapse
Affiliation(s)
- Suping Zhang
- Department of Physiology, and the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Huang
- Department of Physiology, and the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Physiology, Quanzhou Medical College, Quanzhou, China
| | - Qiaoling Wang
- Department of Physiology, and the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qin Wang
- Department of Physiology, and the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyun Cao
- Department of Physiology, and the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liang Zhao
- Department of Physiology, and the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Nan Xu
- Department of Physiology, and the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengbing Zhuge
- Department of Physiology, and the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhua Mao
- Department of Physiology, and the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaodong Fu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Ruisheng Liu
- Department of Molecular Pharmacology & Physiology, University of South Florida College of Medicine, Tampa, Florida, USA
| | - Christopher S Wilcox
- Division of Nephrology and Hypertension, and Hypertension Center, Georgetown University, Washington, District of Columbia, USA
| | - Andreas Patzak
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lingli Li
- Division of Nephrology and Hypertension, and Hypertension Center, Georgetown University, Washington, District of Columbia, USA
| | - En Yin Lai
- Department of Physiology, and the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China,
- Division of Nephrology and Hypertension, and Hypertension Center, Georgetown University, Washington, District of Columbia, USA,
| |
Collapse
|
18
|
Costa RM, Neves KB, Tostes RC, Lobato NS. Perivascular Adipose Tissue as a Relevant Fat Depot for Cardiovascular Risk in Obesity. Front Physiol 2018; 9:253. [PMID: 29618983 PMCID: PMC5871983 DOI: 10.3389/fphys.2018.00253] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 03/06/2018] [Indexed: 12/18/2022] Open
Abstract
Obesity is associated with increased risk of premature death, morbidity, and mortality from several cardiovascular diseases (CVDs), including stroke, coronary heart disease (CHD), myocardial infarction, and congestive heart failure. However, this is not a straightforward relationship. Although several studies have substantiated that obesity confers an independent and additive risk of all-cause and cardiovascular death, there is significant variability in these associations, with some lean individuals developing diseases and others remaining healthy despite severe obesity, the so-called metabolically healthy obese. Part of this variability has been attributed to the heterogeneity in both the distribution of body fat and the intrinsic properties of adipose tissue depots, including developmental origin, adipogenic and proliferative capacity, glucose and lipid metabolism, hormonal control, thermogenic ability, and vascularization. In obesity, these depot-specific differences translate into specific fat distribution patterns, which are closely associated with differential cardiometabolic risks. The adventitial fat layer, also known as perivascular adipose tissue (PVAT), is of major importance. Similar to the visceral adipose tissue, PVAT has a pathophysiological role in CVDs. PVAT influences vascular homeostasis by releasing numerous vasoactive factors, cytokines, and adipokines, which can readily target the underlying smooth muscle cell layers, regulating the vascular tone, distribution of blood flow, as well as angiogenesis, inflammatory processes, and redox status. In this review, we summarize the current knowledge and discuss the role of PVAT within the scope of adipose tissue as a major contributing factor to obesity-associated cardiovascular risk. Relevant clinical studies documenting the relationship between PVAT dysfunction and CVD with a focus on potential mechanisms by which PVAT contributes to obesity-related CVDs are pointed out.
Collapse
Affiliation(s)
- Rafael M Costa
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | - Karla B Neves
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation, Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Rita C Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | - Núbia S Lobato
- Institute of Health Sciences, Federal University of Goias, Jatai, Brazil
| |
Collapse
|
19
|
Wang J, Wang Y, Wang J, Guo X, Chan EC, Jiang F. Adventitial Activation in the Pathogenesis of Injury-Induced Arterial Remodeling: Potential Implications in Transplant Vasculopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:838-845. [PMID: 29341889 DOI: 10.1016/j.ajpath.2017.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/28/2017] [Accepted: 12/07/2017] [Indexed: 11/16/2022]
Abstract
Transplant vasculopathy is one of the major causes of chronic rejection after solid organ transplantation. The pathogenic mechanisms of transplant vasculopathy are still poorly understood. Herein, we summarize current evidence suggesting that activation of the tunica adventitia may be involved in the pathogenesis of transplant vasculopathy. Adventitia is an early responder to various vascular injuries and plays an integral role in eliciting vascular inflammation and remodeling. Accumulation of macrophages in the adventitia promotes the development of vascular remodeling by releasing a variety of paracrine factors that have profound impacts on vascular mural cells. Targeting adventitial macrophages has been shown to be effective for repressing transplantation-induced arterial remodeling in animal models. Adventitia also fosters angiogenesis, and neovascularization of the adventitial layer may facilitate the transport of inflammatory cells through the arterial wall. Further investigations are warranted to clarify whether inhibiting adventitial oxidative stress and/or adventitial neovascularization are better strategies for preventing transplant vasculopathy.
Collapse
Affiliation(s)
- Jianli Wang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, China
| | - Yuan Wang
- Department of Emergency, Qilu Hospital of Shandong University, Jinan, China
| | - Jingjing Wang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, China
| | - Xiaosun Guo
- Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, China
| | - Elsa C Chan
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Fan Jiang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling and Function Research (Chinese Ministry of Education and Chinese Ministry of Health), Qilu Hospital of Shandong University, Jinan, China; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
20
|
Fernández-Alfonso MS, Somoza B, Tsvetkov D, Kuczmanski A, Dashwood M, Gil-Ortega M. Role of Perivascular Adipose Tissue in Health and Disease. Compr Physiol 2017; 8:23-59. [PMID: 29357124 DOI: 10.1002/cphy.c170004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Perivascular adipose tissue (PVAT) is cushion of fat tissue surrounding blood vessels, which is phenotypically different from other adipose tissue depots. PVAT is composed of adipocytes and stromal vascular fraction, constituted by different populations of immune cells, endothelial cells, and adipose-derived stromal cells. It expresses and releases an important number of vasoactive factors with paracrine effects on vascular structure and function. In healthy individuals, these factors elicit a net anticontractile and anti-inflammatory paracrine effect aimed at meeting hemodynamic and metabolic demands of specific organs and regions of the body. Pathophysiological situations, such as obesity, diabetes or hypertension, induce changes in its amount and in the expression pattern of vasoactive factors leading to a PVAT dysfunction in which the beneficial paracrine influence of PVAT is shifted to a pro-oxidant, proinflammatory, contractile, and trophic environment leading to functional and structural cardiovascular alterations and cardiovascular disease. Many different PVATs surrounding a variety of blood vessels have been described and exhibit regional differences. Both protective and deleterious influence of PVAT differs regionally depending on the specific vascular bed contributing to variations in the susceptibility of arteries and veins to vascular disease. PVAT therefore, might represent a novel target for pharmacological intervention in cardiovascular disease. © 2018 American Physiological Society. Compr Physiol 8:23-59, 2018.
Collapse
Affiliation(s)
| | - Beatriz Somoza
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Madrid, Spain
| | - Dmitry Tsvetkov
- Department of Anestesiology, Perioperative and Pain Medicine, HELIOS Klinikum, Berlin-Buch GmbH, Germany.,Institute of Experimental and Clinical Pharmacology and Toxicology, Department of Pharmacology and Experimental Therapy, Eberhard Karls University Hospitals and Clinics, and Interfaculty Center of Pharmacogenomics and Drug Research, Tübingen, Germany
| | - Artur Kuczmanski
- Department of Anestesiology, Perioperative and Pain Medicine, HELIOS Klinikum, Berlin-Buch GmbH, Germany
| | - Mick Dashwood
- Royal Free Hospital Campus, University College Medical School, London, United Kingdom
| | - Marta Gil-Ortega
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Madrid, Spain
| |
Collapse
|
21
|
Silva B, Pernomian L, De Paula T, Grando M, Bendhack L. Endothelial nitric oxide synthase and cyclooxygenase are activated by hydrogen peroxide in renal hypertensive rat aorta. Eur J Pharmacol 2017; 814:87-94. [PMID: 28780058 DOI: 10.1016/j.ejphar.2017.07.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/28/2017] [Accepted: 07/28/2017] [Indexed: 10/19/2022]
|
22
|
LeBlanc AJ, Kelm NQ. Thrombospondin-1, Free Radicals, and the Coronary Microcirculation: The Aging Conundrum. Antioxid Redox Signal 2017; 27:785-801. [PMID: 28762749 PMCID: PMC5647494 DOI: 10.1089/ars.2017.7292] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
SIGNIFICANCE Successful matching of cardiac metabolism to perfusion is accomplished primarily through vasodilation of the coronary resistance arterioles, but the mechanism that achieves this effect changes significantly as aging progresses and involves the contribution of reactive oxygen species (ROS). Recent Advances: A matricellular protein, thrombospondin-1 (Thbs-1), has been shown to be a prolific contributor to the production and modulation of ROS in large conductance vessels and in the peripheral circulation. Recently, the presence of physiologically relevant circulating Thbs-1 levels was proven to also disrupt vasodilation to nitric oxide (NO) in coronary arterioles from aged animals, negatively impacting coronary blood flow reserve. CRITICAL ISSUES This review seeks to reconcile how ROS can be successfully utilized as a substrate to mediate vasoreactivity in the coronary microcirculation as "normal" aging progresses, but will also examine how Thbs-1-induced ROS production leads to dysfunctional perfusion and eventual ischemia and why this is more of a concern in advancing age. FUTURE DIRECTIONS Current therapies that may effectively disrupt Thbs-1 and its receptor CD47 in the vascular wall and areas for future exploration will be discussed. Antioxid. Redox Signal. 27, 785-801.
Collapse
Affiliation(s)
- Amanda J LeBlanc
- Department of Physiology, Cardiovascular Innovation Institute, University of Louisville , Louisville, Kentucky
| | - Natia Q Kelm
- Department of Physiology, Cardiovascular Innovation Institute, University of Louisville , Louisville, Kentucky
| |
Collapse
|
23
|
Babic GM, Markovic SD, Varjacic M, Djordjevic NZ, Nikolic T, Stojic I, Jakovljevic V. Estradiol decreases blood pressure in association with redox regulation in preeclampsia. Clin Exp Hypertens 2017; 40:281-286. [PMID: 28920713 DOI: 10.1080/10641963.2017.1368538] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this study, we tested a hypothesis that a short-term estradiol therapy may reduce blood pressure in preeclampsia by modulating plasma oxidative stress. The intramuscular injections of 10 mg 17-beta-estradiol were prescribed to preeclamptic pregnant women during the 3-day therapy before a labor induction. The analyses of mean arterial pressure (MAP), serum estradiol concentrations, plasma superoxide anion (O2.), hydrogen peroxide (H2O2), nitrites (NO2-), and peroxynitrite (ONOO-) were conducted before and during the therapy. We found that the plasma concentrations of oxidative stress markers, such as O2- and H2O2, are higher in preeclampsia and positively correlated with the MAP value. Moreover, it was shown that the plasma concentration of NO2- as an indicator of NO levels is higher in preeclampsia. A short-term intramuscular application of estradiol decreases the MAP value and the plasma concentration of O.-, H2O2, NO2-, and ONOO- in preeclampsia. A positive correlation between the decrease of MAP values and the decrease of plasma concentrations of O2-, H2O2, and ONOO- was found in preeclampsia during a short-term estradiol therapy. We conclude that the short-term estradiol therapy decreases the MAP value in preeclampsia by modulating the plasma oxidative stress. We speculate that the estradiol metabolism in preeclampsia is an important mechanism that contributes to vascular dysfunction.
Collapse
Affiliation(s)
- Goran M Babic
- a Faculty of Medical Sciences , University of Kragujevac , Kragujevac , Serbia.,b Department of Obstetrics and Gynecology , Clinical Centre "Kragujevac" , Serbia
| | - Snezana D Markovic
- c Institute of Biology and Ecology, Faculty of Science , University of Kragujevac , Kragujevac , Serbia
| | - Mirjana Varjacic
- a Faculty of Medical Sciences , University of Kragujevac , Kragujevac , Serbia.,b Department of Obstetrics and Gynecology , Clinical Centre "Kragujevac" , Serbia
| | - Natasa Z Djordjevic
- d Department of Biomedical Sciences , State University of Novi Pazar , Novi Pazar , Serbia
| | - Tamara Nikolic
- e Department of Pharmacy, Faculty of Medical Sciences , University of Kragujevac , Kragujevac , Serbia
| | - Isidora Stojic
- e Department of Pharmacy, Faculty of Medical Sciences , University of Kragujevac , Kragujevac , Serbia
| | - Vladimir Jakovljevic
- f Department of Physiology, Faculty of Medical Sciences , University of Kragujevac , Kragujevac , Serbia.,g Department of Human Pathology , 1st Moscow State Medical University IM Sechenov , Moscow , Russia
| |
Collapse
|
24
|
da Costa RM, Fais RS, Dechandt CRP, Louzada-Junior P, Alberici LC, Lobato NS, Tostes RC. Increased mitochondrial ROS generation mediates the loss of the anti-contractile effects of perivascular adipose tissue in high-fat diet obese mice. Br J Pharmacol 2017; 174:3527-3541. [PMID: 27930804 DOI: 10.1111/bph.13687] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/29/2016] [Accepted: 12/01/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Obesity is associated with structural and functional changes in perivascular adipose tissue (PVAT), favouring release of reactive oxygen species (ROS), vasoconstrictor and proinflammatory factors. The cytokine TNF-α induces vascular dysfunction and is produced by PVAT. We tested the hypothesis that obesity-associated PVAT dysfunction was mediated by augmented mitochondrial ROS (mROS) generation due to increased TNF-α production in this tissue. EXPERIMENTAL APPROACH C57Bl/6J and TNF-α receptor-deficient mice received control or high fat diet (HFD) for 18 weeks. We used pharmacological tools to determine the participation of mROS in PVAT dysfunction. Superoxide anion (O2.- ) and H2 O2 were assayed in PVAT and aortic rings were used to assess vascular function. KEY RESULTS Aortae from HFD-fed obese mice displayed increased contractions to phenylephrine and loss of PVAT anti-contractile effect. Inactivation of O2.- , dismutation of mitochondria-derived H2 O2 , uncoupling of oxidative phosphorylation and Rho kinase inhibition, decreased phenylephrine-induced contractions in aortae with PVAT from HFD-fed mice. O2.- and H2 O2 were increased in PVAT from HFD-fed mice. Mitochondrial respiration analysis revealed decreased O2 consumption rates in PVAT from HFD-fed mice. TNF-α inhibition reduced H2 O2 levels in PVAT from HFD-fed mice. PVAT dysfunction, i.e. increased contraction to phenylephrine in PVAT-intact aortae, was not observed in HFD-obese mice lacking TNF-α receptors. Generation of H2 O2 was prevented in PVAT from TNF-α receptor deficient obese mice. CONCLUSION AND IMPLICATIONS TNF-α-induced mitochondrial oxidative stress is a key and novel mechanism involved in obesity-associated PVAT dysfunction. These findings elucidate molecular mechanisms whereby oxidative stress in PVAT could affect vascular function. LINKED ARTICLES This article is part of a themed section on Molecular Mechanisms Regulating Perivascular Adipose Tissue - Potential Pharmacological Targets? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.20/issuetoc.
Collapse
Affiliation(s)
- Rafael Menezes da Costa
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Rafael S Fais
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Carlos R P Dechandt
- Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Paulo Louzada-Junior
- Division of Clinical Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Luciane C Alberici
- Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Núbia S Lobato
- Department of Medicine, Federal University of Goias, Jatai, GO, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| |
Collapse
|
25
|
Effect of tempol and tempol plus catalase on intra-renal haemodynamics in spontaneously hypertensive stroke-prone (SHSP) and Wistar rats. J Physiol Biochem 2016; 73:207-214. [PMID: 27933463 DOI: 10.1007/s13105-016-0541-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/24/2016] [Indexed: 02/07/2023]
Abstract
Vasoconstriction within the renal medulla contributes to the development of hypertension. This study investigated the role of reactive oxygen species (ROS) in regulating renal medullary and cortical blood perfusion (MBP and CBP respectively) in both stroke-prone spontaneously hypertensive rats (SHRSP) and Wistar rats. CBP and MBP were measured using a laser-Doppler flow meter before and after intra-renal infusion of tempol, the superoxide dismutase (SOD) mimetic or tempol plus catalase, the hydrogen peroxide-degrading enzyme. Tempol infusion significantly elevated blood perfusion within the renal medulla (MBP) in both SHRSP (by 43 ± 7%, P < 0.001) and Wistar rats (by 17 ± 2%, P < 0.05) but the magnitude of the increase was significantly greater in the SHRSP (P < 0.01). When the enzyme catalase and tempol were co-infused, MBP was again significantly increased in SHRSP (by 57 ± 6%, P < 0.001) and Wistar rats (by 33 ± 6%, P < 0.001), with a significantly greater increase in perfusion being induced in the SHRSP relative to the Wistar rats (P < 0.01). Notably, this increase was significantly greater than in those animals infused with tempol alone (P < 0.01). These results suggest that ROS plays a proportionally greater role in reducing renal vascular compliance, particularly within the renal medulla, in normotensive and hypertensive animals, with effects being greater in the hypertensive animals. This supports the hypothesis that SHRSP renal vasculature might be subjected to elevated level of oxidative stress relative to normotensive animals.
Collapse
|
26
|
Santiago E, Martínez MP, Climent B, Muñoz M, Briones AM, Salaices M, García-Sacristán A, Rivera L, Prieto D. Augmented oxidative stress and preserved vasoconstriction induced by hydrogen peroxide in coronary arteries in obesity: role of COX-2. Br J Pharmacol 2016; 173:3176-3195. [PMID: 27535007 DOI: 10.1111/bph.13579] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Oxidative stress plays a key role in the vascular and metabolic abnormalities associated with obesity. Herein, we assessed whether obesity can increase coronary vasoconstriction induced by hydrogen peroxide (H2 O2 ) and the signalling pathways involving COX-2 and superoxide (O2.- ) generation. EXPERIMENTAL APPROACH Contractile responses to H2 O2 and O2.- generation were measured in coronary arteries from genetically obese Zucker rats (OZR) and compared to lean Zucker rats (LZR). KEY RESULTS Both basal and H2 O2 -stimulated O2.- production were enhanced in coronary arteries from OZR, but H2 O2 -induced vasoconstriction was unchanged. The selective COX-2 inhibitor NS398 significantly reduced H2 O2 -induced contractions in endothelium-denuded arteries from LZR and OZR, but only in endothelium-intact arteries from LZR. PGI2 (IP) receptor antagonism modestly reduced the vasoconstrictor action of H2 O2 while antagonism of the PGE2 receptor 4 (EP4 ) enhanced H2 O2 contractions in arteries from OZR but not LZR. Basal release of COX-2-derived PGE2 was higher in coronary arteries from OZR where the selective agonist of EP4 receptors TCS 2519 evoked potent relaxations. COX-2 was up-regulated after acute exposure to H2 O2 in coronary endothelium and vascular smooth muscle (VSM) and inhibition of COX-2 markedly reduced H2 O2 -elicited O2.- generation in coronary arteries and myocardium. Expression of Nox subunits in VSM and NADPH-stimulated O2.- generation was enhanced and contributed to H2 O2 vasoconstriction in arteries from obese rats. CONCLUSION AND IMPLICATIONS COX-2 contributes to cardiac oxidative stress and to the endothelium-independent O2.- -mediated coronary vasoconstriction induced by H2 O2 in obesity, which is offset by the release of COX-2-derived endothelial PGE2 acting on EP4 vasodilator receptors.
Collapse
Affiliation(s)
- Elvira Santiago
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Maria Pilar Martínez
- Departamento de Anatomía and Anatomía Patológica Comparadas, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Belén Climent
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Mercedes Muñoz
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana María Briones
- Departamento de Farmacología, Facultad de Medicina, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Universidad Autónoma de Madrid, Madrid, Spain
| | - Mercedes Salaices
- Departamento de Farmacología, Facultad de Medicina, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Universidad Autónoma de Madrid, Madrid, Spain
| | - Albino García-Sacristán
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Luis Rivera
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Dolores Prieto
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
27
|
Huang Q, Wang Q, Zhang S, Jiang S, Zhao L, Yu L, Hultström M, Patzak A, Li L, Wilcox CS, Lai EY. Increased hydrogen peroxide impairs angiotensin II contractions of afferent arterioles in mice after renal ischaemia-reperfusion injury. Acta Physiol (Oxf) 2016; 218:136-45. [PMID: 27362287 DOI: 10.1111/apha.12745] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 02/15/2016] [Accepted: 06/28/2016] [Indexed: 12/18/2022]
Abstract
AIM Renal ischaemia-reperfusion injury (IRI) increases angiotensin II (Ang II) and reactive oxygen species (ROS) that are potent modulators of vascular function. However, the roles of individual ROS and their interaction with Ang II are not clear. Here we tested the hypothesis that IRI modulates renal afferent arteriolar responses to Ang II via increasing superoxide (O2-) or hydrogen peroxide (H2 O2 ). METHODS Renal afferent arterioles were isolated and perfused from C57BL/6 mice 24 h after IRI or sham surgery. Responses to Ang II or noradrenaline were assessed by measuring arteriolar diameter. Production of H2 O2 and O2- was assessed in afferent arterioles and renal cortex. Activity of SOD and catalase, and mRNA expressions of Ang II receptors were assessed in pre-glomerular arterioles and renal cortex. RESULTS Afferent arterioles from mice after IRI had a reduced maximal contraction to Ang II (-27±2 vs. -42±1%, P < 0.001), but retained a normal contraction to noradrenaline. Arterioles after IRI had a 38% increase in H2 O2 (P < 0.001) and a 45% decrease in catalase activity (P < 0.01). Contractions were reduced in normal arterioles after incubation with H2 O2 (-22±2 vs. -42±1%, P < 0.05) similar to the effects of IRI. However, the impaired contractions were normalized by incubation with PEG catalase despite a reduced AT1 R expression. CONCLUSIONS Renal IRI in mice selectively impairs afferent arteriolar responses to Ang II because of H2 O2 accumulation that is caused by a reduced catalase activity. This could serve to buffer the effect of Ang II after IRI and may be a protective mechanism.
Collapse
Affiliation(s)
- Q. Huang
- Department of Physiology; Zhejiang University School of Medicine; Hangzhou China
| | - Q. Wang
- Department of Physiology; Zhejiang University School of Medicine; Hangzhou China
| | - S. Zhang
- Department of Physiology; Zhejiang University School of Medicine; Hangzhou China
| | - S. Jiang
- Department of Physiology; Zhejiang University School of Medicine; Hangzhou China
| | - L. Zhao
- Department of Physiology; Zhejiang University School of Medicine; Hangzhou China
| | - L. Yu
- College of Life Sciences; Zhejiang University; Hangzhou China
| | - M. Hultström
- Integrative Physiology; Department of Medical Cell Biology; Uppsala University; Uppsala Sweden
- Anesthesia and Intensive Care Medicine; Department of Surgical Sciences; Uppsala University; Uppsala Sweden
| | - A. Patzak
- Institute of Vegetative Physiology; Charité-Universitätsmedizin Berlin; Berlin Germany
| | - L. Li
- Department of Medicine; Division of Nephrology and Hypertension; Hypertension, Kidney and Vascular Research Center; Georgetown University; Washington DC USA
| | - C. S. Wilcox
- Department of Medicine; Division of Nephrology and Hypertension; Hypertension, Kidney and Vascular Research Center; Georgetown University; Washington DC USA
| | - E. Y. Lai
- Department of Physiology; Zhejiang University School of Medicine; Hangzhou China
| |
Collapse
|
28
|
Byon CH, Heath JM, Chen Y. Redox signaling in cardiovascular pathophysiology: A focus on hydrogen peroxide and vascular smooth muscle cells. Redox Biol 2016; 9:244-253. [PMID: 27591403 PMCID: PMC5011184 DOI: 10.1016/j.redox.2016.08.015] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 08/23/2016] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress represents excessive intracellular levels of reactive oxygen species (ROS), which plays a major role in the pathogenesis of cardiovascular disease. Besides having a critical impact on the development and progression of vascular pathologies including atherosclerosis and diabetic vasculopathy, oxidative stress also regulates physiological signaling processes. As a cell permeable ROS generated by cellular metabolism involved in intracellular signaling, hydrogen peroxide (H2O2) exerts tremendous impact on cardiovascular pathophysiology. Under pathological conditions, increased oxidase activities and/or impaired antioxidant systems results in uncontrolled production of ROS. In a pro-oxidant environment, vascular smooth muscle cells (VSMC) undergo phenotypic changes which can lead to the development of vascular dysfunction such as vascular inflammation and calcification. Investigations are ongoing to elucidate the mechanisms for cardiovascular disorders induced by oxidative stress. This review mainly focuses on the role of H2O2 in regulating physiological and pathological signals in VSMC.
Collapse
Affiliation(s)
| | - Jack M Heath
- Department of Pathology, Birmingham, AL 35294, USA
| | - Yabing Chen
- Department of Pathology, Birmingham, AL 35294, USA; University of Alabama at Birmingham, and the Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294, USA.
| |
Collapse
|
29
|
Tawa M, Shimosato T, Iwasaki H, Imamura T, Okamura T. Effects of hydrogen peroxide on relaxation through the NO/sGC/cGMP pathway in isolated rat iliac arteries. Free Radic Res 2016; 49:1479-87. [PMID: 26334090 DOI: 10.3109/10715762.2015.1089987] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The production of reactive oxygen species, including hydrogen peroxide (H(2)O(2)), is increased in diseased blood vessels. Although H(2)O(2) leads to impairment of the nitric oxide (NO)/soluble guanylate cyclase (sGC)/cGMP signaling pathway, it is not clear whether this reactive molecule affects the redox state of sGC, a key determinant of NO bioavailability. To clarify this issue, mechanical responses of endothelium-denuded rat external iliac arteries to BAY 41-2272 (sGC stimulator), BAY 60-2770 (sGC activator), nitroglycerin (NO donor), acidified NaNO(2) (exogenous NO) and 8-Br-cGMP (cGMP analog) were studied under exposure to H(2)O(2). The relaxant response to BAY 41-2272 (pD2: 6.79 ± 0.10 and 6.62 ± 0.17), BAY 60-2770 (pD2: 9.57 ± 0.06 and 9.34 ± 0.15) or 8-Br-cGMP (pD2: 5.19 ± 0.06 and 5.24 ± 0.08) was not apparently affected by exposure to H(2)O(2). In addition, vascular cGMP production stimulated with BAY 41-2272 or BAY 60-2770 in the presence of H(2)O(2) was identical to that in its absence. On the other hand, nitroglycerin-induced relaxation was markedly attenuated by exposing the arteries to H(2)O(2) (pD2: 8.73 ± 0.05 and 8.30 ± 0.05), which was normalized in the presence of catalase (pD2: 8.59 ± 0.05). Likewise, H(2)O(2) exposure impaired the relaxant response to acidified NaNO(2) (pD2: 6.52 ± 0.17 and 6.09 ± 0.16). These findings suggest that H(2)O(2) interferes with the NO-mediated action, but the sGC redox equilibrium and the downstream target(s) of cGMP are unlikely to be affected in the vasculature.
Collapse
Affiliation(s)
- Masashi Tawa
- a Department of Pharmacology , Shiga University of Medical Science , Otsu , Shiga , Japan
| | - Takashi Shimosato
- a Department of Pharmacology , Shiga University of Medical Science , Otsu , Shiga , Japan
| | - Hirotaka Iwasaki
- a Department of Pharmacology , Shiga University of Medical Science , Otsu , Shiga , Japan
| | - Takeshi Imamura
- a Department of Pharmacology , Shiga University of Medical Science , Otsu , Shiga , Japan
| | - Tomio Okamura
- a Department of Pharmacology , Shiga University of Medical Science , Otsu , Shiga , Japan
| |
Collapse
|
30
|
c-Src, ERK1/2 and Rho kinase mediate hydrogen peroxide-induced vascular contraction in hypertension: role of TXA2, NAD(P)H oxidase and mitochondria. J Hypertens 2016; 33:77-87. [PMID: 25380156 DOI: 10.1097/hjh.0000000000000383] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AIM : The aim of this study was to analyse the signalling pathways involved in H2O2 vascular responses in hypertension. METHODS Vascular function, thromboxane A2 (TXA2) production, oxidative stress and protein expression were determined in mesenteric resistance arteries (MRAs) from hypertensive (spontaneously hypertensive rats, SHR) and normotensive Wistar Kyoto (WKY) rats. RESULTS H2O2 and the TP agonist U46619 induced greater contractile responses in MRA from SHR than WKY. Moreover, H2O2 increased TXA2 production more in SHR than in WKY. The c-Src inhibitor PP1 reduced H2O2 and U46619-induced contraction and TXA2 release in both strains. The ERK1/2 inhibitor PD98059 reduced H2O2 but not U46619-induced contraction only in SHR arteries. The Rho kinase inhibitor Y26372 reduced H2O2 and U46619-induced contractions only in SHR arteries. Basal c-Src, ERK1/2 and Rho kinase expression were greater in MRA from SHR than WKY. In SHR, the combination of PD98059 with the TP antagonist SQ29548 but not with Y27632 inhibited the H2O2 contraction more than each inhibitor alone. H2O2 and U46619 increased NAD(P)H oxidase activity and O2 production and decreased mitochondrial membrane potential in vessels from SHR. The effects induced by H2O2 were abolished by inhibitors of TXA2 synthase, ERK1/2 and c-Src. The mitochondrial antioxidant mitoTEMPO reduced H2O2-induced contraction and NAD(P)H oxidase activation. CONCLUSION In arteries from WKY, c-Src mediates H2O2 contractile responses by modulating TXA2 release and TXA2 effect. In SHR, H2O2 induces c-Src dependent TXA2 release that provokes vascular contractile responses through Rho kinase, c-Src and O2 from NAD(P)H Oxidase and mitochondria. Moreover, ERK1/2 activation contributes to H2O2 contraction in SHR through effects on mitochondria/NAD(P)H Oxidase.
Collapse
|
31
|
Aghamohammadzadeh R, Unwin RD, Greenstein AS, Heagerty AM. Effects of Obesity on Perivascular Adipose Tissue Vasorelaxant Function: Nitric Oxide, Inflammation and Elevated Systemic Blood Pressure. J Vasc Res 2016; 52:299-305. [PMID: 26910225 PMCID: PMC4961268 DOI: 10.1159/000443885] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 01/07/2016] [Indexed: 11/19/2022] Open
Abstract
Introduction Perivascular adipose tissue (PVAT) surrounds most vessels in the human body. Healthy PVAT has a vasorelaxant effect which is not observed in obesity. We assessed the contribution of nitric oxide (NO), inflammation and endothelium to obesity-induced PVAT damage. Methods Rats were fed a high-fat diet or normal chow. PVAT function was assessed using wire myography. Skeletonised and PVAT-intact mesenteric vessels were prepared with and without endothelium. Vessels were incubated with L-NNA or superoxide dismutase (SOD) and catalase. Gluteal fat biopsies were performed on 10 obese and 10 control individuals, and adipose tissue was assessed using proteomic analysis. Results In the animals, there were significant correlations between weight and blood pressure (BP; r = 0.5, p = 0.02), weight and PVAT function (r = 0.51, p = 0.02), and PVAT function and BP (r = 0.53, p = 0.01). PVAT-intact vessel segments from healthy animals constricted significantly less than segments from obese animals (p < 0.05). In a healthy state, there was preservation of the PVAT vasorelaxant function after endothelium removal (p < 0.05). In endothelium-denuded vessels, L-NNA attenuated the PVAT vasorelaxant function in control vessels (p < 0.0001). In obesity, incubation with SOD and catalase attenuated PVAT-intact vessel contractility in the presence and absence of endothelium (p < 0.001). In obese humans, SOD [Cu-Zn] (SOD1; fold change −2.4), peroxiredoxin-1 (fold change −2.15) and adiponectin (fold change −2.1) were present in lower abundances than in healthy controls. Conclusions Incubation with SOD and catalase restores PVAT vasorelaxant function in animal obesity. In the rodent model, obesity-induced PVAT damage is independent of endothelium and is in part due to reduced NO bioavailability within PVAT. Loss of PVAT function correlates with rising BP in our animal obesity model. In keeping with our hypothesis of inflammation-induced damage to PVAT function in obesity, there are lower levels of SOD1, peroxiredoxin-1 and adiponectin in obese human PVAT.
Collapse
|
32
|
Cowley AW, Yang C, Zheleznova NN, Staruschenko A, Kurth T, Rein L, Kumar V, Sadovnikov K, Dayton A, Hoffman M, Ryan RP, Skelton MM, Salehpour F, Ranji M, Geurts A. Evidence of the Importance of Nox4 in Production of Hypertension in Dahl Salt-Sensitive Rats. Hypertension 2015; 67:440-50. [PMID: 26644237 DOI: 10.1161/hypertensionaha.115.06280] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/11/2015] [Indexed: 12/24/2022]
Abstract
This study reports the consequences of knocking out NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 4 (Nox4) on the development of hypertension and kidney injury in the Dahl salt-sensitive (SS) rat. Zinc finger nuclease injection of single-cell SS embryos was used to create an 8 base-pair frame-shift deletion of Nox4, resulting in a loss of the ≈68 kDa band in Western blot analysis of renal cortical tissue of the knock out of Nox4 in the SS rat (SS(Nox4-/-)) rats. SS(Nox4-/-) rats exhibited a significant reduction of salt-induced hypertension compared with SS rats after 21 days of 4.0% NaCl diet (134±5 versus 151±3 mm Hg in SS) and a significant reduction of albuminuria, tubular casts, and glomerular injury. Optical fluorescence 3-dimensional cryoimaging revealed significantly higher redox ratios (NADH/FAD [reduced nicotinamide adenine dinucleotide/flavin adenine dinucleotide]) in the kidneys of SS(Nox4-/-) rats even when fed the 0.4% NaCl diet, indicating greater levels of mitochondrial electron transport chain metabolic activity and reduced oxidative stress compared with SS rats. Before the development of hypertension, RNA expression levels of Nox subunits Nox2, p67(phox), and p22(phox) were found to be significantly lower (P<0.05) in SS(Nox4-/-) compared with SS rats in the renal cortex. Thus, the mutation of Nox4 seems to modify transcription of several genes in ways that contribute to the protective effects observed in the SS(Nox4-/-) rats. We conclude that the reduced renal injury and attenuated blood pressure response to high salt in the SS(Nox4-/-) rat could be the result of multiple pathways, including gene transcription, mitochondrial energetics, oxidative stress, and protein matrix production impacted by the knock out of Nox4.
Collapse
Affiliation(s)
- Allen W Cowley
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.).
| | - Chun Yang
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| | - Nadezhda N Zheleznova
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| | - Alexander Staruschenko
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| | - Theresa Kurth
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| | - Lisa Rein
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| | - Vikash Kumar
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| | - Katherine Sadovnikov
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| | - Alex Dayton
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| | - Matthew Hoffman
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| | - Robert P Ryan
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| | - Meredith M Skelton
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| | - Fahimeh Salehpour
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| | - Mahsa Ranji
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| | - Aron Geurts
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| |
Collapse
|
33
|
Interplay between oxidant species and energy metabolism. Redox Biol 2015; 8:28-42. [PMID: 26741399 PMCID: PMC4710798 DOI: 10.1016/j.redox.2015.11.010] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/20/2015] [Accepted: 11/25/2015] [Indexed: 02/07/2023] Open
Abstract
It has long been recognized that energy metabolism is linked to the production of reactive oxygen species (ROS) and critical enzymes allied to metabolic pathways can be affected by redox reactions. This interplay between energy metabolism and ROS becomes most apparent during the aging process and in the onset and progression of many age-related diseases (i.e. diabetes, metabolic syndrome, atherosclerosis, neurodegenerative diseases). As such, the capacity to identify metabolic pathways involved in ROS formation, as well as specific targets and oxidative modifications is crucial to our understanding of the molecular basis of age-related diseases and for the design of novel therapeutic strategies. Herein we review oxidant formation associated with the cell's energetic metabolism, key antioxidants involved in ROS detoxification, and the principal targets of oxidant species in metabolic routes and discuss their relevance in cell signaling and age-related diseases. Energy metabolism is both a source and target of oxidant species. Reactive oxygen species are formed in redox reactions in catabolic pathways. Sensitive targets of oxidant species regulate the flux of metabolic pathways. Metabolic pathways and antioxidant systems are regulated coordinately.
Collapse
|
34
|
Affiliation(s)
- Daniel N Meijles
- From the Department of Pharmacology and Chemical Biology, Vascular Medicine Institute, University of Pittsburgh, PA
| | - Patrick J Pagano
- From the Department of Pharmacology and Chemical Biology, Vascular Medicine Institute, University of Pittsburgh, PA.
| |
Collapse
|
35
|
Guo J, Wang X, Henstridge DC, Richardson JJ, Cui J, Sharma A, Febbraio MA, Peter K, de Haan JB, Hagemeyer CE, Caruso F. Nanoporous Metal-Phenolic Particles as Ultrasound Imaging Probes for Hydrogen Peroxide. Adv Healthc Mater 2015; 4:2170-2175. [PMID: 26331367 DOI: 10.1002/adhm.201500528] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 07/10/2015] [Indexed: 11/09/2022]
Abstract
Nanoporous metal-phenolic particles are fabricated through the nanostructural replication of dense FeIII -TA complexes in nanoporous CaCO3 template particles. The particles have potential for the diagnostic detection of endogenous levels of H2 O2 ex vivo and in vivo by ultrasound imaging, which is based on the catalytic activity of the coordinated Fe3+ in the particles to break down H2 O2 to O2 microbubbles.
Collapse
Affiliation(s)
- Junling Guo
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and the Department of Chemical and Biomolecular Engineering; The University of Melbourne; Parkville Victoria 3010 Australia
| | - Xiaowei Wang
- Atherothrombosis and Vascular Biology; Baker IDI Heart and Diabetes Institute; Melbourne Victoria 3004 Australia
- Central Clinical School; Monash University; Melbourne Victoria 3004 Australia
| | - Darren C. Henstridge
- Cellular and Molecular Metabolism; Baker IDI Heart and Diabetes Institute; Melbourne Victoria 3004 Australia
| | - Joseph J. Richardson
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and the Department of Chemical and Biomolecular Engineering; The University of Melbourne; Parkville Victoria 3010 Australia
| | - Jiwei Cui
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and the Department of Chemical and Biomolecular Engineering; The University of Melbourne; Parkville Victoria 3010 Australia
| | - Arpeeta Sharma
- Oxidative Stress; Baker IDI Heart and Diabetes Institute; Melbourne Victoria 3004 Australia
| | - Mark A. Febbraio
- Cellular and Molecular Metabolism; Baker IDI Heart and Diabetes Institute; Melbourne Victoria 3004 Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology; Baker IDI Heart and Diabetes Institute; Melbourne Victoria 3004 Australia
- Central Clinical School; Monash University; Melbourne Victoria 3004 Australia
- School of Applied Sciences; RMIT University; Melbourne Victoria 3000 Australia
| | - Judy B. de Haan
- Oxidative Stress; Baker IDI Heart and Diabetes Institute; Melbourne Victoria 3004 Australia
| | - Christoph E. Hagemeyer
- Central Clinical School; Monash University; Melbourne Victoria 3004 Australia
- School of Applied Sciences; RMIT University; Melbourne Victoria 3000 Australia
- Vascular Biotechnology; Baker IDI Heart and Diabetes Institute; Melbourne Victoria 3004 Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and the Department of Chemical and Biomolecular Engineering; The University of Melbourne; Parkville Victoria 3010 Australia
| |
Collapse
|
36
|
Patel H, Chen J, Kavdia M. Induced peroxidase and cytoprotective enzyme expressions support adaptation of HUVECs to sustain subsequent H2O2 exposure. Microvasc Res 2015; 103:1-10. [PMID: 26409120 DOI: 10.1016/j.mvr.2015.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 02/07/2023]
Abstract
H2O2 mediates autocrine and paracrine signaling in the vasculature and can propagate endothelial dysfunction. However, it is not clear how endothelial cells withstand H2O2 exposure and promote H2O2-induced vascular remodeling. To understand the innate ability of endothelial cells for sustaining excess H2O2 exposure, we investigated the genotypic and functional regulation of redox systems in primary HUVECs following an H2O2 treatment. Primary HUVECs were exposed to transient H2O2 exposure and consistent H2O2 exposure. Following H2O2 treatments for 24, 48 and 72 h, we measured O2(-) production, mitochondrial membrane polarization (MMP), and gene expressions of pro-oxidative enzymes, peroxidase enzymes, and cytoprotective intermediates. Our results showed that the 24 h H2O2 exposure significantly increased O2(-) levels, hyperpolarized MMP, and downregulated CAT, GPX1, TXNRD1, NFE2L2, ASK1, and ATF2 gene expression in HUVECs. At 72 h, HUVECs in both treatment conditions were shown to adapt to reduce O2(-) levels and normalize MMP. An upregulation of GPX1, TXNRD1, and HMOX1 gene expression and a recovery of NFE2L2 and PRDX1 gene expression to control levels were observed in both consistent and transient treatments at 48 and 72 h. The response of endothelial cells to excess levels of H2O2 involves a complex interaction amongst O2(-) levels, mitochondrial membrane polarization and anti- and pro-oxidant gene regulation. As a part of this response, HUVECs induce cytoprotective mechanisms including the expression of peroxidase and antioxidant enzymes along with the downregulation of pro-apoptotic genes. This adaptation assists HUVECs to withstand subsequent exposures to H2O2.
Collapse
Affiliation(s)
- Hemang Patel
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, United States.
| | - Juan Chen
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, United States.
| | - Mahendra Kavdia
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, United States.
| |
Collapse
|
37
|
Zhang M, Qin DN, Suo YP, Su Q, Li HB, Miao YW, Guo J, Feng ZP, Qi J, Gao HL, Mu JJ, Zhu GQ, Kang YM. Endogenous hydrogen peroxide in the hypothalamic paraventricular nucleus regulates neurohormonal excitation in high salt-induced hypertension. Toxicol Lett 2015; 235:206-15. [PMID: 25891026 DOI: 10.1016/j.toxlet.2015.04.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 04/11/2015] [Accepted: 04/13/2015] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) in the brain plays an important role in the progression of hypertension and hydrogen peroxide (H2O2) is a major component of ROS. The aim of this study is to explore whether endogenous H2O2 changed by polyethylene glycol-catalase (PEG-CAT) and aminotriazole (ATZ) in the hypothalamic paraventricular nucleus (PVN) regulates neurotransmitters, renin-angiotensin system (RAS), and cytokines, and whether subsequently affects the renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) in high salt-induced hypertension. Male Sprague-Dawley rats received a high-salt diet (HS, 8% NaCl) or a normal-salt diet (NS, 0.3% NaCl) for 10 weeks. Then rats were treated with bilateral PVN microinjection of PEG-CAT (0.2 i.u./50nl), an analog of endogenous catalase, the catalase inhibitor ATZ (10nmol/50nl) or vehicle. High salt-fed rats had significantly increased MAP, RSNA, plasma norepinephrine (NE) and pro-inflammatory cytokines (PICs). In addition, rats with high-salt diet had higher levels of NOX-2, NOX-4 (subunits of NAD(P)H oxidase), angiotensin-converting enzyme (ACE), interleukin-1beta (IL-1β), glutamate and NE, and lower levels of gamma-aminobutyric acid (GABA) and interleukin-10 (IL-10) in the PVN than normal diet rats. Bilateral PVN microinjection of PEG-CAT attenuated the levels of RAS and restored the balance of neurotransmitters and cytokines, while microinjection of ATZ into the PVN augmented those changes occurring in hypertensive rats. Our findings demonstrate that ROS component H2O2 in the PVN regulating MAP and RSNA are partly due to modulate neurotransmitters, renin-angiotensin system, and cytokines within the PVN in salt-induced hypertension.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Da-Nian Qin
- Department of Physiology, Shantou University Medical College, Shantou 515041, China
| | - Yu-Ping Suo
- Department of Obstetrics and Gynecology, Shanxi Provincial People's Hospital, Taiyuan 030012, China
| | - Qing Su
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Hong-Bao Li
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Yu-Wang Miao
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Jing Guo
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Zhi-Peng Feng
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Jie Qi
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Hong-Li Gao
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Jian-Jun Mu
- Department of Cardiology, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an 710061, China
| | - Guo-Qing Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China.
| |
Collapse
|
38
|
Rodríguez AI, Csányi G, Ranayhossaini DJ, Feck DM, Blose KJ, Assatourian L, Vorp DA, Pagano PJ. MEF2B-Nox1 signaling is critical for stretch-induced phenotypic modulation of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2015; 35:430-8. [PMID: 25550204 PMCID: PMC4409426 DOI: 10.1161/atvbaha.114.304936] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Blood vessel hemodynamics have profound influences on function and structure of vascular cells. One of the main mechanical forces influencing vascular smooth muscle cells (VSMC) is cyclic stretch (CS). Increased CS stimulates reactive oxygen species (ROS) production in VSMC, leading to their dedifferentiation, yet the mechanisms involved are poorly understood. This study was designed to test the hypothesis that pathological CS stimulates NADPH oxidase isoform 1 (Nox1)-derived ROS via MEF2B, leading to VSMC dysfunction via a switch from a contractile to a synthetic phenotype. APPROACH AND RESULTS Using a newly developed isoform-specific Nox1 inhibitor and gene silencing technology, we demonstrate that a novel pathway, including MEF2B-Nox1-ROS, is upregulated under pathological stretch conditions, and this pathway promotes a VSMC phenotypic switch from a contractile to a synthetic phenotype. We observed that CS (10% at 1 Hz) mimicking systemic hypertension in humans increased Nox1 mRNA, protein levels, and enzymatic activity in a time-dependent manner, and this upregulation was mediated by MEF2B. Furthermore, we show that stretch-induced Nox1-derived ROS upregulated a specific marker for synthetic phenotype (osteopontin), whereas it downregulated classical markers for contractile phenotype (calponin1 and smoothelin B). In addition, our data demonstrated that stretch-induced Nox1 activation decreases actin fiber density and augments matrix metalloproteinase 9 activity, VSMC migration, and vectorial alignment. CONCLUSIONS These results suggest that CS initiates a signal through MEF2B that potentiates Nox1-mediated ROS production and causes VSMC to switch to a synthetic phenotype. The data also characterize a new Nox1 inhibitor as a potential therapy for treatment of vascular dysfunction in hypertension.
Collapse
MESH Headings
- Animals
- Biomarkers/metabolism
- Calcium-Binding Proteins/metabolism
- Cell Movement
- Cells, Cultured
- Cytoskeletal Proteins/metabolism
- Enzyme Inhibitors/pharmacology
- MEF2 Transcription Factors/genetics
- MEF2 Transcription Factors/metabolism
- Matrix Metalloproteinase 9/metabolism
- Mechanotransduction, Cellular/drug effects
- Microfilament Proteins/metabolism
- Muscle Proteins/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- NADH, NADPH Oxidoreductases/antagonists & inhibitors
- NADH, NADPH Oxidoreductases/genetics
- NADH, NADPH Oxidoreductases/metabolism
- NADPH Oxidase 1
- Osteopontin/metabolism
- Phenotype
- Pressoreceptors/metabolism
- RNA Interference
- RNA, Messenger/metabolism
- Rats
- Reactive Oxygen Species/metabolism
- Time Factors
- Transfection
- Vascular Remodeling/drug effects
- Calponins
Collapse
Affiliation(s)
- Andrés I Rodríguez
- From the Department of Pharmacology and Chemical Biology and Vascular Medicine Institute (A.I.R., G.C., D.J.R, D.M.F., L.A., P.J.P), and Departments of Bioengineering, Surgery, and Cardiothoracic Surgery and Center for Vascular Remodeling and Regeneration (K.J.B., D.A.V), University of Pittsburgh, PA; and Department of Basic Sciences, Faculty of Science, Universidad del Bío-Bío, Chillán, Chile (A.I.R)
| | - Gábor Csányi
- From the Department of Pharmacology and Chemical Biology and Vascular Medicine Institute (A.I.R., G.C., D.J.R, D.M.F., L.A., P.J.P), and Departments of Bioengineering, Surgery, and Cardiothoracic Surgery and Center for Vascular Remodeling and Regeneration (K.J.B., D.A.V), University of Pittsburgh, PA; and Department of Basic Sciences, Faculty of Science, Universidad del Bío-Bío, Chillán, Chile (A.I.R)
| | - Daniel J Ranayhossaini
- From the Department of Pharmacology and Chemical Biology and Vascular Medicine Institute (A.I.R., G.C., D.J.R, D.M.F., L.A., P.J.P), and Departments of Bioengineering, Surgery, and Cardiothoracic Surgery and Center for Vascular Remodeling and Regeneration (K.J.B., D.A.V), University of Pittsburgh, PA; and Department of Basic Sciences, Faculty of Science, Universidad del Bío-Bío, Chillán, Chile (A.I.R)
| | - Douglas M Feck
- From the Department of Pharmacology and Chemical Biology and Vascular Medicine Institute (A.I.R., G.C., D.J.R, D.M.F., L.A., P.J.P), and Departments of Bioengineering, Surgery, and Cardiothoracic Surgery and Center for Vascular Remodeling and Regeneration (K.J.B., D.A.V), University of Pittsburgh, PA; and Department of Basic Sciences, Faculty of Science, Universidad del Bío-Bío, Chillán, Chile (A.I.R)
| | - Kory J Blose
- From the Department of Pharmacology and Chemical Biology and Vascular Medicine Institute (A.I.R., G.C., D.J.R, D.M.F., L.A., P.J.P), and Departments of Bioengineering, Surgery, and Cardiothoracic Surgery and Center for Vascular Remodeling and Regeneration (K.J.B., D.A.V), University of Pittsburgh, PA; and Department of Basic Sciences, Faculty of Science, Universidad del Bío-Bío, Chillán, Chile (A.I.R)
| | - Lillian Assatourian
- From the Department of Pharmacology and Chemical Biology and Vascular Medicine Institute (A.I.R., G.C., D.J.R, D.M.F., L.A., P.J.P), and Departments of Bioengineering, Surgery, and Cardiothoracic Surgery and Center for Vascular Remodeling and Regeneration (K.J.B., D.A.V), University of Pittsburgh, PA; and Department of Basic Sciences, Faculty of Science, Universidad del Bío-Bío, Chillán, Chile (A.I.R)
| | - David A Vorp
- From the Department of Pharmacology and Chemical Biology and Vascular Medicine Institute (A.I.R., G.C., D.J.R, D.M.F., L.A., P.J.P), and Departments of Bioengineering, Surgery, and Cardiothoracic Surgery and Center for Vascular Remodeling and Regeneration (K.J.B., D.A.V), University of Pittsburgh, PA; and Department of Basic Sciences, Faculty of Science, Universidad del Bío-Bío, Chillán, Chile (A.I.R)
| | - Patrick J Pagano
- From the Department of Pharmacology and Chemical Biology and Vascular Medicine Institute (A.I.R., G.C., D.J.R, D.M.F., L.A., P.J.P), and Departments of Bioengineering, Surgery, and Cardiothoracic Surgery and Center for Vascular Remodeling and Regeneration (K.J.B., D.A.V), University of Pittsburgh, PA; and Department of Basic Sciences, Faculty of Science, Universidad del Bío-Bío, Chillán, Chile (A.I.R).
| |
Collapse
|
39
|
dʼUscio LV, Santhanam AVR, Katusic ZS. Erythropoietin prevents endothelial dysfunction in GTP-cyclohydrolase I-deficient hph1 mice. J Cardiovasc Pharmacol 2014; 64:514-21. [PMID: 25490417 PMCID: PMC4261745 DOI: 10.1097/fjc.0000000000000145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
: In this study, we used the mutant hph1 mouse model, which has deficiency in GTP-cyclohydrolase I (GTPCH I) activity, to test the hypothesis that erythropoietin (EPO) protects aortic wall from oxidative stress induced by uncoupling of endothelial nitric oxide synthase (eNOS). Both GTPCH I activity and tetrahydrobiopterin (BH4) levels were reduced in hph1 mice, whereas 7,8-dihydrobiopterin (7,8-BH2) levels were significantly increased. Furthermore, BH4 deficiency caused increased production of superoxide anion and hydrogen peroxide in the aorta thus resulting in impairment of endothelium-dependent relaxations to acetylcholine. Treatment of hph1 mice with recombinant human EPO (1000 U/kg, subcutaneously for 3 days) significantly decreased superoxide anion production by eNOS and improved BH4 to 7,8-BH2 ratio in aortas. EPO also significantly decreased production of hydrogen peroxide and improved endothelium-dependent relaxations in aortas of hph1 mice. In addition, EPO treatment increased protein expressions of copper-/zinc-superoxide dismutase, manganese-superoxide dismutase, and catalase in the aorta of hph1 mice. Our findings demonstrate that treatment with EPO prevented oxidative stress and endothelial dysfunction caused by eNOS uncoupling. Increased vascular expressions of antioxidants seem to be an important molecular mechanism underlying vascular protection by EPO during chronic BH4 deficiency.
Collapse
Affiliation(s)
- Livius V dʼUscio
- Departments of *Anesthesiology; and †Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN
| | | | | |
Collapse
|
40
|
Cowley AW, Abe M, Mori T, O'Connor PM, Ohsaki Y, Zheleznova NN. Reactive oxygen species as important determinants of medullary flow, sodium excretion, and hypertension. Am J Physiol Renal Physiol 2014; 308:F179-97. [PMID: 25354941 DOI: 10.1152/ajprenal.00455.2014] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The physiological evidence linking the production of superoxide, hydrogen peroxide, and nitric oxide in the renal medullary thick ascending limb of Henle (mTAL) to regulation of medullary blood flow, sodium homeostasis, and long-term control of blood pressure is summarized in this review. Data obtained largely from rats indicate that experimentally induced elevations of either superoxide or hydrogen peroxide in the renal medulla result in reduction of medullary blood flow, enhanced Na(+) reabsorption, and hypertension. A shift in the redox balance between nitric oxide and reactive oxygen species (ROS) is found to occur naturally in the Dahl salt-sensitive (SS) rat model, where selective reduction of ROS production in the renal medulla reduces salt-induced hypertension. Excess medullary production of ROS in SS rats emanates from the medullary thick ascending limbs of Henle [from both the mitochondria and membrane NAD(P)H oxidases] in response to increased delivery and reabsorption of excess sodium and water. There is evidence that ROS and perhaps other mediators such as ATP diffuse from the mTAL to surrounding vasa recta capillaries, resulting in medullary ischemia, which thereby contributes to hypertension.
Collapse
Affiliation(s)
- Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michiaki Abe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Takefumi Mori
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Paul M O'Connor
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yusuke Ohsaki
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | |
Collapse
|
41
|
Kang KT. Endothelium-derived Relaxing Factors of Small Resistance Arteries in Hypertension. Toxicol Res 2014; 30:141-8. [PMID: 25343007 PMCID: PMC4206740 DOI: 10.5487/tr.2014.30.3.141] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/27/2014] [Accepted: 09/15/2014] [Indexed: 12/13/2022] Open
Abstract
Endothelium-derived relaxing factors (EDRFs), including nitric oxide (NO), prostacyclin (PGI2), and endothelium-derived hyperpolarizing factor (EDHF), play pivotal roles in regulating vascular tone. Reduced EDRFs cause impaired endothelium-dependent vasorelaxation, or endothelial dysfunction. Impaired endothelium-dependent vasorelaxation in response to acetylcholine (ACh) is consistently observed in conduit vessels in human patients and experimental animal models of hypertension. Because small resistance arteries are known to produce more than one type of EDRF, the mechanism(s) mediating endothelium-dependent vasorelaxation in small resistance arteries may be different from that observed in conduit vessels under hypertensive conditions, where vasorelaxation is mainly dependent on NO. EDHF has been described as one of the principal mediators of endothelium-dependent vasorelaxation in small resistance arteries in normotensive animals. Furthermore, EDHF appears to become the predominant endothelium-dependent vasorelaxation pathway when the endothelial NO synthase (NOS3)/NO pathway is absent, as in NOS3-knockout mice, whereas some studies have shown that the EDHF pathway is dysfunctional in experimental models of hypertension. This article reviews our current knowledge regarding EDRFs in small arteries under normotensive and hypertensive conditions.
Collapse
Affiliation(s)
- Kyu-Tae Kang
- College of Pharmacy, Duksung Women's University, Seoul, Korea ; Innovative Drug Center, Duksung Women's University, Seoul, Korea
| |
Collapse
|
42
|
Goodarzi M, Moosavi-Movahedi AA, Habibi-Rezaei M, Shourian M, Ghourchian H, Ahmad F, Farhadi M, Saboury AA, Sheibani N. Hemoglobin fructation promotes heme degradation through the generation of endogenous reactive oxygen species. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 130:561-567. [PMID: 24813286 DOI: 10.1016/j.saa.2014.04.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 03/25/2014] [Accepted: 04/04/2014] [Indexed: 06/03/2023]
Abstract
Protein glycation is a cascade of nonenzymatic reactions between reducing sugars and amino groups of proteins. It is referred to as fructation when the reducing monosaccharide is fructose. Some potential mechanisms have been suggested for the generation of reactive oxygen species (ROS) by protein glycation reactions in the presence of glucose. In this state, glucose autoxidation, ketoamine, and oxidative advance glycation end products (AGEs) formation are considered as major sources of ROS and perhaps heme degradation during hemoglobin glycation. However, whether fructose mediated glycation produces ROS and heme degradation is unknown. Here we report that ROS (H2O2) production occurred during hemoglobin fructation in vitro using chemiluminescence methods. The enhanced heme exposure and degradation were determined using UV-Vis and fluorescence spectrophotometry. Following accumulation of ROS, heme degradation products were accumulated reaching a plateau along with the detected ROS. Thus, fructose may make a significant contribution to the production of ROS, glycation of proteins, and heme degradation during diabetes.
Collapse
Affiliation(s)
- M Goodarzi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - A A Moosavi-Movahedi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Center of Excellence in Biothermodynamics, University of Tehran, Tehran, Iran.
| | - M Habibi-Rezaei
- School of Biology, University of Tehran, Tehran, Iran; Center of Excellence in NanoBioMedicine, University of Tehran, Tehran, Iran
| | - M Shourian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - H Ghourchian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - F Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - M Farhadi
- ENT-HNS Research Center, IUMS, Tehran, Iran
| | - A A Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Center of Excellence in Biothermodynamics, University of Tehran, Tehran, Iran
| | - N Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
43
|
Mechanism of action involved in the hepatoprotective activities of methanol extract of Cassytha filiformis L. aerial parts in CCl4-induced liver damage. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s00580-014-1997-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
44
|
Ramiro-Diaz JM, Giermakowska W, Weaver JM, Jernigan NL, Gonzalez Bosc LV. Mechanisms of NFATc3 activation by increased superoxide and reduced hydrogen peroxide in pulmonary arterial smooth muscle. Am J Physiol Cell Physiol 2014; 307:C928-38. [PMID: 25163518 DOI: 10.1152/ajpcell.00244.2014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We recently demonstrated increased superoxide (O2(·-)) and decreased H2O2 levels in pulmonary arteries of chronic hypoxia-exposed wild-type and normoxic superoxide dismutase 1 (SOD1) knockout mice. We also showed that this reciprocal change in O2(·-) and H2O2 is associated with elevated activity of nuclear factor of activated T cells isoform c3 (NFATc3) in pulmonary arterial smooth muscle cells (PASMC). This suggests that an imbalance in reactive oxygen species levels is required for NFATc3 activation. However, how such imbalance activates NFATc3 is unknown. This study evaluated the importance of O2(·-) and H2O2 in the regulation of NFATc3 activity. We tested the hypothesis that an increase in O2(·-) enhances actin cytoskeleton dynamics and a decrease in H2O2 enhances intracellular Ca(2+) concentration, contributing to NFATc3 nuclear import and activation in PASMC. We demonstrate that, in PASMC, endothelin-1 increases O2(·-) while decreasing H2O2 production through the decrease in SOD1 activity without affecting SOD protein levels. We further demonstrate that O2(·-) promotes, while H2O2 inhibits, NFATc3 activation in PASMC. Additionally, increased O2(·-)-to-H2O2 ratio activates NFATc3, even in the absence of a Gq protein-coupled receptor agonist. Furthermore, O2(·-)-dependent actin polymerization and low intracellular H2O2 concentration-dependent increases in intracellular Ca(2+) concentration contribute to NFATc3 activation. Together, these studies define important and novel regulatory mechanisms of NFATc3 activation in PASMC by reactive oxygen species.
Collapse
Affiliation(s)
- Juan Manuel Ramiro-Diaz
- Vascular Physiology Group, Department of Cell Biology and Physiology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Wieslawa Giermakowska
- Vascular Physiology Group, Department of Cell Biology and Physiology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - John M Weaver
- Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, New Mexico; and Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Nikki L Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Laura V Gonzalez Bosc
- Vascular Physiology Group, Department of Cell Biology and Physiology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico;
| |
Collapse
|
45
|
Imbalance between pro and anti-oxidant mechanisms in perivascular adipose tissue aggravates long-term high-fat diet-derived endothelial dysfunction. PLoS One 2014; 9:e95312. [PMID: 24760053 PMCID: PMC3997398 DOI: 10.1371/journal.pone.0095312] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 03/25/2014] [Indexed: 11/19/2022] Open
Abstract
Background The hypothesis of this study is that long-term high-fat diets (HFD) induce perivascular adipose tissue (PVAT) dysfunction characterized by a redox imbalance, which might contribute to aggravate endothelial dysfunction in obesity. Methods and Results C57BL/6J mice were fed either control or HFD (45% kcal from fat) for 32 weeks. Body weight, lumbar and mesenteric adipose tissue weights were significantly higher in HFD animals compared to controls. The anticontractile effect of PVAT in mesenteric arteries (MA) was lost after 32 week HFD and mesenteric endothelial-dependent relaxation was significantly impaired in presence of PVAT in HFD mice (Emax = 71.0±5.1 vs Emax = 58.5±4.2, p<0.001). The inhibitory effect of L-NAME on Ach-induced relaxation was less intense in the HFD group compared with controls suggesting a reduction of endothelial NO availability. Expression of eNOS and NO bioavailability were reduced in MA and almost undetectable in mesenteric PVAT of the HFD group. Superoxide levels and NOX activity were higher in PVAT of HFD mice. Apocynin only reduced contractile responses to NA in HFD animals. Expression of ec-SOD and total SOD activity were significantly reduced in PVAT of HFD mice. No changes were observed in Mn-SOD, Cu/Zn-SOD or catalase. The ratio [GSSG]/([GSH]+[GSSG]) was 2-fold higher in the mesenteric PVAT from HFD animals compared to controls. Conclusions We suggest that the imbalance between pro-oxidant (NOX, superoxide anions, hydrogen peroxide) and anti-oxidant (eNOS, NO, ecSOD, GSSG) mechanisms in PVAT after long-term HFD might contribute to the aggravation of endothelial dysfunction.
Collapse
|
46
|
Fan LM, Li JM. Evaluation of methods of detecting cell reactive oxygen species production for drug screening and cell cycle studies. J Pharmacol Toxicol Methods 2014; 70:40-7. [PMID: 24721421 DOI: 10.1016/j.vascn.2014.03.173] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 01/22/2023]
Abstract
Intracellular reactive oxygen species (ROS) production is essential to normal cell function. However, excessive ROS production causes oxidative damage and cell death. Many pharmacological compounds exert their effects on cell cycle progression by changing intracellular redox state and in many cases cause oxidative damage leading to drug cytotoxicity. Appropriate measurement of intracellular ROS levels during cell cycle progression is therefore crucial in understanding redox-regulation of cell function and drug toxicity and for the development of new drugs. However, due to the extremely short half-life of ROS, measuring the changes in intracellular ROS levels during a particular phase of cell cycle for drug intervention can be challenging. In this article, we have provided updated information on the rationale, the applications, the advantages and limitations of common methods for screening drug effects on intracellular ROS production linked to cell cycle study. Our aim is to facilitate biomedical scientists and researchers in the pharmaceutical industry in choosing or developing specific experimental regimens to suit their research needs.
Collapse
Affiliation(s)
- Lampson M Fan
- John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Jian-Mei Li
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.
| |
Collapse
|
47
|
Billaud M, Lohman AW, Johnstone SR, Biwer LA, Mutchler S, Isakson BE. Regulation of cellular communication by signaling microdomains in the blood vessel wall. Pharmacol Rev 2014; 66:513-69. [PMID: 24671377 PMCID: PMC3973613 DOI: 10.1124/pr.112.007351] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It has become increasingly clear that the accumulation of proteins in specific regions of the plasma membrane can facilitate cellular communication. These regions, termed signaling microdomains, are found throughout the blood vessel wall where cellular communication, both within and between cell types, must be tightly regulated to maintain proper vascular function. We will define a cellular signaling microdomain and apply this definition to the plethora of means by which cellular communication has been hypothesized to occur in the blood vessel wall. To that end, we make a case for three broad areas of cellular communication where signaling microdomains could play an important role: 1) paracrine release of free radicals and gaseous molecules such as nitric oxide and reactive oxygen species; 2) role of ion channels including gap junctions and potassium channels, especially those associated with the endothelium-derived hyperpolarization mediated signaling, and lastly, 3) mechanism of exocytosis that has considerable oversight by signaling microdomains, especially those associated with the release of von Willebrand factor. When summed, we believe that it is clear that the organization and regulation of signaling microdomains is an essential component to vessel wall function.
Collapse
Affiliation(s)
- Marie Billaud
- Dept. of Molecular Physiology and Biophysics, University of Virginia School of Medicine, PO Box 801394, Charlottesville, VA 22902.
| | | | | | | | | | | |
Collapse
|
48
|
Aqueous extract of dioscorea opposita thunb. normalizes the hypertension in 2K1C hypertensive rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:36. [PMID: 24447776 PMCID: PMC3904168 DOI: 10.1186/1472-6882-14-36] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/21/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND Dioscorea opposita Thunb. (Huai Shan Yao, DOT), a common staple food in China, has been used for more than 2000 years in traditional Chinese medicine (TCM) to treat different systemic diseases including hypertension. The objective of this study was to investigate the possible antihypertensive effects of the aqueous extract of (DOT) in renovascular hypertensive rats as well as the mechanism in reducing blood pressure. METHODS The two-kidney one-clip (2K1C) Goldblatt model of renovascular hypertension was used in Wistar rats. Rats with captopril, low-dose DOT and high-dose DOT treated 2K1C groups for 6 weeks. The blood pressure, cardiac mass index (heart weight/body weight), plasma level of angiotensin-II (Ang-II), endothelin-1(ET-1), superoxide dismutase (SOD) and malondialdehyde (MDA) were evaluated. RESULTS DOT significantly reduced mean systolic and diastolic blood pressure after treatment. DOT also significantly increased plasma SOD activity but decreased plasma MDA concentration. Renal function was improved with captopril and DOT. DOT reduced plasma Ang-II activity and plasma ET concentration. They couldalso significantly reduce the left ventricular hypertrophy and cardiac mass index. CONCLUSIONS Our results suggest that DOT may have an antihypertensive effect on hypertension by inhibit ET-converting enzyme and antioxidant activity, which warrant further exploration.
Collapse
|
49
|
Wang HD, Chapman A. Essential Role of Adventitial Reactive Oxygen Species (ROS) in Vascular Function. SYSTEMS BIOLOGY OF FREE RADICALS AND ANTIOXIDANTS 2014:1287-1303. [DOI: 10.1007/978-3-642-30018-9_54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
50
|
Ranayhossaini DJ, Rodriguez AI, Sahoo S, Chen BB, Mallampalli RK, Kelley EE, Csanyi G, Gladwin MT, Romero G, Pagano PJ. Selective recapitulation of conserved and nonconserved regions of putative NOXA1 protein activation domain confers isoform-specific inhibition of Nox1 oxidase and attenuation of endothelial cell migration. J Biol Chem 2013; 288:36437-50. [PMID: 24187133 PMCID: PMC3868757 DOI: 10.1074/jbc.m113.521344] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Indexed: 11/06/2022] Open
Abstract
Excessive vascular and colon epithelial reactive oxygen species production by NADPH oxidase isoform 1 (Nox1) has been implicated in a number of disease states, including hypertension, atherosclerosis, and neoplasia. A peptide that mimics a putative activation domain of the Nox1 activator subunit NOXA1 (NOXA1 docking sequence, also known as NoxA1ds) potently inhibited Nox1-derived superoxide anion (O2·-) production in a reconstituted Nox1 cell-free system, with no effect on Nox2-, Nox4-, Nox5-, or xanthine oxidase-derived reactive oxygen species production as measured by cytochrome c reduction, Amplex Red fluorescence, and electron paramagnetic resonance. The ability of NoxA1ds to cross the plasma membrane was tested by confocal microscopy in a human colon cancer cell line exclusively expressing Nox1 (HT-29) using FITC-labeled NoxA1ds. NoxA1ds significantly inhibited whole HT-29 carcinoma cell-derived O2·- generation. ELISA and fluorescence recovery after photobleaching experiments indicate that NoxA1ds, but not its scrambled control, binds Nox1. FRET experiments conducted using Nox1-YFP and NOXA1-CFP illustrate that NoxA1ds disrupts the binding interaction between Nox1 and NOXA1, whereas a control peptide did not. Moreover, hypoxia-induced human pulmonary artery endothelial cell O2·- production was completely inhibited by NoxA1ds. Human pulmonary artery endothelial cell migration under hypoxic conditions was also reduced by pretreatment with NoxA1ds. Our data indicate that a peptide recapitulating a putative activation subdomain of NOXA1 (NoxA1ds) is a highly efficacious and selective inhibitor of Nox1 activity and establishes a critical interaction site for Nox1-NOXA1 binding required for enzyme activation.
Collapse
Affiliation(s)
- Daniel J. Ranayhossaini
- From the Vascular Medicine Institute and
- Departments of Pharmacology and Chemical Biology and
| | - Andres I. Rodriguez
- From the Vascular Medicine Institute and
- Departments of Pharmacology and Chemical Biology and
| | | | - Beibei B. Chen
- Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 and
| | - Rama K. Mallampalli
- Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 and
- the Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania 15240
| | - Eric E. Kelley
- From the Vascular Medicine Institute and
- Departments of Pharmacology and Chemical Biology and
| | - Gabor Csanyi
- From the Vascular Medicine Institute and
- Departments of Pharmacology and Chemical Biology and
| | - Mark T. Gladwin
- From the Vascular Medicine Institute and
- Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 and
| | | | - Patrick J. Pagano
- From the Vascular Medicine Institute and
- Departments of Pharmacology and Chemical Biology and
| |
Collapse
|